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Abstract 
The concept of soliton as regular localized stable solutions of nonlinear diffe-
rential equations is being widely utilized in pure science for various aims. In 
present analysis, the soliton concept is used as a model in order to describe 
the configurations of elementary particles in general relativity. To this end, 
our study deals with the spherical symmetric solitons of interacting Spinor, 
Scalar and Gravitational Fields in General Relativity. Thus, exact spherical 
symmetric general solutions to the interaction of spinor, scalar and gravita-
tional field equations have been obtained. The Einstein equations have been 
transformed into a Liouville equation type and solved. Let us emphasize that 
these solutions are regular with localized energy density and finite total ener-
gy. In addition, the total charge and spin are limited. Moreover, the obtained 
solutions are soliton-like solutions. These solutions can be used in order to 
describe the configurations of elementary particles. 
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1. Introduction 

The theory of solitons in general relativity was first elaborated by G. N. Shikin in 
1995. He formulated the requirements to be fulfilled by solitons [1]. His research 
work allowed an intensive study on soliton in general relativity by many authors. 
In a series of papers, exact plane-symmetric solutions to the spinor and gravita-
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tional field equations have been obtained. The role of gravitational field and the 
nonlinear terms in the formation of the field configurations with limited total 
energy, spin and charge have been thoroughly investigated. Let us emphasize 
that the total charge and spin of the self-consistent system of spinor and gravita-
tional field equations are unlimited. The divergence of the total charge and spin 
is related to the non-consideration of the torsion and the properties of the static 
plane-symmetric utilized [2] [3] [4]. For an excellent review of the interacting 
scalar and spinor fields in plane-symmetric metric refer to [5] [6] [7]. Note that 
in [5] [6] [7] the obtained solutions are exact regular with localized energy den-
sity and finite total energy. Nevertheless, the total charge and spin are not 
bounded. The unlimited problem of the charge and the spin is resolved in a se-
ries of interesting articles [8]-[13]. The gravitational field is given by a spherical-
ly symmetric metric. 

The aim of the paper was to study the role of the interaction of nonlinear spi-
nor, scalar and gravitational fields in the formation of configurations with loca-
lized energy density and limited energy, spin and charge of the spinor field. 

The paper is organized as follows. Section 2 deals with general relativistic eq-
uations. The lagrangian of the self-consistent interaction spinor, scalar and gra-
vitational fields has been defined. The gravitational field in our study is given by 
a spherically symmetric metric. Section 3 addresses the main results. The fun-
damental field equations have been solved and their localisation properties have 
been examined. Section 4 deals with the discussion of the main results. Thus, we 
studied in detail the spinor, scalar and gravitational interaction equations by 
choosing the concrete form of the arbitrary function ( )F S  under the form  

( )
1

n

n

SF S
S

λ
λ

=
−

. Finally, concluding remarks and future work are outlined in 

Section 5. 

2. General Relativistic Equations 

The lagrangian of the self-consistent system of interaction between spinor, scalar 
and gravitational fields may be written under the following form [5]: 

( ) ( ), ,
, ,

1 1 .
2 2 2 2

p cg S S intL L L L L

R i m F Sµ µ µ µ
µ µ µ µψγ ψ ψγ ψ ψψ ϕ ϕ ϕ ϕ

χ

= + + +

= + ∇ −∇ − + +
   (1) 

gL ; 
pSL ; 

cSL  and intL  correspond respectively to gravitational field la-
grangian, free spinor field lagrangian, free scalar field lagrangian and interaction 
lagrangian. They are defined as follows: 

,
2g
RL
χ

=                            (2) 

( )2pS
iL mµ µ

µ µψγ ψ ψγ ψ ψψ= ∇ −∇ −                (3) 

,
,

1
2cSL µ

µϕ ϕ=                          (4) 
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( ),
,

1 .
2intL F Sµ

µϕ ϕ=                       (5) 

R denotes the scalar curvature; 4

8 G
c

κ =
π

 is Einstein’s gravitational constant; 

G is Newton’s universal gravitational constant; c is the velocity of light; ( )F S  
is an arbitrary function of the invariant S ψψ= . 

In the sequel, in ordor to simplify the expressions, we shall consider: 

p cm S S intL L L L= + +                       (6) 

( ) ( ) ( ) ( ) ( )d d
1

d d
S F S

S F S S
S S

φ
φ φ′= + ⇒ = =             (7) 

The grvitational field in our case is given by a spherical symmetric space-time 
via the metric which is defined under the following form: 

( )2 2 2 2 2 2 2 2 2d e d e d e d sin d .s tγ α βξ θ θ ϕ = − − +             (8) 

For simplicity reason, the speed of light has been taken to be unity (c = 1). The 
metric functions α , β  and γ  are time and angular coordinates θ  and ϕ  
independent. They are functions of spatial variable ξ  alone which is defined as  

in [8] in the form 1
r

ξ = , where r stands for the radial component of the spher-

ical symmetric metric. These metric functions obey the harmonic coordinates 
conditions: 

2 .α β γ= +                           (9) 

Variation of (1) with respect to the spinor field ψ  and its conjugate ψ , we 
establish the nonlinear spinor field equations as follows: 

( ),
,

1 0
2

i m Sµ µ
µ µγ ψ ψ ϕ ϕ φ ψ′∇ − + =                (10) 

( ),
,

1 0
2

i m Sµ µ
µ µψγ ψ ϕ ϕ φ ψ′∇ + + =                (11) 

Similarly, varying of (1) with respect to the scalar field we obtain the following 
scalar field equation: 

( ),
1 0g g S

g
µν

µν ϕ φ
ξ
∂  − = ∂−

                (12) 

Then, the general form of Einstein’s field equation is: 

1 ,
2

G R R Tν ν ν ν
µ µ µ µδ χ= − = −                    (13) 

In virtue of (8) and (9), expression (13) becomes: 

( )0 2 2 2 0
0 0e 2 2 e ,G Tα ββ γ β β χ− −′′ ′ ′ ′= − − − = −             (14) 

( )1 2 2 2 1
1 1e 2 e ,G Tα ββ γ β χ− −′ ′ ′= + − = −               (15) 

( )2 2 2 2
2 2e 2 ,G Tα β γ β γ β χ− ′′ ′′ ′ ′ ′= + − − = −              (16) 

2 3 2 3
2 3 2 3, ,G G T T= =                      (17) 
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where prime ( ' ) denotes differentiation with respect to ξ , Tν
µ  is the energy 

momentum tensor of the spinor, scalar fields and its interaction, Gν
µ  is Eins-

tein’s tensor, Rν
µ  is Ricci’s tensor and ν

µδ  is Kronecker’s symbol which is 0 if 
µ ν≠  and 1 if µ ν= . 

The metric energy-momentum tensor of the interaction of the spinor and 
scalar fields field can be written as follows: 

,
p cs s intT T T T
µ µ

ν ν ν ν
µ µ= + +                      (18) 

otherwise 

( ) ( ), ,4 m
iT g S Lν νρ ν

µ µ ν ν µ µ ν ν µ µ ν µψγ ψ ψγ ψ ψγ ψ ψγ ψ ϕ ϕ φ δ= ∇ + ∇ −∇ −∇ + −   (19) 

Taking into account (10) and (11), we rewrite mL  under the form: 

1
2

int int
m int sc

L L
L L Lψ ψ

ψ ψ
∂ ∂ 

= − + + + ∂ ∂ 
              (20) 

int int scSL L L′= − + +                            (21) 

Taking into account (19) and (21), let us try to rewrite explicitly the non null 
components of the metric energy-momentum tensor Tν

µ . In this optic, we ob-
tain: 

( ) ( ) ( ) ( )2 20 2 3
0 2 3

1 e
2

T T T S S S α ξϕ φ φ −′ ′= = = − ⋅             (22) 

( ) ( ) ( ) ( ) ( )2 21 1 1
1 1 1

1 e
2 2
iT S S S α ξψγ ψ ψγ ψ ϕ φ φ −′ ′= ∇ −∇ + − ⋅         (23) 

In expressions (10), (11) and (19), µ∇  is the derivative covariant of spinor. It 
is connected to the spinor affine connection matrices ( )µ ξΓ  [14] [15]: 

or .µ µ µ µµ µ

ψ ψψ ψ ψ ψ
ξ ξ
∂ ∂

∇ = −Γ ∇ = +Γ
∂ ∂

            (24) 

In the above equations, µγ  are Dirac’s matrices in curved space-time. In or-
der to define µγ , let us use the equalities: 

( ) ( ) ( )a b
abg e eµν µ νξ ξ ξ η=  

( ) ( ) ,a
aeµ µγ ξ ξ γ=                       (25) 

where ( )1, 1, 1, 1ab diagη = − − −  is the metric of Minkowski and ( )aeµ ξ  are te-
tradic 4-vectors. 

With the relation (25), we have: 

( ) ( ) ( ) ( ) ( )
3

0 0 1 1 2 2 3 5 5ee , e , e , ,
sin

β
γ α β γγ ξ γ γ ξ γ γ ξ γ γ ξ γ ξ γ

θ

−
− − −= = = = =  (26) 

For the matrices aγ  in flat space-time, we take [16]: 

0

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

γ

 
 
 =
 −
 

− 

; 1

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

γ

 
 
 =
 −
 
− 
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2

0 0 0
0 0 0
0 0 0

0 0 0

i
i

i
i

γ

− 
 
 =
 
 
− 

; 3

0 0 1 0
0 0 0 1
1 0 0 0

0 1 0 0

γ

 
 − =
 −
 
 

 

5 5

0 0 1 0
0 0 0 1
1 0 0 0

0 1 0 0

γ γ

− 
 − = =
 −
 

− 

 

At present, let us define the affine connection matrices of the spinor. To this 
end, the general form of ( )µ ξΓ  is: 

( ) ( )1 ,
4

b
ag e eρ ρ δ σ

µ ρµ µ σ µσξ γ γΓ = ∂ −Γ                (27) 

In (27), ρ
µσΓ  are Christoffel’s symbols. From expression (27), we have the 

components of the affine connection matrices of the spinor in the following way: 

( )

2 0 1 2 1
0 1 2

3 1 3 2
3

1 1e , 0, e ,
2 2

1 e sin cos .
2

β β γ

β γ

γ γ γ γ γ β

γ γ β θ γ γ θ

− − −

− −

′ ′Γ = − Γ = Γ =

′Γ = +
         (28) 

Equation (12) has solution: 

( ) ( ) ( ) ( )
, .CS C C cste

S
ϕ ξ φ ϕ ξ

φ
′ ′= ⇒ = =             (29) 

According to Einstein’s convention of sommation, we get: 

( )1 21 e e cot .
2

µ α β
µγ α γ γ θ− −′Γ = − +                (30) 

Then, using expressions (24), (29) and (30), we can rewrite Equations (10) 
and (11) as follows: 

( )
( )

2
1 2 2

2

1 e cot e 0,
2 2 2

Si Cie m
S

α β α
ξ

φ
γ α ψ γ ψ θ ψ ψ

φ
− − − ′ ′∂ + + − − = 

 
   (31) 

( )
( )

2
1 2 2

2

1e e cot e 0.
2 2 2

Si Ci m
S

α β α
ξ

φ
γ α ψ γ ψ θ ψ ψ

φ
− − − ′ ′∂ + + + + = 

 
   (32) 

Further setting ( ) ( )Vδψ ξ ξ=  with 1, 2,3, 4δ = , from (31), we obtain the 
following set of equations: 

( )
2

4 4 4 1 1
1 e cot e e 0,
2 2 2

i CV V V im V i Q S Vα β α αα θ− −′ ′ ′+ − + − =       (33) 

( )
2

3 3 3 2 2
1 e cot e e 0,
2 2 2

i CV V V im V i Q S Vα β α αα θ− −′ ′ ′+ + + − =       (34) 

( )
2

2 2 2 3 3
1 e cot e e 0,
2 2 2

i CV V V im V i Q S Vα β α αα θ− −′ ′ ′+ − − + =       (35) 

( )
2

1 1 1 4 4
1 e cot e e 0,
2 2 2

i CV V V im V i Q S Vα β α αα θ− −′ ′ ′+ + − + =       (36) 

where function ( )Q S  is: 
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( ) ( )
1Q S
Sφ

=                         (37) 

The functions 1V , 2V , 3V  and 4V  are connected by the relation: 
2 2 2 2

1 2 3 4 .V V V V cste− − + =                    (38) 

The following section deals with the main results. 

3. Main Results 

Summing the set of Equations (33)-(36), we infer that the invariant function: 

1 1 2 2 3 3 4 4 ,S V V V V V V V Vψψ= = ∗ + ∗ − ∗ − ∗             (39) 

satisfies a firt order differential equation as follows: 

( )d 0.
d

S Sα ξ
ξ

′+ =                        (40) 

Equation (40) has solution: 

( ) ( )1 1exp , .S C C constξ α ξ= − =                  (41) 

Expression (41), reflects the natural link between the nonlinear spinor field of 
elementary particles and their own gravitational field. 

By Considering the spinor field equation in the form (31) and the conjugate 
one in the form (32), from (23), the momentum 1

1T  may be rewritten in the 
following form: 

( ) ( ) ( )
2

21 2 2
1

1 e e
2 2

CT mS S mS Q Sα αϕ φ − −= + = +           (42) 

In the following paragraph, we shall solve Einstein’s field equations in order to 
determine the general expressions of the metric functions α , β  and γ  and 
then the link which exits between them. 

In this perspective, in virtue of 0 2
0 2T T= , substraction of Einstein’s Equations 

(14) and (16) leads to the following equation: 
2 2e .β γβ γ +′′ ′′− =                        (43) 

The previous equation can be transformed into a Liouville equation type to 
produce the following solutions (refer to [1], page 30): 

( )
( )

( )2
1

2 21 ln 1 ,
4 ,
A A

B BBT h
β ξ γ ξ

ξ ξ
    = + = +    +     

        (44) 

( )
( )2

1

ln ,
4 ,
A A

BT h
γ ξ

ξ ξ
 

=  
+  

                 (45) 

A and D are integration constants. T is a function. It is defined under the form: 

( )

( )

( )

( )

1

1 1

1

1 sinh , 0

, , 0
1 sin , 0

h h
h

T h h

h h
h

ξ ξ

ξ ξ ξ ξ

ξ ξ

 + >  
+ = + =

 + <  

              (46) 
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where h and 1ξ  are integration constants. 
From (44), (45) and (9), one finds the explicit form of the metric function 
( )α ξ  as follows: 

( )
( )2

1

3 2 ln .
2 2 ,
A A

B BT h
α ξ

ξ ξ
  = +    +    

              (47) 

Then, the metric functions ( )α ξ , ( )β ξ  and ( )γ ξ  are connected as fol-
lows: 

( ) ( ) ( ) ( )2 ; .
4 3 4 3

B B
B B

β ξ α ξ γ ξ α ξ+
= =

+ +
            (48) 

Let us note that Einstein’s Equation (15) is a first integral of Equations (14) 
and (16). It is also a first order differential equation. By substituting, (48) and 
(42) into (15), we obtain: 

( ) ( ) ( )
2 4 2 2

2 2 24 3
2

4 3
e e e .

23 8 4

B
B

B CmS Q S
B B

αα αα χ
+

− −+
 +  

′ = − +  + +    
     (49) 

Substituting 1 d
d

S
S

α
ξ

′ = −  and ( ) ( )
1eS C α ξξ −= , into (49), we have: 

( )
2

2 24 3
2

2 22
1 1

d 4 3
d 23 8 4

B
BS B S CmS S Q S

C CB B
χ

ξ

+
+

 
   +  = ± − +    + +      

     (50) 

Equation (50) has the general analytical solutions under the form: 

( )

( )0
2

2 24 3
2

2 22
1 1

d

4 3
23 8 4

B
B

S

B S CmS S Q S
C CB B

ξ ξ

χ

+
+

= ± +
 
   +  − +    + +      

∫   (51) 

Setting a concrete form of the function ( )F S , from (7) we can find ( )Sφ . 
Knowing ( )Sφ , we can determine ( )Q S , from (37). Thus, from (51), the in-
variant function S ψψ=  can be found. Then, if ( )S ξ  is known, we can de-
termine ( )α ξ  from (41). Finally, the metric functions ( )β ξ  and ( )γ ξ  can 
be determined from expression (48). 

Considering the concrete expression of the invariant function ( ) ( )
1eS C α ξξ −= , 

we can establish the regularity properties of the solutions obtained. Studying the 
distribution of the energy per unit invariant volume 0

0 3gT − , we can establish 
the localization properties of the solutions. 

In the sequel, we shall get a concrete form of the functions ( )Vδ ξ  by solving 
Equations (33)-(36) in a more compact form if we pass to the functions 

( ) ( )2eU V
α

δ δξ ξ
−

= , with 1,2,3,4δ = . To this end, introducing the new func-
tions ( )Uδ ξ  into (33)-(36), we obtain the following set of equations: 

( ) ( ) ( ) ( )
2 2

24 31 1
4 4 1

1

cot ,
2

B
BC mCi CU U i SQ S U

S S C
ξ ξ θ ξ

+
+   ′ ′− + −  

   
    (52) 
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( ) ( ) ( ) ( )
2 2

24 31 1
3 3 2

1

cot ,
2

B
BC mCi CU U i SQ S U

S S C
ξ ξ θ ξ

+
+   ′ ′+ + −  

   
    (53) 

( ) ( ) ( ) ( )
2 2

24 31 1
2 2 3

1

cot ,
2

B
BC mCi CU U i SQ S U

S S C
ξ ξ θ ξ

+
+   ′ ′− − −  

   
    (54) 

( ) ( ) ( ) ( )
2 2

24 31 1
1 1 4

1

cot ,
2

B
BC mCi CU U i SQ S U

S S C
ξ ξ θ ξ

+
+   ′ ′+ − −  

   
     (55) 

where: 

( ) ( ) ( ) ( ) ( )1 1exp .
2 2

U V Vδ δ δξ ξ α ξ ξ α ξ   ′ ′ ′= +      
          (56) 

Let us re-express Equations (52)-(55) to the function of argument ( )S ξ , i.e. 
( ) ( )W S Uδ δ ξ= , ( ) ( )1 expS Cξ α ξ= −   . In these conditions, we have the fol-

lowing set of equations for the functions ( )W Sδ : 

( ) ( )4
4 1

d
0,

d
W iB S W M S W
S

− − =                  (57) 

( ) ( )3
3 2

d
0,

d
W

iB S W M S W
S

+ − =                  (58) 

( ) ( )2
2 3

d
0,

d
W iB S W M S W
S

− + =                 (59) 

( ) ( )1
1 4

d
0

d
W iB S W M S W
S
+ + =                  (60) 

with 

( )

( )

2 2
4 31

2
2 24 3

2
2 2

1 1

cot
1 ,
2

2

B
B

B
B

C
SB S

S CmS S Q S
C C

θ

χ

+
+

+
+

 
 
 =

 
    − +         

         (61) 

and 

( )
( )

( )

2
1

1

2
2 24 3

2
2 2

1 1

21 .
2

2

B
B

mC C S Q S
S CM S

S CmS S Q S
C C

χ

+
+

′−
=

 
    − +         

         (62) 

Let us pass from the set of first-order differential Equation (57)-(60) to a set of 
second-order differential equations. By doing so, differentiating Equation (57) in 
S and introducing into the result the expressions of the function ( )1W S  and 

( )1W S′ , we obtain a second-order differential equation for the function ( )4W S  
as follows: 
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( ) ( )
( ) ( )

( ) ( ) ( ) ( ) ( ) ( )
( ) ( )

4 4

2 2
4 0

M S
W S W S

M S

B S M S M S B S
B S M S i W S

M S

′
′′ ′−

′ ′ −
+ − + = 
  

     (63) 

Similarly differentiating  Equation (60) and introducing into the result the 
expression of ( )4W S  and the expression of its derivative, we obtain the 
second-order differential equation for the function ( )1W S : 

( ) ( )
( ) ( )

( ) ( ) ( ) ( ) ( ) ( )
( ) ( )

1 1

2 2
1 0

M S
W S W S

M S

M S B S B S M S
B S M S i W S

M S

′
′′ ′−

′ ′ −
+ − + = 
  

     (64) 

Summing (63)-(64) and setting ( ) ( ) ( )1 4X S W S W S= + , we obtain the fol-
lowing second-order differential equations of the function ( )X S : 

( ) ( )
( ) ( ) ( ) ( ) ( )2 22 0

M S
X S X S B S M S X S

M S
′

 ′′ ′− + − =          (65) 

Under the condition ( ) ( ) ( )2 21B S M Sε= −  with 0 1ε< ≤  [8], the solu-
tion of  Equation (65) is: 

( )1 4 0 1 0sinh , ,W W a N S a const+ = =               (66) 

where 

( ) ( )1 1 12 d , .N S M S S R R constε= + =∫             (67) 

Substracting Equations (57) and (60) and taking into account (66), we get: 

( )1 4 0 1
1 1 cosh

2
W W ia N Sε

ε

 − −
− = −   

 
              (68) 

From expressions (66) and (68), we define the functions 1W  and 4W  as fol-
lows: 

( ) ( ) ( )1 0 1 1
1 1sinh cosh

2
W S N S i N Sεα

ε

  − −
= −      

         (69) 

( ) ( ) ( )4 0 1 1
1 1sinh cosh

2
W S N S i N Sεα

ε

  − −
= +      

         (70) 

The same operating on Equations (58) and (59) leads to the following expres-
sions: 

( ) ( ) ( )2 0 2 2
1 1cosh sinh ,

2
W S D N S i N Sε

ε

  − +
= +      

        (71) 

( ) ( ) ( )3 0 2 2
1 1cosh sinh ,

2
W S D N S i N Sε

ε

  − +
= −      

        (72) 

with 

( ) ( )2 2 22 d , .N S M S S R R constε= + =∫             (73) 
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It follows that, the concrete form of the functions ( )Vδ ξ  is: 

( ) ( ) ( )

( )

1 0 1 1

2
1

1 1sinh cosh
2

3 2exp ln
4 2 ,

V S N S i N S

A A
B BT h

εα
ε

ξ ξ

  − −
= −      

    × − +     +      

         (74) 

( ) ( ) ( )

( )

2 0 2 2

2
1

1 1cosh sinh
2

3 2exp ln ,
4 2 ,

V S D N S i N S

A A
B BT h

ε
ε

ξ ξ

  − +
= +      

    × − +     +      

        (75) 

( ) ( ) ( )

( )

3 0 2 2

2
1

1 1cosh sinh
2

3 2exp ln ,
4 2 ,

V S D N S i N S

A A
B BT h

ε
ε

ξ ξ

  − +
= −      

    × − +     +      

         (76) 

( ) ( ) ( )

( )

4 0 1 1

2
1

1 1sinh cosh
2

3 2exp ln
4 2 ,

V S N S i N S

A A
B BT h

εα
ε

ξ ξ

  − −
= +      

    × − +     +      

         (77) 

The exact functions ( )Vδ ξ  are regular and bounded. 
In the sequel, we shall use the concrete form of the functions ( )Vδ ξ  in order 

to determine the total charge and total spin. 
The general form of the spinor current vector is: 

.jµ µψγ ψ=                          (78) 

From (78), we deduce the components of the spinor current vector as follows: 

( ) ( )

( ) ( )

2

0 2 2 2
0 1 1

2

2 2 2
0 2 2

1 12e sinh cosh
2

1 1cosh sinh
2

j N N

D N N

α γ εα ξ ξ
ε

εξ ξ
ε

− −
   − + −  = +        

  − + −  + +        

     (79) 

( ) ( )

( ) ( )

2

1 2 2 2 2
0 1 1

2

2 2 2
0 2 2

1 12e sinh cosh
2

1 1cosh sinh
2

j N N

D N N

α εα ξ ξ
ε

εξ ξ
ε

−
   − + −  = −        

  − + −  + −        

     (80) 

( ) ( )

( ) ( )

2 2
0 1 1

2
0 2 2

1 14e cosh sinh
2

1 1 cosh sinh
2

j N N

D N N

α β εα ξ ξ
ε

ε ξ ξ
ε

− −
  − + −

=      
 − + −

−      

        (81) 
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3 0j =                            (82) 

In this study, the configuration is assumed static. Thus, only the component 
0j  is non null. With this assumption, we obtain: 0 0Dα = ; 1ε = ;  
( ) ( ) ( )1 2N S N S N S= = . In addition to this, we have 1 2R R R= = . 

The component 0j  determines the charge density of the spinor field and 
scalar field in interaction: 

( ) ( ) ( )
1

0 22
0 3 cosh 2 e .q j j a x αξ σ −= =                  (83) 

The charge density is continuous localized function. 
The total charge of the interaction system of spinor and scalar fields is: 

( )
0

d .cQ q
ξ

ξ ξ= ∫                        (84) 

In the integral (84), cξ  denotes the center of the fields configurations. 
The spin tensor of the spinor field reads: 

{ }, 1 .
4

S µν λ λ µν µν λψ γ σ σ γ ψ= +                  (85) 

The analytical expression ,0 , , 1;2;3ikS i k =  defines the spatial density of the 
spin vector. In virtue of (85), we have: 

{ },0 0 0 01 1 .
4 2

ik ik ik ikS ψ γ σ σ γ ψ ψγ σ ψ= + =              (86) 

It follows from (86) that: 
23,0 * * * * 2

1 2 2 1 3 4 4 3 eS V V V V V V V V α β γ− − − = + + +              (87) 

31,0 * * * * 2
1 2 2 1 3 4 4 3 eS V V V V V V V V α β γ− − − = − + −              (88) 

12,0 * * * * 2
1 1 2 2 3 3 4 4 eS V V V V V V V V α β γ− − − = − + +              (89) 

12,0 13,0 0,S S= =                        (90) 

( ) ( )23,0 23 e cosh 2
2

S a Nα ξ ξ−=                     (91) 

The chronometricaly invariant spatial density of the spinor vector is: 

( ) ( ) ( )
1

23,0 23,0 22
23,0

3 1cosh 2 e
2 2chIS S S a x xασ ρ−= = =           (92) 

The projection of the spin vector on the ξ  axis is given by the following ex-
pression: 

23,0
1 0

3 dc
chIS S g x

ξ
−= ∫                      (93) 

According to expressions (84) and (93), the total charge Q and the total spin 

1S  are finite. 
In the following section, we shall examine the Einstein’s, spinor and scalar 

fields equations by choosing a concrete form of the arbitrary function ( )F S . 

4. Discussion 

In this section, we shall analyze the general results obtained in the previous sec-
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tion for concrete form of the function ( )F S . The function ( )F S  is chosen 
under the form: 

( )
1

n

n

SF S
S

λ
λ

=
−

                       (94) 

THus, the expression of the function ( )Q S  becomes: 

( ) ( )
1 1 .

1
nQ S S

F S
λ= = −

+
                   (95) 

By substituting (95) into (51), without losing the generality we can consider 
massless spinor and scalar fields, according to the theory of Heisenberg [17], we 
obtain: 

( )
( ) ( )

1

2
1

2

02

1

1cosh 4 3
3 8 4

n

C C
S

CC n B
B B

χ
ξ

χχ ξ ξ

 
 
 + =  

 + + +  + +    

      (96) 

The function S ψψ=  is a continuous and limited function. 
Introducing the relations (94) and (96) into (22), we define the energy density 

of the interaction of spinor and scalar fields: 

( )
( )

( ) ( )2 2
0

0 22
1

d
= 1

d2 1

F SC ST F S S
SC F S

ξ
 
+ − 

+    
          (97) 

( ) ( )
( )

2

22
1

2 2
1

02

1
,

2 1cosh 4 3
3 8 4

n

C CC
C CC n B

B B

χ
υ ξ

χχ ξ ξ

 
 
 + = ⋅ 

 + + +  + +    

    (98) 

where the function ( )υ ξ  is defined by the following expression: 

( ) ( )
( ) ( )

2
1

2

02

1
1 1

1cosh 4 3
3 8 4

C C
n

CC n B
B B

χ
υ ξ

χχ ξ ξ

  
  
  + = − +  

  + + +   + +      

  (99) 

The distribution of the energy density per unit invariant volume is given by 
the expression: 

( )
( ) ( )

( )

2

22
1

2 2
1

02

1
sin

2 1cosh 4 3
3 8 4

n

C CCf
C CC n B

B B

χ
ξ υ ξ θ

χχ ξ ξ

 
 
 + = ⋅ 

 + + +  + +    

 (100) 

From (98) and (100), the energy density and the distribution of the energy 
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density per unit invariant volume are continuous and localized functions.  

Moreover, the total energy ( )0
00

3 dc
gE T

ξ
ξ ξ−= ∫  is limited. The solutions of 

Equation (31) are soliton-like when the arbitrary function is chosen under the 

form ( )
1

n

n

SF S
S

λ
λ

=
−

. 

Let us emphasize that when the interaction lagangian is null i.e the invariant 
function is null in the relation (1), the obtained solutions are exact and regular. 
Nevertheless, the energy density is not localized. The lagrangian interaction is 
very important in order to obtain the regular solutions with localized energy 
density. 

In order to clarify the role of the nonlinear terms intL  of the interaction of 
spinor, scalar and gravitational fields in the nonlinear fields equations in the 
formation of regular localized soliton-like solutions, we obtained the soslutions 
to the fields equations in the case where 0intL = . Let us note that the obtained 
solutions are exact regular but their energy density is not bounded. In the 
present case soliton-like solutions are absent. 

5. Concluding Remarks 

Taking into account the proper gravitational field of elementary particles, we 
have obtained and examined the exact general solutions of interaction scalar, 
spinor and gravitational field equations. These solutions describe the configura-
tions of scalar and spinor fields with a localized energy density 0

0T , finite total 
energy E. In addition, the total charge and spin are limited. 

The solitons-like solutions with limited total spin and charge exist in the case 

where the arbitrary function ( )F S  is under the general form ( )
1

n

n

SF S
S

λ
λ

=
−

. 
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