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Abstract 
The present research work deals with an extension of a previous work entitled 
[Exact Soliton-like spherical symmetric solutions of the Heisenberg-Ivanenko 
type nonlinear spinor field equation in gravitational theory, Journal of Ap-
plied Mathematics and Physics, 2020, 8, 1236-1254] to Analytical Soliton-Like 
Solutions to Nonlinear Dirac Equation of Spinor Field in Spherical Symme-
tric Metric. The nonlinear terms in the Lagrangian density are functions of 

the invariant ( )22
SI S ψψ= = . Equations with power and polynomial nonli-

nearities are thoroughly scrutinized. It is shown that soliton is responsible for 
the deformation in the metric and hence in the geometry as well as gravita-
tional field. The role of nonlinearity and the influence of the proper gravita-
tional field of the elementary particles are also examined. The consideration 
of the nonlinear terms in the spinor Lagrangian, the own gravitational field of 
elementary particles and the geometrical properties of the metric are neces-
sary and sufficient conditions in order to obtain soliton-like solutions with 
total charge and total spin in general relativity. 
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1. Introduction 

In the theory of General Relativity, the structure of elementary particles confi-
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guration is modeled by solitons corresponding to solutions of nonlinear diffe-
rential equations. As mentioned in [1], the generalization of classical field theory 
remains one the possible ways to overcome the difficulties of the theory which 
considers elementary particles as mathematical points. So that the field equa-
tions possess regular solutions it is necessary to introduce nonlinear terms, de-
scribing the fields interactions. The role of nonlinear terms in the Lagrangian 
density of some classical field theories was examined in [2]. The exact static 
plane-symmetric soliton-like solutions of the nonlinear spinor field equations 
are investigated in a series articles [3] [4] [5]. In all these activities, the authors 
emphasized that the energy density 0

0T  is localized and the total energy of the 
system is bounded. Nevertheless, the total charge Q and the total spin S1 of the 
system are unlimited. Therefore the metric considered presents some shortcom-
ings. But thanks to the metric space-time admitting spherical symmetric, the 
problematic of the divergence of Q and S1 is recently corrected in the remarka-
ble articles [6] [7] [8] [9] [10]. The role of the geometrical symmetries in general 
relativity is introduced by Katzin, Lavine and Davis in a series of papers [11] [12] 
[13] [14], appearing between 1969 and 1977. They emphasized that the geome-
trical of the space-time are expressible through the vanishing of the Lie deriva-
tive of certain tensors with respect to a vector. This vector may be time-like, 
space-like or null. These research works have lead to the concept of Ricci soli-
tons introduced by Hamilton. They are natural generalizations of Einstein me-
tric, which have been a subject of intense study in differential geometry and 
geometric analysis [15]. 

The present work, considered as part II of all these investigated initiated in [9], 
aims and extending the results to analytical solutions to Dirac equation of non-
linear spinor field in spherical symmetric metric. Here also equations with pow-
er and polynomial nonlinearities are thoroughly scrutinized. 

The purpose of the paper is to describe the configurations of the elementary 
particles by the nonlinear generalization of classical field theory and taking into 
account their own gravitational field. 

The paper is organized as follows. Section 2 addresses the model with funda-
mental equations via the Lagrangian, the metric, basics equations and concepts. 
We consider a self-consistent system to obtain spherical-symmetric solutions, 
taking into account the own gravitational field of elementary particles. Section 3 
deals with main results and their discussion; the solutions of the Einstein and 
nonlinear spinor field equations are derived. Besides, the regularity properties of 
the obtained solutions as well as the asymptotic behavior of the energy and charge 
densities are studied. Concluding remarks are outlined in Section 4. 

2. Fields Equations and General Solutions 

So that the field equations possess regular solutions it is necessary to introduce 
nonlinear terms, we consider the Lagrangian of the self-consistent system of 
spinor and gravitational fields as follows [1]: 
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.
2 Sp
RL L
χ

= +                           (1) 

with SpL  the spinor field Lagrangian. It is defined as follows:  

( ) .
2Sp N
iL m Lµ µ

µ µψγ ψ ψγ ψ ψψ= ∇ −∇ − +                (2) 

Here NL  is the nonlinear terms of SpL , describing the self-interaction of the 
spinor field. ( )N SL F I=  is an arbitrary function depending on the invariant 

( )22
SI S ψψ= = . R R g µν

µν=  is the scalar curvature. Then, 4

8 G
c

χ Π
=  is 

Einstein’s gravitational constant, G is Newton’s gravitational constant and c is 
the speed of light in vacuum. ψ  is the 4-components Dirac’s spinor with ψ  
its conjugate. The following paragraph will address to the metric. 

In this present analysis, the metric of space-time admitting spherical symme-
tric may be written as follows: 

( )2 2 2 2 2 2 2 2 2d e d e d e d sin d .s tγ α βξ θ θ ϕ = − − +             (3) 

Note that, the speed of light has been taken to be unity (c = 1). We define spa-
tial variable as in [6] 

1
r

ξ = , where r stands for the radial component of the 
spherical symmetric metric. We assume that the metric functions α , β  and 
γ  are stationnary and depend on ξ  alone. In addition, they verify the har-
monic coordinate condition as mentioned in [3]:  

( ) ( ) ( )2 .α ξ β ξ γ ξ= +                        (4) 

Variation of (1) with respect to the spinor field ψ  and its conjugate ψ  
gives nonlinear spinor field equations as follows:  

d2 0,
dS

S

Fi m I
I

µ
µγ ψ ψ ψ∇ − + =                   (5) 

d2 0.
dS

S

Fi m I
I

µ
µψγ ψ ψ∇ + − =                   (6) 

Then, varying of (1) with respect to the metric tensor gµν  leads to the gen-
eral form of Einstein’s field equation as follows:  

1 ,
2

G R R Tν ν ν ν
µ µ µ µδ χ= − = −                      (7) 

where Gν
µ  is the Einstein’s tensor; Rν

µ  is the Ricci’s tensor; ν
µδ  is the Kro-

necker’s symbol and Tν
µ  is the metric energy-momentum tensor of the nonli-

near spinor field. In the sequel, taking into account (1), we obtain the compo-
nents of the tensor Gν

µ  in the metric (3) under the coordinate condition (4) as 
in [6]: 

( )0 2 2 2 0
0 0e 2 2 e ,G Tα ββ γ β β χ− −′′ ′ ′ ′= − − − = −              (8) 

( )1 2 2 2 1
1 1e 2 e ,G Tα ββ γ β χ− −′ ′ ′= + − = −                 (9) 

( )2 2 2 2
2 2e 2 ,G Tα β γ β γ β χ− ′′ ′′ ′ ′ ′= + − − = −              (10) 

2 3 2 3
2 3 2 3, .G G T T= =                       (11) 

Prime (') in previous equations denotes differentiation with respect to ξ . 
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The components of the metric energy-momentum tensor of the spinor field 
are: 

( ) .
4 Sp
iT g Lν νρ ν

µ µ ν ν µ µ ν ν µ µψγ ψ ψγ ψ ψγ ψ ψγ ψ δ= ∇ + ∇ −∇ −∇ −     (12) 

Using the spinor field Equations (5) and (6), SpL  takes the following form: 

( ) ( ) ( )1 1 ,
2 2PS SL i m i m F Iµ µ

µ µψ γ ψ ψ ψγ ψ ψ= ∇ − − ∇ + +      (13) 

( )22 ,S
S

FS F I
I
∂

= − +
∂

                               (14) 

( )2 .S S
S

FI F I
I
∂

= − +
∂

                               (15) 

Taking into account (15), let us write the nontrivial components of the tensor 
Tν
µ : 

( ) ( )0 2 3
0 2 3 2 ,S

Sp S S
S

F I
T T T L I F I

I
∂

= = = − = −
∂

           (16) 

( ) ( ) ( )1 1 1
1 1 1 2 .

2
S

S S
S

F IiT I F I
I

ψγ ψ ψγ ψ
∂

= ∇ −∇ + −
∂

         (17) 

Let us emphasize that µγ  represent Dirac’s matrices in curved space-time. 
They are linked to Dirac’s matrices in flat space-time aγ  by:  

( ) ( ) ( )a b
abg e eµν µ νξ ξ ξ η=  

( ) ( ) ,a
aeµ µγ ξ ξ γ=                       (18) 

where ( )1, 1, 1, 1ab diagη = − − −  is the metric of Minkowski and ( )aeµ ξ  are te-
tradic 4-vectors. 

With the Relation (18), we have:  

( ) ( ) ( ) ( ) ( )
3

0 0 1 1 2 2 3 5 5ee , e , e , , .
sin

β
γ α β γγ ξ γ γ ξ γ γ ξ γ γ ξ γ ξ γ

θ

−
− − −= = = = =

(19) 

The Dirac’s matrices in flat space-time are defined in the following way [16] 
[17]: 

0

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

γ

 
 
 =
 −
 

− 

; 1

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

γ

 
 
 =
 −
 
− 

 

2

0 0 0
0 0 0
0 0 0

0 0 0

i
i

i
i

γ

− 
 
 =
 
 
− 

; 3

0 0 1 0
0 0 0 1
1 0 0 0

0 1 0 0

γ

 
 − =
 −
 
 

 

5 5

0 0 1 0
0 0 0 1

.
1 0 0 0

0 1 0 0

γ γ

− 
 − = =
 −
 

− 
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In the Expressions (2), (5)-(6) and (12), µ∇  represent the covariant deriva-
tive of the spinor meaning. It is connected to the spinor affine connection ma-
trices ( )µ ξΓ  as in [18]: 

or .µ µ µ µµ µ

ψ ψψ ψ ψ ψ
ξ ξ
∂ ∂

∇ = −Γ ∇ = +Γ
∂ ∂

           (20) 

The matrice µΓ  has the following general form: 

( ) ( )1 .
4

b
ag e eρ ρ δ σ

µ ρµ µ σ µσξ γ γΓ = ∂ −Γ               (21) 

In the Relation (21), ρ
µσΓ  are Christoffel’s symbols. According to the Expres-

sion (21), we have the spinor affine connection matrices: 

( )

2 0 1 2 1
0 1 2

3 1 3 2
3

1 1e , 0, e ,
2 2

1 e sin cos .
2

β β γ

β γ

γ γ γ γ γ β

γ γ β θ γ γ θ

− − −

− −

′ ′Γ = − Γ = Γ =

′Γ = +

        (22) 

In virtue of Einstein’s convention sommation, we get:  

( )1 21 e e cot .
2

µ α β
µγ α γ γ θ− −′Γ = − +               (23) 

When we substitute (20) and (23) into (5) and (6), we have 

1 21 de e cot 2 0,
2 2 dS

S

i Fi m I
I

α β
ξγ α ψ γ ψ θ ψ− −   ′∂ + + − − =  

   
    (24) 

1 21 de e cot 2 0.
2 2 dS

S

i Fi m I
I

α β
ξγ α ψ γ ψ θ ψ− −   ′∂ + + + − =  

   
    (25) 

By choosing the 4-component Dirac spinor under the form ( ) ( )Vδψ ξ ξ=  

with ( )

( )
( )
( )
( )

1

2

3

4

V
V

V
V
V

δ

ξ
ξ

ξ
ξ
ξ

 
 
 =  
  
 

, from (24), we get the following set of equations: 

4 4 4 1
1 de cot e 2 0,
2 2 dS

S

i FV V V i m I V
I

α β αα θ−  
′ ′+ − + − = 

 
       (26) 

3 3 3 2
1 de cot e 2 0,
2 2 dS

S

i FV V V i m I V
I

α β αα θ−  
′ ′+ + + − = 

 
       (27) 

2 2 2 3
1 de cot e 2 0,
2 2 dS

S

i FV V V i m I V
I

α β αα θ−  
′ ′+ − − − = 

 
       (28) 

1 1 1 4
1 de cot e 2 0.
2 2 dS

S

i FV V V i m I V
I

α β αα θ−  
′ ′+ + − − = 

 
       (29) 

The functions 1V , 2V , 3V  and 4V  are connected by the relation:  
2 2 2 2

1 2 3 4 .V V V V cste− − + =                   (30) 

Summing the set of Equations (26)-(29), we obtain the first-order differential 

https://doi.org/10.4236/jhepgc.2020.64042


J. Edou et al. 
 

 

DOI: 10.4236/jhepgc.2020.64042 628 Journal of High Energy Physics, Gravitation and Cosmology 
 

equations for the invariant function 2
SI S=  as follows: 

( )d
2 0.

d
S

S
I

Iα ξ
ξ

′+ =                    (31) 

The solution of the Equation (31) is:  

( ) ( )0 0exp 2 , .SI C C constξ α ξ= − =               (32) 

The Expression (32) reflects the natural link between the nonlinear spinor 
field of elementary particles and their own gravitational field.  

Using the spinor field equation in the Form (24) and the conjugate one, we 
obtain the following expression for the tensor 1

1T  from the Relation (17): 

( )1
1 .S ST m I F I= −                     (33) 

The following paragraph devotes to the resolution of Einstein’s field equations. 
To this purpose, as the commponents 0

0T  and 2
2T  are equal, we have  

0 2
0 2 0G G− = . This leads to the following equation: 

2 2e ,β γβ γ +′′ ′′− =                       (34) 

which can be transformed into a Liouville equation type (see [19], p. 30) having 
the solutions:  

( )
( )

( )2
1

2 21 ln 1 ,
4 ,
A A

D DDT h
β ξ γ ξ

ξ ξ
    = + = +    +     

      (35) 

( )
( )2

1

ln ,
4 ,
A A

DT h
γ ξ

ξ ξ
 

=  
+  

                (36) 

where A and D are integration constants and T is a function. The function T has 
the following form: 

( )

( )

( )

( )

1

1 1

1

1 sinh , 0

, , 0
1 sin , 0

h h
h

T h h

h h
h

ξ ξ

ξ ξ ξ ξ

ξ ξ

 + >  
+ = + =

 + <  

           (37) 

where h and 1ξ  are another unknown integration constants. 
By substituting the Expressions (35) and (36) into (4), we get the metric func-

tion ( )α ξ  as follows: 

( )
( )2

1

3 2 ln .
2 2 ,
A A

D DT h
α ξ

ξ ξ
  = +    +    

           (38) 

Finally we define the relations between the metric functions ( )α ξ , ( )β ξ  
and ( )γ ξ :  

( ) ( ) ( ) ( )2 ; .
4 3 4 3

D D
D D

β ξ α ξ γ ξ α ξ+
= =

+ +
         (39) 

Equation (9) look likes to the first integral of the Equations (8) and (10). It is 
also a first order differential equation. Then, introducing (33) and (39) into (9), 
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we have 

( ) ( ) ( )( )
2 4 2

2 2 4 2
2

4 3
e e .

3 8 4

D
D

S S

D
m I F I

D D
ααα χ

− −
+

 +
′ = − − 

+ +  
       (40) 

Taking into account 
d1

2 d
S

S

I
I

α
ξ

′ = −  and ( ) ( )2
0eSI C α ξξ −= , from (40) we 

obtain  

( ) ( )( )
2

4 3
0

2
0

2 4 3d
.

d 3 8 4

D
D

S S
S S S

C DI I
I m I F I

CD D
χ

ξ

+
+

 
+   = ± − −  + +    

    (41) 

The general solutions of the Equation (41) are given by:  

( )( )

( ) ( )0
022

4 3

0

2 4 3d
.

3 8 4
S

D
D

S
S S S

C DI

D D
II m I F I
C

ξ ξ

χ

+
+

+
= ± +

+ + 
  − −     

∫  (42) 

Setting a concrete form of the function ( )SF I , from (42) we can determine 
explicitly ( )SI ξ . Then, if ( )SI ξ  is known, we can find the metric function 
( )α ξ  from (32). Finally, we can completely determine the solutions of Einstein 

equations from the Expression (39). 
Considering the invariant ( ) ( )2

0eSI C α ξξ −= , we can establish the regularity 
properties of the solutions obtained. Studying the distribution of the energy per 
unit invariant volume 0

0 3gT − , we can establish the localization properties of 
the solutions. 

Let us determine the concrete analytical form of the functions ( )Vδ ξ . To 
doing so, we must solve the set of Equations (26)-(29) in more compacte form if  

we pass to the functions ( ) ( )2eW V
α

δ δξ ξ= , with 1,2,3,4δ = . In this perspec-
tive, we obtain: 

4 4 1
de cot e 2 0,

2 dS
S

i FW W i m I W
I

α β αθ−  
′ − + − = 

 
          (43) 

3 3 2
de cot e 2 0,

2 dS
S

i FW W i m I W
I

α β αθ−  
′+ + − = 

 
          (44) 

2 2 3
de cot e 2 0,

2 dS
S

i FW W i m I W
I

α β αθ−  
′ − − − = 

 
          (45) 

1 1 4
de cot e 2 0,

2 dS
S

i FW W i m I W
I

α β αθ−  
′+ − − = 

 
           (46) 

where the derivative of the function ( )Wρ ξ  has the form:  
1
21 e .

2
W V V

α

ρ ρ ρα ′ ′ ′= + 
 

                    (47) 

With the set of Equations (43)-(46) where ( )W Wδ ξ=  let us pass to the sys-
tem of equations depending on functions of the argument SI , i.e.  
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( ) ( )SW I Wδ δ ξ= , ( ) ( )2
0eSI C α ξξ −= . We obtain for ( )SW Iδ  the set of equa-

tions as follows: 

( ) ( )4
4 1

d
0,

d S S
S

W iE I W iK I W
I

− + =                 (48) 

( ) ( )3
3 2

d
0,

d S S
S

W
iE I W iK I W

I
+ + =                 (49) 

( ) ( )2
2 3

d
0,

d S S
S

W iE I W iK I W
I

− − =                 (50) 

( ) ( )1
1 4

d
0,

d S S
S

W iE I W iK I W
I

+ − =                 (51) 

where ( )SE I  and ( )SK I  are defined by the following expressions: 

( )
( ) ( )( )

2 2
4 3

0

2
4 3

0

2
0

cot
1 ;
2

2 4 3

3 8 4

D
D

S
S D

D
S

S S S

C
I

E I

C D II m I F I
CD D

θ

χ

+
+

+
+

 
  
 =

 
+   − −  + +    

  (52) 

( )
( ) ( )( )

0

2
4 3

0

2
0

d2
d

.

2 4 3

3 8 4

S
S S

S D
D

S
S S S

C Fm I
I I

K I

C D II m I F I
CD D

χ

+
+

  
−     =

 
+   − −  + +    

   (53) 

In sequel, we shall transform the Equation (48)-(51) to the second order dif-
ferential equations. In this perspective, differentiating Equation (48) and substi-
tuting the expression of the function ( )1 SW I  and the expression of its deriva-
tive into the result, we obtain: 

( )
( ) ( ) ( ) ( ) ( ) ( ) ( )

( )
2 2

4 4 4 0.S S S S S
S S

S S

K I K I E I K I E I
W W E I K I i W

K I K I
′ ′ ′ −

′′ ′− + − + = 
  

 

(54) 

Similarly differentiating the Equation (51) and introducing into the result the 
expression of ( )4 SW I  and the expression of its derivative, we obtain the 
second-order differential equation for the function ( )1 SW I : 

( )
( ) ( ) ( ) ( ) ( ) ( ) ( )

( )
2 2

1 1 1 0.S S S S S
S S

S S

K I K I E I K I E I
W W E I K I i W

K I K I
′ ′ ′ ′ −

′′ ′− + − + = 
  

(55) 

Doing the same operating on the Equations (49)-(50), we find the second-order 
differential equations obeyed by the functions ( )2 SW I  and ( )3 SW I  as follows:  

( )
( ) ( ) ( ) ( ) ( ) ( ) ( )

( )
2 2

3 3 3 0.S S S S S
S S

S S

K I K I E I K I E I
W W E I K I i W

K I K I
′ ′ ′ ′ −

′′ ′− + − + = 
  

(56) 
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( )
( ) ( ) ( ) ( ) ( ) ( ) ( )

( )
2 2

2 2 2 0.S S S S S
S S

S S

K I K I E I K I E I
W W E I K I i W

K I K I
′ ′ ′ −

′′ ′− + − + = 
  

(57) 

By summing (54)-(55) and setting 1 4U W W= + , we obtain the following 
second-order differential equations of the function ( )SU I :  

( ) ( )
( ) ( ) ( ) ( ) ( )2 22 0.S

S S P S S
S

K I
U I U I E I K I U I

K I
′

 ′′ ′− + − =        (58) 

The Equation (58) may be transformed to:  

( )
( )

( )
( )1 d 0,

d2 2
S

S
SS S

U I
U I

IK I K Iε ε

 ′
− = 

  
            (59) 

under the condition ( ) ( ) ( )2 21S SE I K Iε= −  with 0 1ε< ≤ . 
The first integral of the Equation (59)  

( ) ( ) ( )2
1 12 , .S S SU I U I C K I C constε′ = ± + =           (60) 

If 2
1 1 0C a= > , then the Equation (60) has the solution  

( ) ( )1 1sinh .S SU I a N I=                     (61) 

If 2
1 1 0C b= − < , the solution of the Equation (60) is given by:  

( ) ( )1 1cosh ,S SU I b N I=                     (62) 

with 

( ) ( )1 1 12 d , .S S SN I K I I R R constε= + =∫              (63) 

The difference of Equations (48) and (51), taking into account of (61) and (62), 
gives: 

( ) ( )1 4 1 1
1 1 cosh ,

2S SX I W W ia N Iε
ε

 − −
= − = −   

 
           (64) 

or 

( ) ( )1 4 1 1
1 1 sinh ,

2S SX I W W ib N Iε
ε

 − −
= − = −   

 
           (65) 

where 1a  and 1b  are integration constants. 
Solving analogously the Equations (56) and (57), we obtain the following ex-

pressions for ( ) 2 3SY I W W= +  as follows: 

( ) ( ) 2
2 2 2 2sinh , for 0S SY I a N I C a= = >                (66) 

or 

( ) ( ) 2
2 2 2 2cosh , for 0.S SY I b N I C b= = − <               (67) 

In these conditions, it then follows from the Expressions (66) and (67) that: 

( ) ( )2 3 2 2
1 1 cosh ,

2S SV I W W ia N Iε
ε

 − −
= − =   

 
            (68) 

or 

( ) ( )2 3 2 2
1 1 sinh ,

2S SV I W W ib N Iε
ε

 − −
= − =   

 
            (69) 
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( ) ( )2 22 d ,P P PN I H I I Rε= +∫                  (70) 

where 2a , 2b  and 2R  are integration constants. 
Considering the cases where 2

1 1 0C a= >  and 2
2 2 0C b= − < , let us determine 

the expressions of the functions ( )SW Iδ . We get for the functions ( )SW Iδ  the 
following expressions:  

( ) ( ) ( )1 0 1 1
1 1sinh cosh ,

2S S SW I a N I i N Iε
ε

  − −
= −      

        (71) 

( ) ( ) ( )2 0 2 2
1 1cosh sinh ,

2S S SW I b N I i N Iε
ε

  − −
= +      

        (72) 

( ) ( ) ( )3 0 2 2
1 1cosh sinh ,

2S S SW I b N I i N Iε
ε

  − −
= −      

        (73) 

( ) ( ) ( )4 0 1 1
1 1sinh cosh ,

2S S SW I a N I i N Iε
ε

  − −
= +      

        (74) 

with 0 1
1
2

a a=  and 0 2
1
2

b b= . 
Let us note that we can also obtain the expressins of the funstions ( )SW Iδ  

considering 2
1 1 0C b= − <  and 2

2 2 0C a= > . Furthermore, in the relations (63) 
and (70), without loss of generality we can use the minus sign before the integral. 
Let us pass to the functions ( )Vδ ξ  by multiplying the functions ( )Wδ ξ   

obtained in the Expressions (71)-(74) by 
( )1

2e
α ξ−

 as follows:  

( ) ( ) ( )

( )

1 0 1 1

2
1

1 1sinh cosh
2

3 2exp ln ,
4 2 ,

V a N i N

A A
D DT h

εξ ξ ξ
ε

ξ ξ

  − −
= −      

    × − +     +      

         (75) 

( ) ( ) ( )

( )

2 0 2 2

2
1

1 1cosh sinh
2

3 2exp ln ,
4 2 ,

V b N i N

A A
D DT h

εξ ξ ξ
ε

ξ ξ

  − −
= +      

    × − +     +      

         (76) 

( ) ( ) ( )

( )

3 0 2 2

2
1

1 1cosh sinh
2

3 2exp ln ,
4 2 ,

V b N i N

A A
D DT h

εξ ξ ξ
ε

ξ ξ

  − −
= −      

    × − +     +      

         (77) 

( ) ( ) ( )

( )

4 0 1 1

2
1

1 1sinh cosh
2

3 2exp ln .
4 2 ,

V a N i N

A A
D DT h

εξ ξ ξ
ε

ξ ξ

  − −
= +      

    × − +     +      

         (78) 
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The following section deals with the analysis of the general results obtained 
previously by considering the concrete nonlinear terms of the arbitrary function 
( )SF I  in the Lagrangian density. 

3. Analysis of Principal Results and Discussions 

Let us consider a concrete type nonlinear spinor field equations when:  

( ) 2n n
S SF I I Sλ λ= =                        (79) 

where λ  is nonlinearity parameter and n power nonlinearity. Consider two 
cases 1n =  and 1n > . 
 Firstly, we should aborde the Ivanenko-Heisenberg type nonlinear spinor 

field equation corresponding to 1n = , ( )S SF I Iλ=  and 0λ ≠ . But this 
study is intensively dealt with in [9]. Let us now pass to the generalization of 
the analysis. 

 Secondly, we deal with the case where 1n >  and 0λ > . According to (79), 
the Equation (42) takes the form: 

( )

( ) ( )0
022

4 3

0

2 4 3d
.

3 8 4
S

D
D

nS
S S S

C DI

D D
II m I I
C

ξ ξ

χ λ

+
+

+
= ± +

+ + 
  − −     

∫    (80) 

In this section, we can consider massless spinor field i.e. 0m =  without loss 
of the generality. Indeed, as one sees from (80), for 0m ≠  at no value of ξ  
the invariant becomes trivial. Since as ( ) 0SI ξ → , the denominator of the inte-
grant beginning from some value of ( )SI ξ  becomes imaginary. Thus, in order 
to avoid the imaginary value at denominator of the integrant and evident value 
of the invariant function ( )SI ξ , it is necessary to choose massless spinor field 
setting 0m =  in the Equation (80). Similarly, it should be emphasized that, in 
the unified nonlinear spinor theory of Heisenberg, the massive terme is absent. 
So, according to Heisenberg theory, the particle mass should be obtained as a 
result of quantization of spinor prematter [20]. 

Substituting 0m = , without loss of generality, in the Equation (80) and tak-
ing 1n >  and 0λ > , we get: 

( )
( )( )

( )
1

2 1

2
0 02

1 ; 1.
4 3sinh 1

3 8 4

n

SI n
DC n

D D

ξ
χλ ξ ξ

− 
 
 = > 

 + − +  + +  

  (81) 

Introducing (79) and (80) into (16), the energy density of the nonlinear spinor 
field 0

0T  is  

( ) ( )
( )( )

( )2 1

0
0

2 2
0 02

12 1 ; 1.
4 3sinh 1

3 8 4

n
n

T n n
DC n

D D

ξ λ
χλ ξ ξ

− 
 
 = − > 

 + − +  + +  

(82) 
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We note from (81) that ( )SI ξ  is not bounded. Moreover from (82) the 
energy density 0

0T  is not localized. The soliton-like solutions are absent. There-
fore, the nonlinear form ( ) n

s SF I Iλ= , 1n >  and 0λ >  is not plausible to get 
the soliton-like configurations with localized energy density. In the following 
paragraph, let us discuss the case where 2 0λ = −Λ < . 

To this end, when 2λ = −Λ , from (80), we obtain: 

( )
( )( )

( )
1

2 1

2 2
0 02

1 ; 1.
4 3cosh 1

3 8 4

n

SI n
DC n

D D

ξ
χ ξ ξ

− 
 
 = > 

 + Λ − +  + +  

   (83) 

From (16), the energy density 0
0T  is defined as follows: 

( )
( )( )

( )2 1

0
0

2 2
0 02

1 ; 1.
4 3cosh 1

3 8 4

n
n

T M n
DC n

D D

ξ
χ ξ ξ

− 
 
 = − > 

 + Λ − +  + +  

 (84) 

with ( )2 2 1M n const= Λ − = . 
We conclude from (84) that the energy density of a nonlinear spinor field is 

negative and is localized in space [2]. 
As for the distribution of the spinor field energy density per unit invariant 

volume ( ) ( )0
0 3 gTε ξ ξ −= , it’s given by 

( )
( )( )

( )

( )

2 1

2 2
0 02

1 e sin ,
4 3cosh 1

3 8 4

n
n

M
DC n

D D

ζ ξε ξ θ
χ ξ ξ

− 
 
 = −  

 + Λ − +  + +  

 (85) 

where 

( ) ( )( )
( )

1
2 1

2 2
0 0 02

8 5 4 3cosh 1 .
4 3 8 4

nD DA C C n
D D D

ζ ξ χ ξ ξ
−  + +  = Λ − +   

  + +   
(86) 

The total energy is defined by 

( )
( )( )

( )

( )

2 1

0
2 2

0 02

1sin e d
4 3cosh 1

3 8 4

C

n
n

E M
DC n

D D

ξ ζ ξθ ξ
χ ξ ξ

− 
 
 = − < ∞ 

 + Λ − +  + +  

∫  (87) 

The obtained solutions describe a nonlinear spinor field configuration with 
regular localized energy density ( )0

0T ξ  and energy density per unit volume 
( )ε ξ , negative total energy E and the metric functions are regular and statio-

nary. The solutions possess the properties of soliton-like solutions as mentioned 
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in [19]. They may be used in order to describe the properties of the field confi-
guration of the elementary particles. 

Considering ( ) 2 2
S SF I I= −Λ , we can get an explicit form of the function 

( )Vδ ξ . We have: 

( ) ( ) ( ) ( ) ( )4 0
1sinh sinh 2 cosh exp ,

1
V a f i f fξ ξ ξ ε ξ φ ξ

ε
  = + − −                − 

 (88) 

( ) ( ) ( ) ( ) ( )3 0
1sinh sinh 2 cosh exp ,

1
V a f i f fξ ξ ξ ε ξ φ ξ

ε
  = + − + −                − 

 (89) 

( ) ( ) ( ) ( ) ( )2 0
1cosh 2 sinh cosh exp ,

1
V f i f fξ β ξ ε ξ ξ φ ξ

ε
  = − + −                − 

 (90) 

( ) ( ) ( ) ( ) ( )1 0
1cosh 2 sinh cosh expp ,

1
V f i f fξ β ξ ε ξ ξ φ ξ

ε
  = + + −                − 

 (91) 

where 

( ) ( )
( )

( )( )
2

1,2 0 1,22 2
0

2 3 8 4 4 3tanh 1 ,
4 3 3 8 4

n D D Df N n R
D C D D

ξ ξ ξ ξ
χ

 + + +
= = − − + + 

+ + + 
(92) 

and 

( )
( )( )

( )
1

2 1

2 2
0 02

0

1
4 3cosh 1

3 8 4exp .

n

DC n
D D

C

χ ξ ξ

φ ξ

−
 
  
       + Λ − +   + +   − =    
 
 
 
 
 
  

 (93) 

We can then finally write the components of the function ( )ψ ξ  of the spi-
nor field under the form: 

( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( )

0

0

0

0

1cosh 2 sinh cosh exp
1
1cosh 2 sinh cosh exp

1
1sinh sinh 2 cosh exp

1

sin

f i f f

f i f f

a f i f f

a f i

β ξ ε ξ ξ φ ξ
ε

β ξ ε ξ ξ φ ξ
ε

ψ ξ
ξ ξ ε ξ φ ξ

ε

ξ

  + + −                − 
  − + −                − =
  + − + −                − 

+   ( ) ( ) ( )

.

1 sinh 2 cosh exp
1

f fξ ε ξ φ ξ
ε

 
 
 
 
 
 
 
 
 
 

   − −             −  

 (94) 

From (94), we conclude that the function ( ) ( )Vδψ ξ ξ=  is regular. 
The obtained solutions describe the configuration of nonlinear spinor field 

with localized energy density. The energy density per unit invariant volume 
( )ε ξ  is also a localized function. The total energy has a finite and negative 
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quantity. The metrics functions are stationnary and regular. Then, they are soli-
ton-like solutions and must be used to describe the configuration of elementary 
particles. 

The following paragraph deals with the total charge and the total spin. Let us 
start with the components of spinor current vector. 

Using the solutions (88)-(91) we can determine the components of the spinor 
current vector jµ µψγ ψ= : 

2

0 2 2 2
0 1 1

2

2 2 2
0 2 2

1 12e sinh cosh
2

1 1cosh sinh
2

j a N N

N N

α γ ε
ε

εβ
ε

− −
   − + −  = +        

  − + −  + +        

         (95) 

2

1 2 2 2 2
0 1 1

2

2 2 2
0 2 2

1 12e sinh cosh
2

1 1cosh sinh
2

j a N N

N N

α ε
ε

εβ
ε

−
   − + −  = −        

  − + −  + −        

          (96) 

( ) ( )

( ) ( )

2 2
0 1 1

2
0 2 2

1 14e cosh sinh
2

1 1 cosh sinh
2

j a N N

N N

α β ε ξ ξ
ε

εβ ξ ξ
ε

− −  − + −
= 


− + −

− 


          (97) 

3 0.j =                            (98) 

As in this study the configuration is assumed static, the components 1j , 2j  
and 3j  are evident. The requirement of existence of one component of the 
vector 0j  leads to 0 0a b a= = , ( ) ( ) ( )1 2N N Nξ ξ ξ= =  and 1ε = . From the 
component 0j , we define the charge density or the chronometric invariant of 
the spinor field as follows: 

( ) ( ) ( ) ( )
1

0 22
0 3 cosh 2j j a Nρ ξ ϑ ξ ξ= =             (99) 

where ( )N ξ  is defined by the Expression (92) and  

( ) ( )
( )( )

( )
1

4 1

2 2
0 02

0

1
4 3cosh 1

3 8 4e .

n

DC n
D D

C
α ξ

χ ξ ξ

ϑ ξ

−

−

 
  
       + Λ − +   + +   = =  
 
 
 
 
 
  

 (100) 
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The charge density is localized when [ ]0, cξ ξ∈ . The total charge nonlinear 
spinor field equation is:  

( ) ( )2
0 0

3 d 3 sin cosh 2 e d ,c c
gQ a N

ξ ξ α γρ ξ θ ξ ξ−= − = < ∞∫ ∫       (101) 

Cξ  being the center of the field configuration and 

( )( )

( )

0
1

2 1

2 2
0 02

e .

1
4 3cosh 1

3 8 4

n

C

DC n
D D

α γ

χ ξ ξ

−

−

 
 
 
 
 
 
 =  
  
  
  
   +  Λ − +   + +   

   (102) 

From (101) the total charge is finite as the charge density is continous and lo-
calized. 

Let us deal with the spin tensor of the spinor field. Its general form is: 

{ }, 1 .
4

S µν λ λ µν µν λψ γ σ σ γ ψ= +                (103) 

From the Expression (102), the spatial density of the spin tensor  
,0 , , 1;2;3ikS i k =  is:  

{ },0 0 0 01 1 .
4 2

ik ik ik ikS ψ γ σ σ γ ψ ψγ σ ψ= + =            (104) 

Thus, we have  
12,0 13,0 0.S S= =                      (105) 

( )23,0 23 cosh 2 e .
2

S a N αξ −=                 (106) 

The Relation (106) leads to the definition of the chronometric invariant of the 
spatial density as follows:  

( ) ( )
1

23,0 23,0 22
23,0

3 cosh 2 e .
2chIS S S a N αξ −= =            (107) 

Thus, the projection of the spin vector on the radial axis has the form:  

( ) ( )23,0 2
1 0 0

33 d sin cosh 2 e d .
2

c c
chI gS S a N

ξ ξ α γξ θ ξ ξ−= − =∫ ∫      (108) 

Note that the spin tensor of the spinor field has a finite value. 
We can conclude that Dirac’s nonlinear equation has configuration with finite 

value of the total charge and the total spin. 
It is necessary to clarify the role of the nonlinear terms in the nonlinear field 

equations in the formation of regular localized soliton-like solutions. In this case, 
we must resolve Dirac’s equation and compare its solutions with solutions to 
nonlinear spinor equations. For detail refer to [9]. 
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4. Concluding Remarks 

Taking into account the proper gravitational field of elementary particles, the 
solutions that we have obtained in this research work are soliton-like solutions. 
They are regular with a localized energy density and limited total energy. The 
metric functions are stationary, the total charge and the total spin have finite 
quantities else. The soliton-like solutions exist in flat espace-time and absent in 
linear case. The nonlinear terms, the proper gravitaional field and the geome-
trical form of the metric play an important role in the obtaining of the soli-
ton-like solutions. Note that in static plane symmetric metric the charge Q and 
spin have not finite value but in the spherical static symmetric metric, those are 
finite. In the forthcoming paper, we shall deal with Spherical symmetric solitons 
of interacting spinor and scalar fields in general relativity theory. 
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