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Abstract 
Canonical quantization covers a broad class of classical systems, but that does 
not include all the problems of interest. Affine quantization has the benefit of 
providing a successful quantization of many important problems including 
the quantization of half-harmonic oscillators [1], non-renormalizable scalar 
fields, such as ( )12

3
ϕ  [2] and ( )4

4
ϕ  [3], as well as the quantum theory of 

Einstein’s general relativity [4]. The features that distinguish affine quantiza-
tion are emphasized, especially, that affine quantization differs from canoni-
cal quantization only by the choice of classical variables promoted to quan-
tum operators. Coherent states are used to ensure proper quantizations are 
physically correct. While quantization of non-renormalizable covariant sca-
lars and gravity are difficult, we focus on appropriate ultralocal scalars and 
gravity that are fully soluble while, in that case, implying that affine quantiza-
tion is the proper procedure to ensure the validity of affine quantizations for 
non-renormalizable covariant scalar fields and Einstein’s gravity. 
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1. Introduction 

We first begin with three basic quantization procedures which include Section 
1.1 canonical quantization, Section 1.2 spin quantization, and Section 1.3 affine 
quantization. For a particular system, there are many correct classical variables, 
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but, basically, only one set of these classical variables leads to valid quantum va-
riables. For each procedure, we are led to certain rules that guarantee a physical-
ly correct quantization. The rules we present should precede any model’s analy-
sis in order to ensure a properly physical result. 

1.1. A Brief Review of Canonical Quantization 

Classical variables p & q that obey ,p q−∞ < < ∞  and have a Poisson Bracket 
{ }. 1q p =  are candidates to promote to basic quantum operators P & Q, which 
obey [ ], 1lQ P i=  . For convenience, we choose q & Q as dimensionless, while 
then p & P & ω  (ω  appears below) have the dimensions of  . However, P & 
Q will be physically correct operators provided that the original variables p & q 
were “Cartesian coordinates” [5]. 

Canonical Coherent States 
Cartesian coordinates can be found in normalized coherent states of the form 

, e eiqP ipQp q ω−≡    with ( ) 0Q iP ω ω+ = , which implies that,  
0Q Pω ω ω ω= = . For any operator expression, like ( ),P Q , the cohe-

rent states lead to:  

( ) ( ) ( ) ( ), , , , , ; , .p q P Q p q P p Q q H p q p qω ω= + + = +      (1) 

The ( ),H p q  term is free of  , which implies that the ( ) ( ), ,p q H p q=  
as Dirac also required [5]. Moreover, the whole line of (1) is independent of any 
phase factor of the coherent states, such as ( ),, : e ,if p qp q f p q= . This inde-
pendence is carried over to a Fubini-Study metric [6], namely,  

( ) 2 22 1 2 2d , 2 d , , d , d d ,p q p q p q p q p qσ ω ω− ≡ − = +  
        (2) 

which leads us to suitable Cartesian coordinates! More generally, this two- 
dimensional space may be called a “constant zero curvature” surface. It is note-
worthy that this “constant zero curvature” was not sought, it was created! Efforts 
to use canonical quantization with classical variables that do not belong to a 
“constant zero curvature” are very likely to lead to a non-physically correct 
quantization e.g., see [7]. 

1.2. A Brief Review of Spin Quantization 

The operators in this story are iS  with 1,2,3i = , and which (here 1i = − ) 
satisfy ,i j ijk kS S i Sε  =    These operators obey ( )3 2 2

2 11 1 1ll sl S s s +=
= +∑  , 

where 2 1 2,3,4,s + =   is the dimension of the spin matrices. The normalized 
eigenvectors of 3S  are 3 , ,S s m m s m=  , where { }, , 1,m s s s∈ − − . 

Spin Coherent States 
The spin coherent states are defined by:  

3 2, e e , ,i S i S s sϕ θθ ϕ − −≡                       (3) 

where ϕ−π < ≤ π , and 0 θ≤ ≤ π . It follows that:  
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( ) ( ) ( )2 22 22 2d , 2 d , , d , d sin d ,sσ θ ϕ θ ϕ θ ϕ θ ϕ θ θ ϕ   ≡ − = +    
   (4) 

We can also introduce ( )1 2q s ϕ=   and ( ) ( )1 2 cosp s θ=  , along with 
( ) ( ), , , ,p q p qθ ϕ θ ϕ= , which leads to:  

( )

( ) ( )

2 22

12 2 2 2

d , 2 d , , d ,

1 d 1 d .

p q p q p q p q

p s p p s q

σ

−

 ≡ −  

= − + −



 

          (5) 

Equation (4) makes it clear that we are dealing with a spherical surface with a 
radius of ( )1 2s ; this space is also known as a “constant positive curvature” 
surface, and it has been created! These classical variables can not lead to a phys-
ically correct canonical quantization. Instead, they offer a distinct quantization 
procedure that applies to different problems. However, Equation (5) makes it 
clear that if s →∞ , in which case both p and q span the real line, we are led to 
“Cartesian coordinates”, a basic property of canonical quantization. 

1.3. A Brief Review of Affine Quantization 

Consider a classical system for which p−∞ < < ∞ , but 0 q< < ∞ , that does 
not lead to self-adjoint quantum operators. Perhaps we can do better if we change 
classical variables. For example, classical action factor ( )d d d lnp q pq q q pq q= = , 
leads to the proper variables to promote the quantum operators. In particular, 

( ) ( )† †2pq P Q QP D D→ + ≡ = . However, besides 0 q< < ∞ , it may arise that 
0q−∞ < < , or even 0q−∞ < ≠ < ∞  (e.q., if 2q−  is part of the potential). To 

capture all three possibilities for q and thus also for ( )†Q Q= , we are led to 
[ ],Q D i Q=  , which happens to be the Lie algebra of the “affine group” [8], and, 
incidentally, gives its name to affine quantization. Again, it is useful to choose 
dimensions such that q & Q are dimensionless while p & D have the dimensions 
of  . 

Affine Coherent States 
The affine coherent states involve the quantum operators D and now 0Q > , 
and we use the classical variables p and ( )ln q , with 0q > . Specifically, we 
choose  

( )ln; e e ,i q DipQp q β−≡ 

                     (6) 

where the fiducial vector β  fulfills the condition ( )1l 0Q iD β β− + =   , 
which implies that 1Qβ β =  and 0Dβ β = . 1This expression leads to  

( ) ( ) ( ) ( ); , ; , , ; , ,p q D Q p q D pqQ qQ H pq q p qβ β′ ′ ′ ′= + = +     (7) 

and, as 0→ , ( ) ( ), ,pq q H pq q′ ′=  as Dirac [5] has required. It follows that 
the Fubini-Study metric, for 0q > , becomes:  

( ) 2 22 1 2 2 2 2d ; 2 d ; ; d ; d d .p q p q p q p q q p q qσ β β− − ≡ − = +  
      (8) 

 

 

1The semicolon in ;p q  distinguishes the affine ket from the canonical ket ,p q . If 0q−∞ < < , 

or 0q−∞ < ≠ < ∞ , then replace the fiducial vector, change ( )ln q  to ( )ln q , and keep q Q→ . 
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This expression leads to a surface that has a “constant negative curvature” [9] 
of magnitude 2 β− , which, like the other curvatures, has been “created”. This 
set of classical variables can not lead to a physically correct canonical quantiza-
tion. Instead, they offer a distinct quantization procedure that applies to differ-
ent problems. Any use of classical variables that do not form a “constant nega-
tive curvature” subject to an affine quantization is very likely not a physically 
correct quantization. 

The rule that 0 q< < ∞  is limited and we can easily consider 0 q k< + < ∞ , 
where 0k > . This changes the coherent states from ( )ln q  to ( )ln q k+ , 
which then changes the Fubini-Study metric to ( ) ( )2 21 2 2d dq k p q k qβ β −− + + + . 
If we choose to let k →∞  and at the same time let ( )2kβ β ω→ + , we are led 
to 1 2 2d dp qω ω− + , now with q IR∈ , which, once again, applies to canonical 
quantization. 

These three stories complete our family of “constant curvature” spaces. Addi-
tionally, the various coherent states can build “bridges” in each case from the 
classical realm to the quantum realm [10] [11]. 

2. Affine Quantization of Non-Renormalizable Scalar Fields 

Our goal here is to consider the quantization of scalar fields such as the classical 
action functional given by:  

( ) ( ) ( )( ) ( ) ( ){ }2 2 22
00

, , ,1 2 , d d
T r s

cA t x t x m t x g t x x tϕ ϕ ϕ ϕ = − ∇ − − ∫ ∫


   (9) 

for selected examples of the power 2r >  and where s denotes the number of 
spatial dimensions. We also define 1n s= +  as the total number of spatial and 
temporal derivatives. 

Canonical quantization is successful for ( )2 2r n n< − , but is not successful 
for ( )2 2r n n≥ − . The reason for the failures in the latter case can be traced to 
the change of a classical domain that is required in the latter case that forces the 
usual free solution to be disconnected from any non-free solution. We will illu-
strate that failure in a much “simpler model” to make it clear. This simpler mod-
el is fully soluble and does not include a typical free solution as one of its solu-
tions! Moreover, the solutions of the simple model will simultaneously ensure 
that affine quantization can solve non-renormalizable covariant scalar fields as 
well.2 

A Regularized Affine Ultralocal Scalar Field 

Our regularization is of the underlying space in which x a→ k , where 
{ }, 1,0,1, 2,3, s∈ − k  and 0a >  denotes the tiny distance between lattice 

rungs. The regularized classical ultralocal (=NO gradients) Hamiltonian is given, 
for 2r >  and 1s ≥ , by:  

2 2 2
0 0

1 .
2

r s
uH m g aπ ϕ ϕ  = + +   
∑ k k kk              (10) 

 

 

2The following sections are partially based on [12]. 
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The classical affine regularization involves κ π ϕ=k k k  and ϕk , with 0ϕ ≠k , 
and a Poisson bracket { } ,,ϕ κ δ ϕ=k m k m k . This leads to the classical affine regu-
larized ultralocal Hamiltonian given by:  

2 2 2 2
0 0

1 .
2

r s
uH m g aκ ϕ ϕ ϕ−  ′ = + +   
∑ k k k kk              (11) 

The regularized basic quantum Schrödinger operators are given by ˆ 0ϕ ϕ= ≠k k  
and  

( ) ( )

( )

1ˆ
2

1 2 .

s

s

i a

i a

κ ϕ ϕ ϕ ϕ

ϕ ϕ

−

−

= − ∂ ∂ + ∂ ∂  

= − ∂ ∂ +  





k k k k k

k k

             (12) 

An important result is that 1 2ˆ 0κ ϕ− =k k . The role of the Schrödinger equation 
becomes:  

( ) ( )2 2 2
0 0

1 ˆ ˆ, , .
2

r si t t m g a tψ ϕ κ ϕ κ ϕ ϕ ψ ϕ−  ∂ ∂ = + +   
∑ k k k k kk      (13) 

The normalized ground state of such an equation may, with 1b ≈  and sba  
dimensionless, be given by:  

( ) ( ) ( ) ( )1 2 1 2 22
0 e ,

sbaV sbaϕψ ϕ ϕ
− −−= Π k

k k                 (14) 

for some real function ( )V ϕk .3 Finally, we ask what the characteristic function 
is for such an equation, and the answer is given by:  

( ) ( ) ( ) ( )

( ) ( ) ( ){ }
( ) ( ){ }

1 2

0

1 2

0

lim e e d

lim 1 1 e e d

exp d 1 e e d .

s

s

baVif s

a

baVifs

a

if x vs

C f ba

ba

b x

ϕϕ

ϕϕ

λ λ

ϕ ϕ

ϕ ϕ

λ λ

− −−

→

− −−

→

−

= Π

 = Π − − 

 = − − 

∫

∫

∫ ∫

kk k

kk k

k k k

k k k      (15) 

Here ϕ λ→k , and V v→  to account for changes that may have arisen in V 
as 0a → . Note: For other solutions replace ( )e v λ−  by ( ) 2

w λ  for a suitable 
function ( )w λ . 

When 0 0g →  this characteristic function does not become a Gaussian be-
cause the domain of allowed functions has become smaller than had been 
present when one starts with 0 0g ≡ . The resultant expression in (15) is a (ge-
neralized) Poisson distribution, which, besides a Gaussian distribution, is the 
only other form allowed by the Central Limit Theorem [13]. 

The Main Lesson from Ultralocal Scalar Fields 
The previous subsection found that an ultralocal scalar field model led to ac-
ceptable results when 2r >  and 2n ≥ . For certain covariant scalar field mod-
els, we have already observed that acceptable results arise by canonical quantiza-
tion when ( )2 2r n n< − . In view of acceptable results for ultralocal scalar 
fields when 2r >  and 2n ≥ , we predict that an affine quantization for cova-

 

 

3The expression 1/2ˆ 0κ ϕ−Π =l k k , with 0ϕ ≠k , is an analog to ( )1l 0xπ = , which is self evident. This 

accounts for the term 1/2ϕ−Πk k  as part of the vector states. 
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riant scalar fields leads to acceptable results when ( )2 2r n n≥ − . 
Monte Carlo studies, such as those carried out in ( )12

3
ϕ  [2] and ( )4

4
ϕ  [3], 

have confirmed that affine quantization of non-renormalizable models can lead 
to physically acceptable results. 

3. Affine Quantization of General Relativity 

An effort to quantize Einstein’s theory of gravity has been examined in several 
articles published by the author; see [4] [14] [15] [16]. In light of those articles, 
we will present a modest selection of the necessary features for an affine quanti-
zation of Einstein’s gravity. 

The ADM classical Hamiltonian [17] with ( ) ( )det 0abg x g x≡ >   , is given 
by:  

( ) ( ) ( ) ( ) ( ) ( ) ( )1 2 1 2 31 d
2

a b a b
c b a a bH g x x x x x g x R x xπ π π π−  = − +    
∫   (16) 

where ( ) ( ) ( )a ac
b bcx x g xπ π≡ , and ( )R x  is the 3-dimensional scalar curva-

ture. 
The term ( )R x  contains the spatial derivatives and the ultralocal version of 

the classical Hamiltonian is chosen as:  

( ) ( ) ( ) ( ) ( ) ( ) ( )1 2 1 2 31 d ,
2

a b a b
u b a a bH g x x x x x g x x xπ π π π−  = − + Λ    
∫   (17) 

where ( )xΛ  is a fixed, spatially dependent, continuous function that takes the 
place of the scalar curvature. When quantized, the only variables that are pro-
moted to quantum operators are the metric field, ( )abg x , and the momentric 
field, ( )c

d xπ . 

A Regularized Affine Ultralocal Quantum Gravity 

Much like the regularization of the scalar fields, we introduce a discrete version 
of the underlying space such as x a→ k , where { }3, 1,0,1, 2,3,∈ − k  and 

0a >  is the spacing between rungs in which, for the Schrödinger representation, 
( )ab abg x g→ k  and ( )ˆ ˆc c

d dxπ π→ k  that becomes:  

( ) ( )
( )

3

3

1ˆ
2

2 .

c
d de ce ce de

c
de ce d

i g g g g a

i g g a

π

δ

−

−

 = − ∂ ∂ + ∂ ∂ 

 = − ∂ ∂ + 





k k k k k

k k

             (18) 

Take note that 1 2ˆ 0a
b gπ − =k k , where ( )det abg g≡k k . 

The regularized Schrödinger equation is then given by:  

{ }( ) { }( )1 2 1 2 1 2 31ˆ ˆ ˆ ˆ, , ,
2

a b a b
b a a bi g t t g g g a g tψ π π π π ψ− − ∂ ∂ = − + Λ 

 
∑ k k k k k k k kk (19) 

where { } { }abg g≡ k . A normalized, stationary solution to this equation is given 
by:  

{ }( ) ( )( ) ( )31/2 1 /23, .
ba

Y g Y g ba gψ
− −

= Π Λk k k k                 (20) 
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The characteristic function for such an expression is given by:  

( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( )( ){ }

3

3

12 3

0

123

0

23

lim e , d

lim 1 1 e , d

exp d 1 e , d ,

baif g
Y a

baif g

a

if x

C f Y g ba g g

ba Y g g g

b x y xµ µ µ µ

− −

→

− −

→

= Π Λ

  = Π − − Λ   

 = − − Λ 

∫

∫

∫ ∫

k k

k k

k k k k k

k k k k k    (21) 

where the scalar 0g µ→ >k  and Y y→  to accommodate any change in Y 
due to 0a → . Once again, the final result is a (generalized) Poisson distribution, 
which obeys the Central Limit Theorem [13]. 

The Main Lesson from Ultralocal Gravity 
Just like the success of quantizing ultralocal scalar models, we have also shown 
that ultralocal gravity can be quantized using affine quantization. The purpose of 
solving ultralocal scalar models was to ensure that non-renormalizable covariant 
scalar fields can also be solved using affine quantization. Likewise, the purpose 
of quantizing an ultralocal version of Einstein’s gravity shows that we should, in 
principle, and using affine quantization, be able to quantize the genuine version 
of Einstein’s gravity using affine quantization. Specific details pointing toward 
Einstein’s gravity are presented in [4]. 

Monte Carlo evaluations have begun for non-renormalizable covariant scalar 
fields in [2] [3] using affine quantization with acceptable results. Perhaps, some 
Monte Carlo evaluations may also be used to examine some quantum features of 
Einstein’s gravity using affine quantization. 
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