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Abstract 
Three dimensional space is said to be spherically symmetric if it admits SO(3) 
as the group of isometries. Under this symmetry condition, the Einstein’s 
Field equations for vacuum, yields the Schwarzschild Metric as the unique 
solution, which essentially is the statement of the well known Birkhoff’s Theo-
rem. Geometrically speaking this theorem claims that the pseudo-Riemanian 
space-times provide more isometries than expected from the original metric 
holonomy/ansatz. In this paper we use the method of Lie Symmetry Analysis 
to analyze the Einstein’s Vacuum Field Equations so as to obtain the Symme-
try Generators of the corresponding Differential Equation. Additionally, ap-
plying the Noether Point Symmetry method we have obtained the conserved 
quantities corresponding to the generators of the Schwarzschild Lagrangian 
and paving way to reformulate the Birkhoff’s Theorem from a different ap-
proach. 
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1. Introduction 

Einstein’s Field equations are the most fundamental equation in the realm of 
General Relativity. This equation can be loosely summarized as the link up be-
tween the matter content and the geometry of space-time. In a more qualitative 
manner, the field equations explain how the metric (of the space-time involved) 
responds to energy and momentum. Due to the non-linearity and indeterminacy 
of the equations it is very hard to obtain the solution of the field equations. All 
the solutions that are available in literature are carried out under simplifying as-
sumptions. The most well known solution of Einstein’s equations is obtained 
under the assumption of spherical symmetry, which is known as the Schwarz-
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schild solution. 
Lie Symmetry analysis of differential equations provides us a rudimentary yet 

very powerful machinery to derive the conservation laws of corresponding system 
represented by the (ordinary or partial) differential equations. The invariance of 
the differential equations under transformation of both dependent and indepen-
dent variables involved essentially leads to the idea of their symmetry analysis. 
This transformation forms a local group of point transformations establishing dif-
feomorphism on the space of independent and dependent variables, mapping the 
solutions of the specific differential equation to the other solutions. 

In this paper we use the method of Lie Symmetry Analysis on Einstein’s field 
equations. Thereafter we use the Noether’s theorem, which reveals the inner re-
lation between the involved symmetries and the conserved quantities of dynam-
ical system to reiterate the well known Birkhoff’s theorem. 

The paper is organized in the following manner. In Section 2, we quickly re-
capitulate the Birkhoff’s theorem and discuss the Lie Algebra of the Killing vec-
tors in a spherically symmetric space-time. Section 3, sheds some light upon the 
recent literatures that deals with Birkhoff’s theorem and its modern treatments 
to different dimensions. In the section followed by we introduce the most im-
portant tool implemented for our work that is the Lie groups of transformations 
and the Prolongation Theory of differential equations. In simple language, the 
term prolongation means becoming longer. Here the involved system certainly 
does not become longer but the space of the dependent variables does. Basically 
our requirement is of a differential equation not only representing the depen-
dent and independent variables but also the appearing partial derivatives. So, we 
prolong the space of dependent variables using their partial derivatives. In Sec-
tion 5, we take the Einstein’s vacuum field equations and obtain the maximal 
symmetry generator, using the method of Lie Symmetry analysis. Entire Section 
6 comprises Noether’s theorem and its modification for the first order prolonga-
tions. This theorem has been implemented for the case of Schwarzschild lagran-
gian. This section concludes with recovering Birkhoff’s theorem from the infini-
tesimal symmetry generators obtained via the analysis of Schwarzschild Lagran-
gian. 

2. Birkhoff’s Theorem 

A metric describing the space-time is obtained when Einstein’s field equations 
are solved under simplifying assumptions. The Birkhoff’s theorem is a funda-
mental theorem regarding the solution of the field equations. It states that, any 
spherically symmetric solution of Einstein’s vacuum field equations must be 
static and asymptotically flat. This statement leads to the fact that Schwarz-
schild’s exterior (i.e. space-time outside of a spherically non-rotating gravita-
tional object) solution is the most general spherically symmetric solution of 
Einstein’s vacuum field equations with zero cosmological constant. The solution 
for non-zero cosmological constant is provided by the Schwarzschild-deSitter 

https://doi.org/10.4236/jhepgc.2021.74078


A. Mukherjee, S. B. Roy 
 

 

DOI: 10.4236/jhepgc.2021.74078 1282 Journal of High Energy Physics, Gravitation and Cosmology 
 

metric. The Einstein’s field equations are given by, 

1
2ik ik ikR g R T− =

 
Now for of vacuum, the energy-momentum tensor vanishes i.e. 0ikT =  

1 0
2ik ikR g R− =

 
where ikg  is the metric of the space-time involved and ikR  and R being the 
Ricci tensor and Ricci scalar respectively. The solution of this equation for a 
space-time outside a spherical source or gravitating body is given as, 

( )
1

2 2 2 2 2 2 2
2 2

2 2d 1 d 1 d d sin dGM GMs t r r
c r c r

θ θ φ
−

   = − − − − +   
     

where ( ), ,r θ φ  are the spherical coordinates used and M is the mass of the 

(spherical) gravitating object. Redefining 2

GMm
c

=  we get, 

( )
1

2 2 2 2 2 2 22 2d 1 d 1 d d sin dm ms t r r
r r

θ θ φ
−

   = − − − − +   
     

The theorem also conveys that the solutions of Einstein’s vacuum field equa-
tions possess hypersurface orthogonal Killing vectors i.e. the metric obtained as 
solution of field equations is static1. Additionally the theorem also tells us the 
metric is independent of the changes in the matter distribution, which are the 
sources of the gravitational field, provided the spherical symmetry is preserved. 

The presence of SO(3) group as a group of isometries renders the metric to be 
spherically symmetric. The existence of Killing vectors corresponding to respec-
tive symmetries characterizes the symmetries of space-time or metric. The ex-
isting Killing vectors of any given space-time are coordinate independent quan-
tities. None the less by labelling the space-time in specific coordinates, we can 
formulate the Killing vectors in the chosen coordinate. For example, consider a 
S2 (having SO(3)) with the Killing vectors labelled as X, Y, Z which in polar 
coordinates are given as follows, 

X φ= ∂  

( ) ( )cos cot sinY θ φφ θ φ= ∂ − ∂
 

( ) ( )sin cot cosZ θ φφ θ φ= − ∂ − ∂
 

A quick evaluation of the closed commutators of these Killing vectors, 

[ ],X Y Z=
 

[ ],Y Z X=
 

 

 

1The description of Birkhoff theorem with Einstein’s vacuum solutions having static Schwarzschild 
metric as solution can be a bit of misleading as well since in the region 0 2r M< < , the time coor-
dinate t fails to remain time like, see Hawking and Ellis Appendix. 
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[ ],Z X Y=
 

gives us the Lie algebra of SO(3) group. 
Now it is observed that along with these three Killing vectors the Schwarz-

schild solution does allow one extra time-like Killing vector; 3 for spherical 
symmetry and 1 for time translation (only in the limit 2r M> , beyond the 
Schwarzschild radius the Killing vector remain hypersurface-orthogonal i.e. beyond 
the Schwarzschild radius the time-like coordinte becomes space-like) [1]. Cor-
responding to every Killing vector, there will be a constant of motion. For a free 
particle moving along a geodesic, having of equation of motion 

0a a b c
bcx x x+ Γ =    

if Kν  is a Killing vector then d
d
xK
ν

ν

λ
 remains conserved. The explicit  

expressions for the four conserved quantities associated with the Killing vectors 
can easily be written. Summarizing we can conclude that any spherically sym-
metric solution of the vacuum field equations allow us a fourth/extra Killing 
vector (we started with SO(3)). 

However, this is one of the many aspects of Birkhoff theorem. There are many 
different approaches available to this theorem. Such as, physically, it implies that 
a spherically symmetric star undergoing strict radial pulsations cannot propa-
gate any disturbances into the surrounding space, indicating that a radially os-
cillating star has a static gravitational field [2] [3]. This paper is based on the 
differential geometric aspect of Birkhoff’s theorem which is stated as, every 
member of the family of the pseudo-Riemannian space-time has more isometries 
than expected from the original metric ansatz/holonomy (we have described 
briefly about this following the pedagogical technique of using the Killing vec-
tors). 

3. General Formulations of Birkhoff’s Theorem 

The Birkhoff’s theorem concerning Einstein’s General theory of Relativity was 
first proposed and discussed by G.D.Birkhoff (1923) in his paper cited as follows, 
The field outside the spherical distribution of matter is static whether or not the 
matter is in a static or in a variable state ... thus the Schwarzschild solution is es-
sentially the most general solution of the field equations with spherical symme-
try [4]. 

Over the years Birkhoff’s theorem has been addressed in many different ways. 
Upon stating the fact that the theorem relies on the existence of a 3-parameter 
group of global isometries with 2-dimensional non-null orbits and of an addi-
tional Killing vector associated with a G4 group of motion, H. Goenner [5] had 
put forward a generalized and geometric version of the Birkhoff’s theorem. H. J. 
Schmidt on the other hand provided a complete covariant proof of Birkhoff’s 
theorem by showing that the origin of Birkhoff’s theorem rests on the property 

https://doi.org/10.4236/jhepgc.2021.74078


A. Mukherjee, S. B. Roy 
 

 

DOI: 10.4236/jhepgc.2021.74078 1284 Journal of High Energy Physics, Gravitation and Cosmology 
 

that compared to all other dimensions k, it holds for k = 2. Other different ap-
proaches to this theorem are very lucidly described in his work [6] [7]. 

[8] [9] These two papers describe the 5-dimensional case related to Birkhoff’s 
theorem. Other generalizations such as, extending this theorem to fourth order 
gravity can be found in the works of P. Havas [10]. The relation of Birkhoff’s 
theorem with 2-dimensional space-time can be found in [11] [12]. 

The most evolved phrasing of this theorem in connection with the confor-
mally reducible metrics can be found in the works of Bona [13]. The author’s 
work focuses on the different kinds of space-time to which the theorem is appli-
cable. It is based on the fact that these space-times are conformal to the direct 
product of two 2-dimensional manifold. Other generalization of this theorem for 
higher dimension was done by K. A. Bronnikov and V. N. Melnikov [14] where 
they have discussed about the validity conditions for the extended Birkhoff’s 
theorem in multidimensional gravity with no resctrictions on space-time dimen-
sionality. An elucidating discussion on the relation between manifold dimensio-
nality and the existance of Birkhoff like theorems has been done by H. J. Schmidt 
[6] [7]. G. F. R. Ellis and R. Goswami have investigated the possibility of ex-
tending the Birkhoff’s theorem by analysing whether the theorem holds ap-
proximately for an approximate spherical vacuum solution and also for an al-
most vacuum like configuration [15] [16]. 

4. Lie Groups of Transformations 

The method of change of variables involed while analysing differential equations 
is a go-to tool used by physicists and mathematicians alike. Let us illustrate this 
method by a 2 dimensional case. For example let x and y be the set of variables 
for a given space. After transformation of the variables we obtain, 

( ),x x x x y′ ′→ =
 

( ),y y y x y′ ′→ =
 

where x′  and y′  are new set of variables involved. This is an example of a 
Point Transformation which maps points ( ),x y  into ( ),x y′ ′ . 

As we are more delved into symmetry properties therefore we will be much 
more interested in the transformation that also involves parameters. 

4.1. Groups of Transformation 

Let us consider a domain ND ⊂   (coordinate space) and another space 1S ⊂   
(S be our parameter space). Now let us choose G to be the set of transformations 
(map) defined by, 

:G D S D× →  
Now within this set, choose a particular transformation Z G∈  defined by, 

( ): ;Z x a x Z x a′× → =                      (1) 
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where x and x' are old and new set of coordinates respectively while a being the 
parameter of transformation involved. 

(a) For each value of parameter a S∈ , the transformations are bijective. 
(b) S with the law of composition µ  is a group with identity e. 
(c) ( ); ;Z x e x x D= ∀ ∈ . 
(d) ( )( ) ( )( ); ; ; , ;Z Z x a b Z x a b x Dµ= ∀ ∈  and ,a b S∀ ∈ . 

4.2. Lie Groups of Transformation 

Furthermore satisfying the axioms that are mentioned above if the following 
properties, 

(a) involved parameter a is continuous. 
(b) Z is C∞ ; x D∀ ∈  and an analytic function of a S∈ . 

are also satisfied then these axioms together with the ones stated in Section 4.1 
elevates the group of transformation into the class of Lie groups of transforma-
tions. 

Expanding Equation (1) in Taylor series about a = 0, 

( ) ( )2

0

;

a

Z x a
x x a O a

a
=

∂
′ = + +

∂
                  (2) 

and defining2, 

( ) ( )
0

;

a

Z x a
x

a
ξ

=

∂
=

∂
 

we found, 

( )x x a xξ′ = +                          (3) 

where ( )xξ  is often termed as auxilliary function of the transformation in-
volved. 

To shed some more light on the physical aspect of the theory we use the fol-
lowing one parameter transformation group. 

( ), ,x x f x aµ′→ =                      (4.1) 

( ), ,x aµ µ φ µ′→ =                      (4.2) 

where f and φ  being transformation maps. 
With our definition, 

( )0 , ,ax f x a xµ
=

′ = =                     (5.1) 

( )0 , ,a x aµ φ µ µ
=

′ = =                     (5.2) 

These properties ensure the above being a one parameter group of point 
transformation [17]. A simple example of a one parameter group is given by the 
rotations 

( ) ( )cos sinx x a aµ′ = −
 

 

 

2Often referred as first fundamental theorem of Lie. 
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( ) ( )sin cosx a aµ µ′ = +
 

where a is the involved parameter. On contrary, the reflection 

x x′ = −  
µ µ′ = −  

is an useful point transformation which does not constitute a one parameter 
group. 

The one parameter group and its action are best pictorially observed as mo-
tion in the x µ−  plane. 

Consider an arbitrary starting point ( ),o ox µ  in that plane (with the involved 
parameter a being zero). Varying this parameter shifts the starting point along 
some curve. Again repeating this procedure for different values of ( ),o ox µ  we 
can obtain a bunch of curves where under the action of a group, each curve can 
be transformed into one another and are collectively referred to as orbits of the 
group [18]. 

4.3. Invariants 

Let us assume, an C∞  fucntion ( )F x , which is said to be an Invariant of the 
Lie group of Transformation if and only if for any group of transformation the 
condition, 

( ) ( )F x F x′ =
 

(where x and x' are old and new set of coordinates respectively) holds. 
Infinitesimal generator of the group can be easily exploited to characterize the 

invariance of a function as is illustrated by the following theorem. 
F(x) is invariant under a coordinate transformation, ( );x Z x a′ = , if and only 

if, 

( ) 0XF x =
 

where X is called the infinitesimal generator of the transformation. It is given as, 

( ) ( ) ( )1 2
1 2

N
N

X x x x
x x x

ξ ξ ξ∂ ∂ ∂
= + + +

∂ ∂ ∂


 
where 1 2, , , Nξ ξ ξ  are set of generalized auxilliary functions for the N dimen-
sional case. 

4.4. Lie Groups of Differential Equations: Prolongation Theory 

Consider Lie groups of transformations associated to any given type of differen-
tial equation (say F) involving n independent variables ( )1 2, , , n nx x x ∈   and 
m dependent variables ( )1 2, , , m mu u u ∈   and m n+  be the space of all va-
riables ( ),x u . 

Let us consider the transformations, 

( ), ,i ix Z x u a′ =                        (6.1) 
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( ), ,k ku U x u a′ =                       (6.2) 

This transformation acts on the space n m+  of variables ( ,x u ). 
Let k

ip  denote the derivative of dependent variable u with respect to the in-
dependent variable x, 

( ); 1, 2, , ; 1, 2, ,
k

k
i i

up i n k m
x

∂
= = =
∂

 

 
The transformation of derivatives with the formula (8) leads us to an exten-

sion of the Lie group of transformation which are called Prolongations. This ex-
tended group acts on the space with variables ( ix , ku , k

ip ) rather than ( ix , 
ku ), so the thk  prolonged space will have ( ix , ku , k

ip ,  , k
jp ) as variables, 

often called the jet space. 

4.4.1. First Prolongation 
The infinitesimal generator for the extended group ( )1X , after first prolongation 
is given by [17] [18] [19], 

( )1 k
i k

i

X X ζ
φ
∂

= +
∂

                       (7) 

where X is the generator of the Lie group of transformation of variable ( ix , ku ). 
Given as, 

i k
i kX

x u
ξ η∂ ∂

= +
∂ ∂

                      (8) 

where, 

( ) ( ) ( ); 1, 2, , ; 1, 2, ,i k k j
k i j iD p D i n k mζ η ξ= − = =           (9) 

and 

k
i ii kD p

x u
∂ ∂

= +
∂ ∂

                      (10) 

The operator iD  is the Lie derivative operator. 

4.4.2. Second Prolongation 
Following the same methods the generator of the extended group ( )2X , can also 
be obtained as, 

( ) ( )2 1 k
ij k

ij

X X
r

σ ∂
= +

∂
                     (11) 

where k
ijr  is defined as, 

( ); 1, 2, , ; , 1, 2, ,
k

k i
ij

j

p
r k m i j n

u
∂

= = =
∂

               (12) 

and 

( ) ( )k k k t
ij i i ij iD r Dσ ζ ξ= −                     (13) 
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k k
i i iji k k

j

D p r
x u p
∂ ∂ ∂

= + +
∂ ∂ ∂

                   (14) 

Proceeding in the aforesaid manner, the kth order prolongation can also be 
found. Taking into account the cumbersome calculations and our limited need 
upto second order prolongations for our purpose, we leave the calculations of kth 
order prolongation for the interested readers. 

We are predisposed towards the symmetry properties of the differential equa-
tions, indicating that any transformation T G∈ , when applied to any solution 
of the associated differential equation, maps itself into another solution of the 
same differential equation, that is to say the ith order differential equation 

( ) ( ), , 0iF x u =                        (15) 

remains invarient under any transformation belonging to group G. If  

i k
i kX

x u
ξ η∂ ∂

= +
∂ ∂

 be the infinitesimal generator corresponding to Equation 

(6) and if the operator of kth prolongation is denoted by ( )kX  then Equation (6) 
holds for Equation (15), the system of PDE, if and only if 

( ) ( )
0

0k i

F
X F

=
=                        (16) 

Equation (16) is often referred as the Symmetry Condition or Condition of 
Invariance. 

5. Lie Symmetry Analysis of Einstein’s  
Vacuum Field Equations 

The Einstein’s vacuum field equations as we know, 

1 0
2ik ikR g R− =                       (17.1) 

0ik vacuumR =                        (17.2) 

The general covariance of this equation can be interpreted as the notion of a 
group of generalized motion. 

The application of Lie symmetry analysis of Einstein’s empty space field equa-
tions can give rise to the maximal group of the involved point transformations. 

To extend the theory of Lie symmetry analysis to Einstein’s equation, we con-
sider a n-dimensional manifold M and along with it, we define a metric tensor 

ijg  for the space-time involved (Riemannian). It is convenient to consider the 
transformation of the coordinates of space-time rather than the function ijg  it-
self. It is pretty clear that the transformations of the type, 

( ) ( ), ; 1, 2, ,i i ix x f x a i n′→ = =   

where a is the involved parameter. We can write, 

( ) ( ) ( ) ( ), ,k l

ij ij kl i j

f x a f x a
g x g x g

x x
∂ ∂

′ ′→ =
∂ ∂

            (18) 
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The generator of the group G, 

( )i
iX x

x
ξ ∂

=
∂

                        (19) 

where ( )
0

; 1, 2, ,
i

i

a

f i n
a

ξ
=

∂
= =
∂

  is the auxilliary function involved. 

Now the generator of the extended group G , 

0

; iji
ij iji

ij a

g
X

g ax
ξ η η

=

′∂∂ ∂
= + =

∂ ∂∂
               (20) 

The preceeding equation along with the fact that when a = 0, ( ) ( )ij ijg x g x′ =  
gives us, 

( ); , 1, 2,3, ,
k k

ij ik kjj ig g i j n
x x
ξ ξη

 ∂ ∂
= − + = 

∂ ∂ 
            (21) 

The generator of the extended group G  is 

( )
k k

i
ik kji j i

ij

X x g g
gx x x

ξ ξξ
 ∂ ∂ ∂ ∂

= − +  ∂∂ ∂ ∂ 
             (22) 

As it is known very well that the Einstein’s vacuum field equations allow all 
possible transformations of coordinates i.e. a infinite dimensional Lie algebra is 
obtained from Equation (22). However the operator satisfied by Equation (22) 
does not admit the maximal algebra.3 

So assuming a generator of the form, 

( ) ( ), ,i
iji

ij

X x g x g
gx

ξ η∂ ∂
= +

∂∂
                 (24) 

along with the invariance condition, 
( )2 jl

ik ik jlX R R= Ω                        (25) 

where jl
ikΩ  are undeterminded coefficients. Segregating the terms with second 

derivatives of ijg  we obtain the Lie determining equations for Einstein’s equa-
tions resulting in, 

( )i i xξ ξ=                         (26.1) 

k k

ij kj ki iji jg g ag
x x
ξ ξη

 ∂ ∂
= − + + ∂ ∂ 

               (26.2) 

( )
k k

i k
kj ki iji i j

ij

X x g g ag
gx x x

ξ ξξ ξ
 ∂ ∂ ∂ ∂

= − + +  ∂∂ ∂ ∂ 
        (26.3) 

Thus it can be seen that the operators given in Equation (23) and Equation 

 

 

3The Einstein’s equation allows the transformation, i ix x′ →  and 
ij ijg ag′ →  which is indeed a 

simple transformation with a generator, 

ij
ij

X g
g
∂

=
∂

                                 (23) 

which certainly do not belong to the class of generators specified in Equation (22). 
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(22) span the maximal Lie algebra admitted by Einstein’s empty space field equ-
ations. 

The generator obtained here is immoderately general for our liking because it 
produces different sets of infinitesimal generator and different Lie algebras de-
pending upon which space-time or the metric we choose to work on. The gene-
rator might give us the gravity group which evidently cannot depend on the me-
tric of choice (just like the Lie algebra of spherically symmetric metric is given as 
SO(3), independent of the choice of metric). So drifting away from the far too 
generalized analysis of Einstein’s equation we intend to analyse the geodesic eq-
uation of any particular metric (second order is less cumbersome) using the 
same algorithm. 

Geodesics of Schwarzschild Metric 

The geodesics of Schwarzschild metric can be obtained by calculating the Chris-
toffel symbol and using the geodesic equation 

0x x xβ β γ µ
γµ+ Γ =                          (27) 

( ), , ,
1
2

l
l l lg g g gα α

µν µ ν ν µ µνΓ = + −                  (28) 

Using Equations (27) and (28) for Schwarzschild metric 
1

2 2 2 2 2 2 2 22 2d 1 d 1 d d sin dm ms t r r r
r r

θ θ φ
−

   = − − − − −   
   

       (29) 

one obtains the geodesic equation for the above metric. The equations are given 
as, 

( ) ( ) ( ) 0at t r
r a r

τ τ′′ ′ ′− =
−

                 (30.1) 

( ) ( ) ( ) ( ) ( ) ( ) ( )2 2 2 2 2
3sin 0

2 2
a ar r a r t

r a r r
τ τ θ τ θφ τ τ ′′ ′ ′ ′ ′+ + − + − = −  

 (30.2) 

( ) ( ) ( ) ( ) ( )22 1 sin 2 0
2

r
r

θ τ τ θ τ θ φ τ′′ ′ ′ ′+ − =            (30.3) 

( ) ( ) ( ) ( ) ( )2 2cot 0r
r

φ τ τ φ τ θθ τ φ τ′′ ′ ′ ′ ′+ + =           (30.4) 

Considering infinitesimal transformation of the form 
ττ τ εσ= +  
tt t Tε= +  
rr r Rε= +  

J θθ θ ε= +  
Fφφ φ ε= +  

and the involved generator X given as, 
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X T R J F
t r

σ
τ θ φ
∂ ∂ ∂ ∂ ∂

= + + + +
∂ ∂ ∂ ∂ ∂  

Running through the usual algorithm of the Lie symmetry analysis of diffe-
rential equation (reference last chapter) we obtain the vector fields that span the 
Lie algebra of the space as, 

1X
τ
∂

=
∂

                        (31.1) 

2X
t
∂

=
∂

                         (31.2) 

3X
φ
∂

=
∂

                        (31.3) 

4X τ
τ
∂

=
∂

                        (31.4) 

5 sin cot cosX φ θ φ
θ φ
∂ ∂

= +
∂ ∂

                (31.5) 

6 cos cot sinX φ θ φ
θ φ
∂ ∂

= − +
∂ ∂

               (31.6) 

6. Noether Point Symmetries 

Emmy Noether [20] proved a very important result that every conservation law 
pertaining to a system must originate from a corresponding symmetry property 
of the system. In a more complicated manner, according to Noether’s theorem 
there is an algorithm which relates the constants of the Lagrangian of any given 
system to its symmetry transformation. 

While dealing with the Lie point symmetry of geodesic equations of a space-time 
yielding conserved quantities, we realize that they are non-Noether type con-
served quantities and hence are redundant to us. The symmetries of the Lagran-
gian on the other hand being directly connected to the symmetry transformation 
of a system, gives us conserved quantities of our interest. 

6.1. Pedagogical Noether’s Theorem and Prolongations 

Consider a dynamical system with Lagrangian L, where ( ), ,L L q q t=  . Using the 
variational principle to the action we can obtain the Euler-Lagrangian equations 
written as, 

d 0
di i

L L
tq q
 ∂ ∂

− = ∂ ∂ 
                      (32) 

The variational principle involving the action functional can be implemented 
to formulate the Noether theorem. Here the key constituent is its variations un-
der infinitesimal transformations of the generalized coordinates and time. 

( ), ,i i i iq q q q q tεξ→ = +                    (33.1) 
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( ), ,t t t q q tεη→ = +

                    (33.2) 

ε  is an infinitesimal parameter and iξ , η  are analytic functions. The ge-
nerator of the transformation is given by, 

i
iX

t q
η ξ∂ ∂

= +
∂ ∂

                      (34) 

The transformation maps the velocities (terms involving first order derivating 
of the generalized coordinates), 

( )d
d

i
i i iq q q

t
ε ξ η= + −





 



                     (35) 

Now any function like the lagrangian, depending on the velocities transform 
like, 

( ) ( ) ( ) ( ) ( )( ) ( )1 2, , , , , , , ,L q q t L q q t L q q t X L q q t Oε ε→ = + +

          (36) 

( )1X  being the first prolongation of the generator X. Given as, 

( ) ( )1 i i
iX X q

q
ξ η ∂

= + −
∂







                   (37) 

Due to the infinitesimal shift of the coordinate, the change in action can be 
put forward as, 

2 2

1 1

d d, , d , , d
d d

t t

t t

q qA L q t t L q t t
t t

δ    = −   
   ∫ ∫



 





             (38) 

( )( )1 dA X L L tδ ε η= +∫                      (39) 

We have neglected the higher order terms throughout. We can conclude that 
the variation of action is invariant upto divergence term f, if the integrand of 
Equation (39) is total time derivative of some function ( ), ,f q q t , 

( )1X L L fη+ =                         (40) 

This is the Rund-Trautman identity which can be used to unearth the careful-
ly hidden symmetries that the Lagrangian fails to exhibit. 

Now the Rund-Trautman identity is valid for all type of paths ( )t q t→  so it 
is more logical to replace the dots with total time derivative operator, 

i i
i iD q q

t q q
∂ ∂ ∂

= + + +
∂ ∂

 


  

So rewritting the Equation (40) as, 
( ) ( ) ( )1X L D L Dfη+ =                     (41) 

where the first prolongation operator is given as, 

( ) ( )( )1X X D q D
q

ξ η ∂
= + −

∂


  
We can solve unknown generator defined in Equation (34) using the Rund- 

Trautman identity, if the Lagrangian of a dynamical system is specified. 
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If the action functional is invariant under the infinitesimal change of genera-
lized coordinates upto the divergence term f, then the quantity, 

( )i i
i

LI f L q
q

η ξ η∂
= − − −

∂




                   (42) 

is a first integral of the system involved. 
The Lagrangian associated with geodesic equations can be written as, 

( ) d d,
d d

i i q qL q q g q q g
α β

α β
αβ αβ τ τ

= =                  (43) 

6.2. Schwarzschild Case 

For Schwarzschild metric the Lagrangian takes the form, 
1

2 2 2 2 2 2 22 21 1 sinm mL t r r r
r r

θ θφ
−

   = − − − − −   
   

 



          (44) 

(bringing back the conventional terminology instead of using q and t). 
Taking the symmetry generator to be of the standard form, 

X T R J F
t r

σ
τ θ φ
∂ ∂ ∂ ∂ ∂

= + + + +
∂ ∂ ∂ ∂ ∂

              (45) 

Substituting this into Equation (40) and using the Schwarzschild Lagrangian, 
we obtain huge cumbersome equations which upon seperation of monomials 
gives us 16 coupled PDE as listed below. 

( )sσ σ=                         (46.1) 

2

2 2 22 1 1 0t
m m mR T

r rr τσ
     + − − − =     
     

            (46.2) 

( )2

2 2 0
2 22

r
m r rR R

r m r mr m
τσ

       − + =     − −   − 
         (46.3) 

2 22 2 0Rr r J rθ τσ− − + =                   (46.4) 

( )2 2 2 2 2 2 22 sin 2 sin cos 2 sin sin 0R r Jr r F r τθ θ θ θ φ θσ− − − + =    (46.5) 

2 22 1 0
2r t

m rT R
r r m

   − − =   −   
               (46.6) 

222 1 2 0t
m T r J
r θ

 − − = 
 

                  (46.7) 

2 222 1 2 sin 0t
m T r F
r φ θ − − = 

 
               (46.8) 

2 22 2 sin 0
2 r
r R r F

r m φ θ − − = − 
               (46.9) 

2 2 22 2 sin 0r J r Fφ θθ− − =                  (46.10) 

22 2 0
2 r
r R r J

r m θ
 − − = − 

                 (46.11) 
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0sf =                          (46.12) 

22 1 t
m T f
r τ

 − = 
 

                    (46.13) 

2
2 s r
r R f

r m
 − = − 

                   (46.14) 

22 sr J fθ− =                       (46.15) 

2 22 sin sr F fφθ− =                     (46.16) 

Cumulating the above equations we can obtain the infinitesimal generators of 
the Noether point symmetry which happens to span the involved Lie algebra as 
well. 

1X
τ
∂

=
∂

                        (47.1) 

2X
t
∂

=
∂

                        (47.2) 

3 cos cot sinX φ θ φ
θ φ
∂ ∂

= −
∂ ∂

                (47.3) 

4 sin cot cosX φ θ φ
θ φ
∂ ∂

= +
∂ ∂

                (47.4) 

5X
φ
∂

=
∂

                        (47.5) 

So the obtained infinitesimal Noether Point Symmetry generators involved for 
the Schwarzschild Lagrangian are nothing but the vectors that span associated 
Lie Algebra. As we can see from the expression of the infinitesimal symmetry 
generators, a quick calculation of the closed commutators lead us to, 

[ ]3 5 4,X X X=
 

[ ]5 4 3,X X X=
 

[ ]4 3 5,X X X=
 

So the generators spanning the Lie algebra follow the SO(3) structure. This is 
quite anticipated since the Schwarzschild solution describes a spherically sym-
metric space-time. A quick comparison between the Killing vectors involved in 
SO(3) space-time and the infinitesimal generators obtained using Noether Point 
Symmetry will tell us that the generators are nothing but Killing vectors of the 
spherically symmetric space-time. But apart from the three generators, satisfying 
the SO(3) algebra we have also obtained other generators out of which our pri-
mary focus will be pertaining to the generator X2. 

6.3. Conserved Charge and Birkhoff Theorem 

The presence of conserved charges corresponding to the respective Noether 
Point Symmetries is the next obvious thing ensured by the Noether theorem. We 
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can calculate the conserved quantities using Equation (42). But for our purpose, out 
of the five conserved quantities found we are mostly interested in the conserved  

charge that corresponds to the particular generator 2X
t
∂

=
∂

 which is very 

much intertwined with time translation symmetry. 
The conserved quantity corresponding to this generator is, 

21 mI t
r

 = − 
 

                         (48) 

This quantity so obtained is not only a constant of motion but also consistent 
with the quantity that remains conserved corresponding to a time-like Killing 
vector. Hence we can conclude that the time translation invariance generator 

2X  behaves like a timelike Killing vector giving us the extra symmetry that we 
were looking for since the onset of the problem. 

We obtained the Noether point symmetries of Schwarzschild geodesic equa-
tions along with the infinitesimal generators given in Equation (43). Now we can 
also see that the vectors 3X , 4X , 5X  form SO(3) algebra. 

[ ]3 5 4,X X X=                       (49.1) 

[ ]5 4 3,X X X=                        (49.2) 

[ ]4 3 5,X X X=                       (49.3) 

The Schwarzschild metric which does offer SO(3) algebra and the vector so 
obtained span the Lie algebra of Noether point symmetries are nothing but the 
Killing vectors of 2S  which we are expected to obtain since we are working 
with a spherically symmetric metric, see Equation (47). The vectors obtained as 

3X , 4X , 5X  are nothing but Killing vectors of SO(3). 
Now along with this group structure of the obtained generators. The con-

served quantities corresponding to 
t
∂
∂

 is given by 21 m t
r

 − 
 

  is in tune with 

the above mentioned proposition. 
We do know that the Killing vector lead us to a constant of motion (for a free 

particle) [21]. If K µ  is a Killing vector then, 

d constant
d
xK
µ

µ λ
=                       (50) 

Hence from Equations (48) and (50) we can conclude that the generator 2X  
we obtained by solving the partial differential equations is actually a Killing vec-
tor (time-like as we are in region 2r m> ). The conserved quantity given in the 
Equation (48) is the corresponding constant of the Killing vector. 

We initiated our work with the spherically symmetric metric ansatz exhibiting 
SO(3) algebra. While calculating the Noether point symmetries of the Schwarz-
schild Lagrangian we observe the Lie Algebra of SO(3) among the infinitesimal 
symmetry generators we have obtained which is an expected result as we had 
started with the spherically symmetric metric (these generators recognised as 
nothing but the Killing vectors of the SO(3)). In addition to these generators we 
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have also obtained another generator which was identified with the extra Killing 
vector that shows an additional symmetry than what we had started with. So es-
sentially we have regained the Birkhoff’s theorem which states that spherically 
symmetric vacuum solutions of Einstein’s equations allow us a fourth or addi-
tional timelike Killing vector (which is what we have obtained). 
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