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Abstract 

Groundwater is considered as the main portion of the water supply in arid 
and semi-arid regions. The Sfax plain area is part of the arid/semi-arid areas 
of Tunisia that are subject to the impact of climatic and human pressures. 
Water scarcity in combination with groundwater exploitation is a major con-
cern in this region. Therefore, sustainable management and protection of 
groundwater resources, it necessary. The delineation of groundwater potential 
(GP) zones becomes an increasingly important tool for implementing success-
ful management programs. The purpose of the present paper is to assess the 
potential zone of groundwater resources in the study area. An efficient ap-
proach using geographical information system (GIS), hydrological modelling 
and analytical hierarchy process (AHP) was developed. At first, six ground-
water parameters that affect groundwater occurrences are derived from the 
spatial geodatabase. Those parameters are: Infiltration rate estimated from a 
GIS linked model, lineament density, drainage density, slope, rainfall and Land 
use/land cover. Then, the assigned weights of thematic layers based on expert 
knowledge were normalized by eigenvector technique of AHP. The parameter 
layers were integrated and modeled using a weighted linear combination 
(WLC). The resulting map was classified into four categories: very low, low, 
good, and excellent. The results showed that about 26% of the study area falls 
under very-low-potential zone, with 30% on low-potential zone, 21% with 
good potential zone, and 23% falling under excellent zone. The results of the 
analysis were validated using pumping rate data and curve trend of sensitivity 
classes theory validation of outcomes indicated a good prediction accuracy. 
The results of the present study can serve to prepare a comprehensive ground-
water development and management plans proving its efficacy in this art of 
exploratory investigations. 
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1. Introduction 

Groundwater is considered one of the most valuable natural resources [1] and 
dependable sources of water supply in all climatic regions of all over the world 
[2]. In the semi-arid environment of the Sfax basin, the groundwater constitutes 
the main in demand, certainly with the scarity of surface water supply. During 
the two last decades, the region of Sfax knew an important population and 
economic activities increase. This development has imposed severe stress on 
freshwater resources available both in terms of quantity and quality. Faced with 
this threat of degradation and overexploitation, an assessment of this resource is 
extremely significant for sustainable management [3]. Description of ground-
water potential (GP) zones constitutes an efficient tool in performing successful 
groundwater determination, protection, and management programs [4]. Sus-
tainable groundwater potential mapping emphasizes not only locating the po-
tential groundwater zones but also focus the optimum utilization of resources 
without affecting the aquifer systems [5]. 

Several techniques are available for hydrogeological investigations and among 
these approaches, the geoelectrical resistivity methods [6] [7]. The data obtained 
is correlated with groundwater lithological logs in the studied areas, and then 
were employed to generate different hydro-resistivity maps and to delineate di-
verse subsurface geoelectrical layers. This method shows satisfactory results in 
different hydrogeological settings but the main drawback of this technique re-
mains the high material cost. Other authors combined resistivity method and 
hydrochemical analysis to identify the groundwater potential and problematic 
zones for its sustainable exploration [8]. This methodology improves knowledge 
about water quality and the possibilities of exploitation but the hydrochemical 
data are still difficult to obtain especially in large study areas and less in developing 
regions.  

Most of These traditional approaches to groundwater exploration are expen-
sive and time-consuming [9] [10]. In this context, modern technologies like Geo-
graphic Information System (GIS) are rather an effective, simple and reliable tech-
nique for delineating groundwater potential zones. 

In recent years, (GIS) has been used for various purposes such as groundwater 
investigations [11] [12]. It is one of the techniques that can be used for rapid as-
sessment of natural resources and constitute a cost-effective problem-solving 
platform for identifying groundwater potential zones [13]. GIS permits storing 
and efficient processing of georeferenced data derived and collected from vari-
ous sources [14] [15] [16]. Moreover, it offers a consistent framework for ana-
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lyzing the spatial variation, allowing manipulation of geographical information 
[17]. This technique has been used by many researchers to prepare groundwater 
resources maps in many parts of the world. GIS is used to manage, classify data 
to explore sites, to combine the factors of groundwater recharge potential, and to 
provide appropriate weight relationships [18] [19] [20]. 

In these studies, the presence of groundwater is inferred from different surface 
features. The number and the nature of factors vary from one author to another. 
Many academics have described the interactions of the hydroclimatic, pedologi-
cal and geomorphologic factors and their important role in the occurrence and 
distribution of groundwater [21] [22]. The most frequent parameters used in 
groundwater potential zoning are: geomorphology, lithology drainage density, 
lineament density, slope, land use, rainfall and soil [23] [24]. Moreover, a few oth-
er parameters have also been used in groundwater potential studies such as wa-
ter table depth [25], water quality [26], plan curvature and distance to drainage 
[4] [27], aquifer transmissivity and storativity [28]. The integration of these mul-
tiple hydrological/hydrogeological data sets can earn delineating promising 
groundwater reservoir in an area [29]. The final result will depend essentially on 
the rank and weight assigned for every parameter. Some studies have used per-
sonal judgments to assign weight to different thematic layers and their features. 
Probabilistic frequency ratio models have been used by reference [30] [31] [32].  

More sophisticated assessments have been conducted using numerical mod-
eling, fuzzy logic (FL), frequency ratio, artificial neural network (ANN), random 
forest model and analytic hierarchy process analysis. The AHP method is one of 
the most widely used multi-criteria decision analysis (MCDA) models [33]. It is 
an effective method for dealing with the decision-making process framework that 
allows controllers to know the relationship between goals, criterias, sub-objectives 
and alternatives [34]. This method has largely been explored in a number of scien-
tific applications including groundwater potential mapping for deriving criteria 
weights, to support decision making and identify the groundwater potential zones. 

In spite of the large-scale use of phreatic groundwater in Sfax basin, few stu-
dies have been conducted in demarcating potential groundwater resources. 
Therefore, this study was carried out with an objective to assess the potential 
areas of groundwater resources based on integrated analytical hierarchy process 
(AHP), geographic information system (GIS) and hydrology modeling, in the 
Sahel of Sfax, Tunisia. 

2. Study Area 

The study focuses on the Sfax Basin in eastern part of Tunisia. This area is 
bounded by longitudes 9˚33'E to 11˚10'E and latitudes 35˚40'N to 34˚10'N (Figure 
1). It occupies an area of about 8000 km2. It is limited in the eastern side by the 
Mediterranean Sea, in the west by N-S Axis mountain chain [35]. In the north by 
SW-NE alignment structures of Kordj, Bouthadi which represents an extension 
of kchem el Artsoum reliefs, since the axis NS until the cost [36] and in the  
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Figure 1. Location of the study area. 
 
south by Mezzouna Mountain. The study area has an arid/semi-arid climate 
with annual precipitation of 230 mm, an annual temperature of 20˚C. The sur-
face relief is geomorphologically characterized as flat, semi-hilly in the western 
parts. The superficial aquifer consists of unconfined layers. The main geological 
material which composes the aquifer system is the sand and the silty clay of the 
upper Miocene, Pliocene and Quaternary.  

This area has experienced rapid population growth and increased demand for 
phreatic groundwater reserves, which constitute the main sources of water 
supply. This study was initiated to explore groundwater potential areas in Sfax 
area. 

3. Materials and Methods 

Preparation of the groundwater potential map (GPM) using GIS involved three 
steps: 1) assembly of a spatial database, 2) GIS-based multi-criteria evaluation 
(based on Saaty’s analytical hierarchy process (AHP) to compute weights for 
thematic layers and 3) validation of the GPM using statistics and curve trend of 
sensitivity classes theory (Figure 2). 

3.1. Description of Spatial Database 

The groundwater prospecting terrains requires a thorough understanding of ge-
ology, geomorphology and lineaments of an area, which is directly or indirectly 
controlled by the terrain characteristics like weathering grade, fracture extent, 
permeability, slope, drainage pattern, landforms, land use/land cover and  
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Figure 2. Flow diagram represents methodology for identification of groundwater potential zones (GWPZ). 

 
climate [37]. The first stage to map groundwater potential is the data collection 
and construction of the spatial database from which the relevant factors were 
extracted [38]. This step is an important part of any research [39]. 

In this study, the modeling involves delineation the groundwater potential 
zones based on integration of six thematic maps in a raster based GIS. The pa-
rameters considered are: infiltration rates, lineament density, drainage density, 
slope, rainfall and land cover/use (LULC). 

The use of Agriflux model permitted to calculate flux of infiltration. The out-
put is transferred in a GIS environment which allows automatic subdivision of 
the study area into grid, flux calculations and GIS overlay computations (Figure 
3). 

The elevation and slope maps were prepared from SRTM data in ArcGIS en-
vironment. The hydrographic, lineaments land cover/use maps in 1:50,000 scale 
for the study area were collected from direction of water resources of Sfax [40]. 
Information of 12 weather station’s annual precipitations [41] is used to generate 
rainfall map. The groundwater potential zones were obtained by overlaying all 
the thematic maps in terms of weighted overlay methods. 

3.2. GIS Modeling 

It is important to understand the control of above-mentioned factors on the 
groundwater regime of any area for optimal exploitation and aquifer manage-
ment [14]. Many researchers have applied different types of GIS modeling tech-
niques to assign weights of the parameters. One of the most used approach is the 
AHP model [42] [43] [44] [45].This study employs the AHP to assign weights of 
the factors and use the weighted linear combination (WLC) method to aggregate 
thematic layers and identify GP areas of Sfax plain. 
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Figure 3. The coupling GIS-Agriflux Approach. 

3.2.1. Computation Weight Using AHP 
The GIS-based AHP method has been recognised by the international scientific 
community as a powerful tool for analyzing complex spatial decision problems 
[46]. It is the most widely accepted method in scaling factors weights whose en-
tries indicate the strength with which one factor dominates over the other in re-
lation to the relative criterion [47].  

The AHP model involves three steps [48]:  
­ Development of judgment matrices (A) by pairwise comparison: the relative 

importance of thematic maps is compared to each other by pair-wise com-
parison matrices based on Saaty’s scale from 1 to 9.  

­ Calculation of relative weight W. 
­ Strength assessment of judgment matrix-based consistency ratio (C.R) 

C.R C.I R.I=                              (1) 

where, RI is the random index whose value depending on the order of the ma-
trix, and CI is the consistency index evaluated as: 

maxC.I
1

n
n

λ −
=

−
                             (2) 

When, λ is the largest eigenvalue of the matrix and n is number of groundwa-
ter conditioning factors.  

According to reference [49] [50], the C.R value less than 0.1 is acceptable for a 
specific judgment matrix. However, the authors suggest that if C.R exceeds 0.1, 
the set of judgments may be too inconsistent to be reliable. 

3.2.2. Aggregating Thematic Layers Using the WLC Method 
After computing the weights for the several thematic layers, the individual fea-
ture layers are reclassified into subfeatures and ranks are assigned accordingly. 
Finally, feature maps are integrated using a weighted linear combination ap-
proach in the GIS platform. The Groundwater potential map was constructed 
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according to Formula (3): 

( ) ( ) ( ) ( )
( ) ( )

GPM IRw IRr LDw LDr DDw DDr Sw Sr

Rw Rr LULCw LULCr

= ∗ + ∗ + ∗ + ∗

+ ∗ + ∗
       (3) 

where IR = infiltration rate, LD = lineament density, DD = drainage density, S = 
slope, R = annual rainfall, LULC = land use/land cover, w = factor weight and r 
= class rating. 

3.3. Validation of the GWP Map 

Any predictive model requires validation before it can be used [51]. Therefore 
validation is considered to be the most important process of modeling [52]. In 
this context, the confirmation of the final map is based on the trend lines curve 
sensitivity method proposed by Jourda [53]. The method is founded on the 
choice of evaluation criteria. This later must obey 2 principles which are inde-
pendence and compliance [53]. In this study, we used drillings discharge data. It 
grouped into classes and was crossed with the groundwater potential map. The 
percentage of each class and the sensitivity factor were calculated relatively to 
the total number of drillings obtained by class of criteria. Curves, expressed as a 
percentage by sensitivity classes according to the classes of discharges, have been 
dressed. For the validation, the shape of the trendlines sensitivity obtained is 
compared with theoretical curves trend sensitivity classes (Figure 4). 

4. Results and Discussions 
4.1. Groundwater Potential Zoning 

In this study infiltration rate, lineament density, drainage density, slope, rainfall 
and land use/cover have been identified to delineate the groundwater potential 
zones. 
 

 
Figure 4. Standard curve trend of sensitivity classes according to the discharges [53]. 
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4.1.1. Infiltration Rate 
A GIS linked model approach has been adopted to specify the water infiltration 
rate and to quantify the effective infiltration. This is the amount of water infil-
trated from the surface, which passes through the unsaturated zone and reaches 
the saturated zone [54] [55]. Several models respond to this problem, but our 
choice was to use the Agriflux model [56]. AgriFlux is a model that takes into 
account the spatial variability of the input parameters using their statistical dis-
tribution in a Monte Carlo approach [57]. These parameters are grouped into 
two principal data: 1) Climatic data and 2) hydraulic data. 

Required climatic data (precipitations, temperatures and evaporation) are 
collected from the CRDA of Sfax. For hydraulic data, grain size distribution sa-
turated hydraulic conductivity, residual water content, wilting point and porosi-
ty are predicted from textural data derived from the pedological map. Once we 
have defined the model inputs, we proceed to the Agriflux simulation of the wa-
ter behavior in soil through the Hydriflux module [58]. 

One of the limitations of the Agriflux model, which is a one-dimensional model, 
is that it does not take into account the basin geometric propriety. For this rea-
son, the integration GIS with modelling was useful. The coupling GIS-Agriflux 
model can help to calculate flows, visualisation of spatially distributed model 
outputs and establishment of infiltration map for the study area. The infiltration 
values varied within the range of 2% - 18%, which was classified into four classes 
(Figure 5(a)). 

4.1.2. Lineament Density 
Lineament analysis for groundwater exploration has considerable importance, 
where the joints and fractures serve as conduits for movement of groundwater 
and have water-holding [14] [26] [59]. Lineament density can indirectly reveal 
the groundwater potential and higher density area are good for groundwater 
potential zones [60]. This study used lineament length density, which shows the 
total lineament length per unit area, as shown in the following Equation (4): 

1Ld
i
i

n L
A
=

=

= ∑                            (4) 

where 1
i
i

n L
=

=∑  = total length of lineaments (km) an A = area of study area 
(km2). 

The lineaments density map was generated in ArcGIS 10.3 using kernel den-
sity method. The resulting map, in the range of 0 - 2.61 (km/km), was catego-
rized into four classes. Figure 5(b) describes the drainage density criterion, 
classes, and their relative importance. The lineament density map of the study 
area reveals that high lineament density is observed in the center of the study 
area. 

4.1.3. The Drainage Density 
The drainage density in the area indicates a low-infiltration rate whereas the low 
density areas are favorable with a high-infiltration rate [61] [62].The drainage  
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Figure 5. Thematic layers of the different factors influencing groundwater recharge potentiality: (a) IR map [59], (b): LD map; (c): 
DD map; (d): S map; (e): R map; (f) LULC map. 

 
density was calculated in the same way as the lineament density, and measures 
the density of linear features in units of length per unit of area. The drainage 
density map was assigned to four classes (Figure 5(c)). It is observed that the 
cumulative length in the southern region is very less compared to the northern 
region. 
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4.1.4. Slope 
Infiltration of surface water is directly influenced by the slope gradient [10] [63]. 
The slope map of the study area was prepared based on SRTM data using the 
spatial analysis tool in ArcGis 10.3. Slope grid is identified as “the maximum rate 
of change in value from each cell to its neighbors” [64]. The slope map, classified 
into four classes determines the rate of infiltration and runoff of surface water in 
the study area. The flat surface areas, in the center and eastern sectors, can hold 
and drain the water inside of the ground, which can increase the groundwater 
recharge whereas the steep slopes in the western sector increase the runoff and 
decrease the infiltration of surface water into ground (Figure 5(d)). 

4.1.5. Rainfall 
The rainfall has a significant effect on the groundwater potential. The areas that 
receive more rainfall potentially have more opportunity for recharge than those 
with low precipitations [65]. Rainfall data of twelve meteorological stations within 
the study area are used [41]. The region in relation with rainfall from 115 mm to 
306 mm was classified into 4 classes. It is observed that the north sector receive 
more rain than the rest of the study area (Figure 5(e)). 

4.1.6. Land Use/Land Cover 
The consideration of LULC factor for groundwater investigation is important 
because the water holding capacity of an area depends on the underlain soil 
types and their permeability. The LU/LC map is depicted in Figure 5(f). There 
are five types of land use patterns identified in the entire study area. Agriculture 
(74%) and forest (21%) are the predominant land use types in the study area. 
The water bodies represent 2% of the study area and interest the NW study area. 
The most important urban agglomeration interest the Sfax city with a 2% of the 
study area. 

4.2. Delineation of Groundwater Potential Zones 

Each of the six thematic layers mentioned above were reclassified (Table 1) then 
assigned a weight using (AHP) technique. The relative influence of the different 
factors, on groundwater recharge is based on expert knowledge and literature 
review of several researchers [17] [32]. The result of the analysis is shown in Ta-
ble 2. The consistency measure (CR) value of 0.06 shows that the judgments are 
highly acceptable. The results revealed that infiltration rate is the most influenti-
al parameter accounting for (40%), lineament density at (30%), drainage density 
(12%) followed by slope, precipitation and land use. 

The GWPM has been prepared using the “Equation (3)”, and classified into 
four classes with groundwater potentiality from excellent to very poor (Figure 
6). This is attributed as: 23% (excellent), 21% (good), 30% (low) and 26% (very 
low). Excellent and good groundwater potential zones are concentrated in the 
northeast and the central parts of the study area. These parts are characterized 
by good infiltration rate, good lineament density, low drainage density and gen-
tle slope. The groundwater potential zone designated as low and very low are  
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Table 1. Weights and ratings of the factors used to map groundwater potentiality. 

Factor Category Rating 

Infiltration rate (IR) (%) 

<2 2 

2 - 6 4 

6 - 11 6 

11 - 18 8 

Lineament density (LD) (Km/Km2) 

<0.3 1 

0.3 - 0.9 3 

0.9 - 1.5 5 

1.5 - 2.6 7 

drainage density (DD) (Km/Km2) 

<1 8 

1 - 2 7 

2 - 3 5 

3 - 4 1 

Slope (S) (%) 

<2 8 

2 - 10 7 

10 - 25 3 

25 - 42 1 

Rainfall (R) 

115 - 174 1 

174 - 210 3 

210 - 247 6 

247 - 306 8 

Land use/land cover (LULC) 

Urban zones 1 

Bare area 3 

Water bodies 4 

Forest 6 

Crops 8 
 
Table 2. Pair-wise comparison matrix for the AHP process in Sfax basin. 

Factor IR LD DD S R LULC Weight 

Infiltration rate (IR) 1 2 5 6 7 9 42.4% 

Lineament density (LD) 0.5 1 4 5 6 7 29.6% 

drainage density (DD) 0.2 0.25 1 2 4 5 12.2% 

Slope (S) 0.17 0.2 0.5 1 3 4 8.3% 

Rainfall (R) 0.14 0.17 0.25 0.33 1 3 4.7% 

Land use/land cover (LULC) 0.11 0.14 0.20 0.25 0.33 1 2.8% 

Consistency ratio (CR) = 0.06 < 0.1. 
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Figure 6. Groundwater potentiality map of the study area. 

 
mostly found in the south part (Skhira) and in east particulary in Sfax region. 
This Areas are with low infiltration, high drainage density and steep slope. 

4.3. Results Validation 

Curve trend of sensitivity classes theory [53] was used to validate results. The 
groundwater potential map was validated with data on groundwater productivity 
relating to the aquifers in the area (4328 wells). The drilling discharge data has 
been classified into five classes (very strong, strong, medium, low and very low) 
and combined to the potentiality map. Then, for each class of the evaluation cri-
terion, a number of pumping well is obtained which belongs to each sensitivity 
class of the thematic map studied (Table 3). 

Trend sensitivity by sensitivity classes according to the classes of discharges 
have been presented. The thematic map was validated by comparing the ob-
tained shape of the trendlines sensitivity (Figure 7) with the theoretical curves 
trend sensivity classes (Figure 4). 

The results show that 84% of very strong discharge drillings (Q > 19 m3/h) 
superimposed on the excellent and good sensitivity class; 50% drillings with low 
discharges (1 < Q < 2 m3/h) are overlapped with classes of low sensitivity. 66% of  
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Figure 7. Results of GWPZ validation (Trend curves of the sensitivity classes). 

 
Table 3. Percentage of discharges sensitivity classes. 

Discharge classes 
Sensitivity classes 

Very Low (%) Low (%) Good (%) Excellent (%) 

Very low 
Q < 1 m3/h 

66.6 33.4 0 0 

Low 
1 < Q < 2 m3/h 

39.2 50 7.14 3.57 

Medium 
2 < Q < 5 m3/h 

33.57 36.6 22.78 6.95 

Strong 
5 < Q < 19 m3/h 

18.27 25.26 28.58 27.87 

Very strong 
Q > 19 m3/h 

8.16 8.16 20.40 63.26 

 
very low (Q < 1 m3/h) are superimposed on the very low sensitivity class. The 
excellent and good potentiality classes have high to very high productivity in the 
majority of cases. Also the classes of very low and low potentiality show slow 
productivity. The results demonstrate a good concordance between the two plots 
(Figure 4 and Figure 7) and the trend of excellent sensitivity class present a 
unimodal shape; the trend of good sensitivity class has a mode centered on the 
strong class of the evaluation criterion; the trend of low sensitivity class shows a 
Gaussian curve and the trend of the sensitivity class of the very low has unimod-
al shape. 

4.4. Discussion 

An overlay model was applied with six different influential parameters including 
infiltration rates, lineament density, drainage density, slope, rainfall and land 
cover/use. The AHP method was employed to determine the respective weights 
of the different thematic maps. The matrix analysis reveals that the infiltration 
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rate, density fracturation and drainage density are the most important factors 
conditioning the groundwater occurrence. The model generated output shows a 
mirror reflection of the principal factors. High groundwater potential zones are 
found in high infiltration sectors, high lineament density, low drainage density, 
and along the nearly level area with less than 2% slope. This seems logic and 
confirms many results in other studies in different hydrological contexts [14] 
[26] [66]. 

Field verification was performed by comparing and superimposed the pro-
duced potentiality map and the discharge borehole data. The result shows a good 
agreement between the generated groundwater potential map and the pumping 
rates. It can be clearly seen that the majority of groundwater with high pumping 
rates are appeared where the qualitative results revealed good groundwater po-
tential. This paper proves the efficacy of validation method in the alluvium en-
vironment. In fact the original method was applied for hard rock terrain [53] 
[67] [68]. 

The good results can be explained by the importance of the infiltration para-
meter in the estimation of the groundwater potentiality (42%) and the accuracy 
of the estimation of this factor. In fact, AgriFlux model involves different data 
such as climatic and pedological data. The good results can also confirm the role 
of soil parameter in modelling water transport processing and occurrence of 
groundwater. 

This work emphasizes the use of GIS linked model. The integration Agriflux 
model with geographic information system (GIS) has provided a significant con-
tribution in the spatial data analysis and visualisation of model results. Here, the 
integration is done through data exchange among Arcgis-Agriflux without a 
common user platform. According to reference [69], this type of coupling ap-
proaches (loose coopling) are much simpler to program and may be the most 
realistic approaches. However, it is prone to data inconsistency, information loss, 
and tedious data conversion between different packages which leads to increased 
model setup time. 

The mapping of parameters by interpolation certainly led to errors [70]. De-
spite this error margin in mapping, the multiparameter approach carried out by 
means of GIS and an AHP technique was efficient, economical and stress free 
work method.  

In the concerned area, no maps were previously produced depending on the 
integration of Agriflux model, GIS and multicriteria analysis. Such map involve 
the main factors contributing to groundwater prospectivity in Sfax basin, espe-
cially the factors concerning the quantified groundwater infiltration rate. The 
developed approach has proven to be efficient, rapid and cost effective technique 
producing valuable results for proper groundwater resources evaluation and ex-
ploitation. 

5. Conclusions 

In this study, a methodology for demarcating groundwater potential recharge 
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zonation map using a GIS-based AHP technique approach has been proposed. 
Multiple GIS layers were developed. Each layer was classified into different cat-
egories depending on its capability to hold groundwater. AHP is used to deter-
mine the weights of various themes. This tool appears to be a flexible deci-
sion-making and decision aiding method. The validation was performed by the 
use of curve trend of sensitivity classes theory. The borehole pumping data were 
superimposed on the groundwater potential map and numbers of wells with dif-
ferent yield ranges for different groundwater potential zones were evaluated.  

The results indicated that recharge is controlled by many competing factors 
mainly infiltration rate, lineaments density and drainage density. The derived map 
shows groundwater potential recharge zones namely, very low, low, good, excel-
lent which cover 26%, 30%, 21% and 23% of the study area respectively. The re-
sults demonstrate that the most effective groundwater recharge potential zones 
were located in the northeast and the central parts. Southern and eastern parts 
represent low groundwater potential sectors. 

This work emphasizes the role of GIS technology in linking models. The inte-
gration Agriflux-GIS is used to quantify the groundwater flow and provide re-
charge estimates over large area.  

The use of GIS was helpful for managing various spatial data and conducted 
to develop a digital database of Sfax phreatic aquifer. 

The overall results reveal that integrating geographical information system 
(GIS), hydrology modeling and analytical hierarchy process (AHP) methods present 
a valuable tool for the improved prediction, monitoring and planning of water 
resources. This is particularly useful in developing regions, where the potential 
of groundwater resources is largely unknown. This work may improve our know-
ledge and provide additional support for groundwater management and can help 
planners seek suitable locations at which to implement exploration. 

The approach presented in this paper can be supplemented by hydrochemical 
and isotopes investigations to provide more elements of knowledge of the func-
tioning of this system. In fact, the hydrochemical analysis may complete this 
study and permit the development of a rational scheme for the optimal use of 
the Sfax aquifer. 
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