
Journal of High Energy Physics, Gravitation and Cosmology, 2020, 6, 43-48 
https://www.scirp.org/journal/jhepgc 

ISSN Online: 2380-4335 
ISSN Print: 2380-4327 

 

DOI: 10.4236/jhepgc.2020.61005  Dec. 10, 2020 43 Journal of High Energy Physics, Gravitation and Cosmology 
 

 
 
 

The Case for a Quantum Theory on a Hilbert 
Space with an Inner Product of Indefinite 
Signature 

Otto C. W. Kong 

Department of Physics and Center for High Energy and High Field Physics, National Central University, Taiwan 
Email: otto@phy.ncu.edu.tw  
 
 

Abstract 
We present the theoretical considerations for the case of looking into a gene-
ralization of quantum theory corresponding to having an inner product with 
an indefinite signature on the Hilbert space. The latter is essentially a direct 
analog of having the Minkowski spacetime with an indefinite signature gene-
ralizing the metric geometry of the Newtonian space. In fact, the explicit 
physics setting we have in mind is exactly a Lorentz covariant formulation of 
quantum mechanics, which has been discussed in the literature for over half a 
century yet without a nice full picture. From the point of view of the Lorentz 
symmetry, indefiniteness of the norm for a Minkowski vector may be the ex-
act correspondence of the indefiniteness of the norm for a quantum state 
vector on the relevant Hilbert space. That, of course, poses a challenge to the 
usual requirement of unitarity. The related issues will be addressed. 
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1. Introduction 

Quantum physics with the superposition principle is to be realized with states 
depicted by vectors on a Hilbert space, a complex vector space, usually endowed 
with a sesqulinear inner product with a positive definite signature, i.e. giving a 
positive definite norm. A proper symmetry transformation has to preserve the 
inner product, hence to be unitary. The latter is of central importance to the 
standard probability interpretation. However, there has been important theoret-
ical development on understanding quantum mechanics from a symmetry/ 
spacetime and symplecto-geometric perspective that can get around the proba-
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bility interpretation [1] [2]. After all, for the deterministic Schrödinger dynamics 
of a quantum system, there is no issue of probability. Measurement, von Neu-
mann measurement, in particular, is a much more involved physical setting, es-
pecially more so for a Lorentz covariant quantum theory. The simple bottom 
line here is that even in the setting of quantum mechanics with the Copenhagen 
interpretation, the born probability picture should not be strictly required to be 
extended to a spacetime description. Maintaining the total probability of finding 
a particle somewhere in the space, at a particular moment of its existence, to be 
unity is one thing, asking for the total probability of finding a particle some-
where in spacetime to be unity is quite another. For a particle wavefunction, as a 
function of the Minkowski spacetime coordinates xµ  for example, it could be 
enough that a restriction of it to any particular time value admits the born pic-
ture description. Focusing on a formulation of covariant Schrödinger dynamics 
of a single particle, we present here the case for the consideration of a Hilbert 
space for state vectors with an indefinite norm. The key notion is the noncom-
pact nature of the Lorentz group ( )1,3SO  giving all finite dimensional repre-
sentations as non-unitary, hence failing to preserve any positive definite norm 
on the representation space. But it is the finite dimensional representations that 
serve as the natural extensions of the corresponding unitary ones of the ( )3SO  
rotational subgroup. In particular, the Minkowski spacetime as a representation 
space of ( )1,3SO  is (1 + 3)-dimensional splitting into the single time space and 
the 3-dimensional space in the Newtonian limit. Minkowski spacetime, of course, 
has an invariant inner product on which a Lorentz boost acts as a non-unitary 
transformation while a rotation acts as a unitary one. It is exactly the kind of 
pseudo-unitarity we suggest to be incorporated as a basic structure of a fully Lo-
rentz covariant quantum mechanics. 

2. The Covariant Harmonic Oscillator 

The kind of quantum theory we have in mind can easily be appreciated in the 
covariant harmonic oscillator problem, which has been among the first studies 
of a Lorentz covariant quantum mechanics. It is important to note that the 
problem actually goes beyond the setting of Poincaré symmetry. The proper 
symmetry behind the problem is that of ( )1,3RH  given as 
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where we have adopted { }diag 1,1,1,1µνη = − . Naively, one wants to think about 

the operator representation with X̂ µ  given by xµ , P̂µ  by i
xµ

∂
−

∂
 ,  

ˆ ˆ ˆ ˆ ˆJ X P X Pµν µ ν ν µ= − , while I represented by the identity operator. The represen-
tation is unitary and does not work so well as the case of the familiar ( )3RH  
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setting at all [3]. In fact, unitarity and Lorentz covariance together would force 
taking only Lorentz invariant states as admissible, while on the technical side the 
wavefunctions and the integral norm have divergence issues. We emphasize the 
perspective here of having a formulation and solutions as a natural extension of 
the ( ) ( )3 0,3R RH H≡  case without divergence problems. The noncompact na-
ture of ( )1,3SO  generated by the Jµν  then points towards its pseudo-unitary 
representations. 

There is a parallel problem for any ( ),RH l m . The Hermitian operator N̂  

representing ( )1
2

X X P Pµ µ
µ µ+



, plus a constant, commutes with all Ĵµν . Each  

fixed n-level, for n being the eigenvalue of N̂ , corresponds to a representation 
of ( ),SO l m . We want the 0n =  level to be the trivial representation and the 

1n =  level to be the defining vector representation. The latter is to say, the real 
span of 1n =  Fock states is essentially a ( )l m+ -dimensional pseudo-Euclidean 
space of signature ( ),l m . The higher n levels then naturally correspond to 
symmetric Cartesian/pseudo-Euclidean tensors each of which splits into irre-
ducible representations of ( ),SO l m  corresponding to the rank of the tensors. 
Of course, all such representations at any finite n are finite dimensional and 
non-unitary. The ( ),SO l m  transformations are to be represented by “rota-
tions” on the pseudo-Euclidean space preserving the pseudo-Euclidean inner 
product. The Hilbert space as the space spanned by all Fock states can be seen as 
the natural complex extension of it. We will soon report on a detailed analysis 
with explicit Fock state wavefunctions and the pseudo-unitary inner product 
along the line. 

3. Theory from Symmetry Representation  
and the Geometric Picture 

Basic quantum mechanics is really a representation theory of group ( )3RH  [4], 
of which ( )1,3RH  is a natural Lorentz covariant extension. In the former case, 
a natural representation to use is an irreducible component of the regular repre-
sentation of the Heisenberg-Weyl symmetry ( )3H , all of which can be seen as 
essentially giving the same physics. Such representations are spin zero represen-
tations of the full ( )3RH  with ijJ  given by i j j iX P X P− . The central charge I 
has to be represented by a multiple of an identity. Taking the latter as a positive 
real number ζ  times the identity Î , we have ( )ˆ ˆ ˆ,i j ijX P i Iζ ζ ζ δ  =  

. We 
should then identify the true physical position and momentum operators as  

1 ˆ
iXζζ
 and 1 ˆ

iPζζ
. For a representation with a negative ζ , we should iden-

tify 1 ˆ
iPζ

ζ
 as the position operators ˆ

iX  and 1 ˆ
iXζ

ζ
 as the momentum  

operators îP . The regular representation can be expressed as a direct integral of 
the irreducible components for all real values of ζ , with a measure vanishing at 
the 0ζ =  point, which does not correspond to one such component [5]. Each 
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component then has the natural description with observables given by  

( ) ( ), ,i i i ip x p xα α=   , like functions of the position and momentum oper-
ators ix   and ip  , as operators acting on the states with wave functions 

( ), , |i i i ip x p xφ φ= , where ,i ip x  are the coherent states and   is the  
“product” corresponding to the Moyal star-product of α β  [4]. 

One lesson from above is that there is no need at all to think about a negative 
effective   value. We have one theory of quantum mechanics the one particle 
phase space of which is a Hilbert space for one value of ζ , for which we know 

ˆ ˆ ˆ,i j ijX P i Iδ  =  
. Moreover, the free particle phase space can be seen as the 

proper quantum model of the physical space on which quantum mechanics is 
the associated symplectic mechanics. Under the proper formulation, the physical 
space model and the dynamical theory reduce back exactly to the Newtonian 
ones at the classical limit [4] [6]. The perspective matches with the intuitive idea 
that the physical space is the collection of all possible positions for the particle. 
That is to say, only the single representation with the observed   value is 
physically relevant. 

The situation is however different in the case of ( )1,3RH . ( )1,3H  and ( )4H  
are isomorphic, i.e. really the same so long as we do not have a priori identifica-
tion of the generators with physical observables. ( )1,3RH  and ( )4RH  are defi-
nitely different as (real) Lie groups/algebras though. The relative sign in µνη  
says that the 0 0-X P  pair maintaining the mathematical nature as the components 
of the -X Pµ µ  four-vectors has a commutator of a different sign from the -i iX P  
pairs, which has to be preserved in an representation of ( )1,3RH  with the position 
and momentum operators being Minkowski four-vectors. Hence, we cannot 
avoid having the commutator [ ]0 0,X P , or actually in terms of the correspond-
ing operators in the physical representation 0 0

ˆ ˆ,X P   , being equal to ˆi I−  , 
analogous to an effective   value being negative. 

Quantum mechanics can completely be described by the symplectic or Kähler 
geometry of its phase space, the infinite dimensional projective Hilbert space. 
The observable algebra corresponds to an algebra of the so-called Kählerian 
functions and Schrödinger dynamics is given by their Hamiltonian flows [7]. 
Most importantly,  , or its effective value, the real parameter in the commuta-
tor ˆ ˆ,X P   , characterizes the constant holomorphic sectional curvature of the 
Kähler geometry. In any ( )RH n  setting then, the projective Hilbert space is 
compact and positively curved. A natural conclusion is that for a theory with an 
effective negative value of the commutator, the corresponding phase space would 
have a negative curvature. Kawamura [8] has indeed discussed such a case as a 
plausible generalization of quantum mechanics, unfortunately without drawing 
any connection to the relevant ( ),SO m n  symmetry. Mathematically, the com-
pact projective Hilbert space can be seen as a coset space ( ) ( )1SU N SU N −  
with N taken to the infinite limit. The noncompact negatively curved analogs are 
given by ( ) ( ), , 1SU M N SU M N −  or ( ) ( ), 1,SU M N SU M N− , from a 
Hilbert space with a ( ),SU M N  invariant pseudo-unitary inner product [9]. 
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4. Final Remarks 

It is important to note that the covariant harmonic oscillator problem and the 
formulation of the quantum mechanics itself are much the same. For the usual 
quantum mechanics, as the unitary representation of ( )3RH  with Hermitian 
position and momentum operators, for example, the true Hilbert space is not 
that of the square-integrable functions even for the ( )ixφ  wavefunction for-
mulation. It is a dense subspace of rapidly decreasing functions, the most ready 
explicit picture of which is the span of the harmonic oscillator Fock states [10]. 
Recall that the coherent states can be constructed from the Fock states too. Our 
analysis points above are in the same direction of pseudo-unitary representation. 

We have mentioned above that the projective Hilbert space should be seen as 
the proper model of the physical space behind quantum mechanics, from which 
one can retrieve the correct classical limit. It is also true that the submanifold of 
the coherent states is exactly like a copy of the classical phase space sitting inside 
the quantum one. The classical phase space is naively a simple product of the 
space/configuration part and the momentum part with the same Euclidean geo-
metry. In fact, their metrics are simply given by restrictions of the metric for the 
projective Hilbert space [11]. When one goes to the Lorentz covariant case, the 
corresponding coherent state submanifold obviously needs to have a metric of 
Minkowski signature for the spacetime/configuration part and the momentum 
part. The latter obviously asks for a metric or inner product with an indefinite 
signature for the quantum Hilbert space. We hope to report on an explicit for-
mulation of such a quantum theory in the near future. 
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