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Abstract 
The latest advances in Deep Learning based methods and computational ca-
pabilities provide new opportunities for vehicle tracking. In this study, YO-
LOv2 (You Only Look Once—version 2) is used as an open source Convolu-
tional Neural Network (CNN), to process high-resolution satellite images, in 
order to generate the spatio-temporal GIS (Geographic Information System) 
tracks of moving vehicles. At first step, YOLOv2 is trained with a set of im-
ages of 1024 × 1024 resolution from the VEDAI database. The model showed 
satisfactory results, with an accuracy of 91%, and then at second step, is used 
to process aerial images extracted from aerial video. The output vehicle 
bounding boxes have been processed and fed into the GIS based LinkTheDots 
algorithm, allowing vehicles identification and spatio-temporal tracks genera-
tion in GIS format. 
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1. Introduction 

Vehicles tracking is an important subject with interesting applications. It has 
been extensively studied from different angles, using both classical methods of 
traditional object detection and GIS methods, based on GPS and real time 
communications tools. 

As one of the most important tasks in computer vision, object detection is ra-
pidly growing, thanks to the latest advances in deep learning based methods and 
computational power with clusters of graphics processing units (GPUs). This 
offers new opportunities for vehicle tracking, through the use of high-resolution 
satellite imagery and deep learning methods, based on Convolutional Neural 
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Networks (CNNs) [1]. In this paper, for vehicle tracking purposes, YOLOv2 
model [2], a fast growing open source CNN, is train on VEDAI images, an open 
dataset of vehicles imagery. GIS functionalities and LinkTheDotes algorithm are 
used for spatio-temporal tracks creation, control and visualization. 

The plan of the paper is as follows. This section presents a literature review of 
some studies on vehicle tracking and object detection, with the basic concepts of 
Deep learning, CNN and YOLO. Section 2 presents the general approach, prep-
aration of input data, YOLOv2 training and LinkTheDots algorithm as well as 
used GIS features. Section 3 examines the results obtained and section 4 provides 
some conclusions. 

1.1. Vehicle Tracking 

Vehicles tracking became an important task with important applications in 
many fields such as urban traffic monitoring [3], intelligent transportation sys-
tems [4], ground surveillance [5], driving safety and security [6], advanced driv-
ing assistance systems [7], etc.   

While classical methods of vehicle tracking are based on the combination of 
GPS, GSM, GPRS and internet technologies [8] [9] [10] [11], new methods 
based on imagery and AI are rapidly evolving [12]-[17]. the advantage of these 
new methods is their ability to process data at large scales, without the need to 
first install special equipment in tracked vehicles; They take advantage of accele-
rated advances in artificial intelligence, especially deep learning, and thus signif-
icantly reduce the cost of access to these analysis data for the largest number of 
interested researchers and businesses.  

1.2. Object Detection and GIS 

Object detection consists of detecting instances of a certain class (such as ve-
hicles, humans, or trees) in digital images. It is a computer vision subject, that 
finds numerous applications, in several fields such as facial recognition [18], au-
tonomous driving [19], and lately face mask detection amid COVID-19 pan-
demic [20]. The main objective of object detection is to develop computational 
systems that deliver a key information to computer vision applications which is: 
“What objects are where”? [21], which is also the basis of multiple GIS (Geo-
graphic Information Systems) applications. The two areas benefit and comple-
ment each other [22] [23] [24]. 

1) Object detection and image classification 
The objective of image classification is to extract existing classes of visual ob-

jects, without necessarily specifying their location in the image. It answers the 
question “what object is in the image?”. 

On the other hand, object detection locates instances of classes on the image, 
with bounding boxes or bounding polygons [25] as shown in Figure 1. 

2) Object identification 
Object identification happens when the detected objects in the image are  
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Figure 1. Bounding boxes (left) vs. bounding polygons (right). 

 
assigned unique identification codes. It is used for real-time object tracking ap-
plications for instance [26]. 

1.3. Image Processing with Deep Learning 

1) Deep Learning (DL) 
Recent research works show that Deep Learning methods have arose as po-

werful Machine Learning methods for object recognition and detection [27] [28] 
[29] [30] [31]. Deep learning happens with complicated nonlinearity, when 
composing many nonlinear functions [32]. While traditional approaches of Ar-
tificial Intelligence and Machine Learning make it possible to learn hierarchical 
representations corresponding specifically to the analyzed data [33], we tend to 
believe that with Deep Learning Neural Networks, there is an incremental evolu-
tion of the representation of raw data into categories of abstractions as the sys-
tem is fed with data [34] [35]. Thus, with its boosted capacity to adjust billions of 
parameters thanks to massive parallelism computing capabilities, Deep Learning 
algorithms success in AI application such as image and video processing stands 
phenomenal [36]. 

2) Convolutional Neural Networks (CNN) 
When dealing with images, unlike the traditional approaches, Deep Learning 

models learn the features immediately from the raw pixels, developing local re-
ceptive fields from lower layers to upper layers. For instance, lower layers recog-
nize simple features like lines and corners, while higher layers extract complex 
features representing real life objects such as vehicles. The successes of DL in 
image processing are testified by the challenging ImageNet classification task 
across thousands of classes [30] [37] by using a kind of deep neural network 
called a Convolutional Neural Networks (CNN) [38]. 

The structure of CNNs was initially based on the animal visual cortex organi-
zation [39]. After a slow start in the early 1990s due to computing capacity limits 
[40] [41], CNNs experienced a huge boom with the rapid development of these 
capabilities with, among others, cloud computing. 

CNNs are made up of several layers similar to feed-forward neural networks. 
The outputs and inputs of the layers are given as a set of image matrices. CNNs 
can be constructed by different combinations of convolutional layers (where 
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convolution operation is done on specified filters), pooling layers, and fully 
connected layers (generally, before the output) with nonlinear activation func-
tions. A typical CNN architecture is shown in Figure 2 [38]. 

3) Single Shot CNN: YOLO 
You Only Look Once (YOLO) is a Convolutional Neural Network object de-

tection system, that handles object detection as one regression problem, from 
image pixels to bounding boxes with their class probabilities. Its performance is 
much better than other traditional methods of object detection, since it trains 
directly on full images.  

YOLO is formed of 27 CNN layers, with 24 convolutional layers, two fully 
connected layers, and a final detection layer [2] (Figure 3). 

YOLO divides the input images into an N by N grid cell, then during the 
processing, predicts for each one of them several bounding boxes to predict the 
object to be detected. Thus, a loss function has to be calculated. YOLO calculates 
first, for each bounding box, the Intersection over Union (IoU); It uses then 
sum-squared error to calculate error loss between the predicted results and real 
objects. The final loss being the sum of the three loss functions: 1) classification 
loss: related to class probability, 2) localization loss: related to the bounding box 
position and size and 3) confidence loss measuring the probability of objects in 
the box [42].  
 

 
Figure 2. Convolutional neural networks architecture [38]. 
 

 
Figure 3. YOLO architecture [2] [42]. 
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2. Methodology 

In order to generate vehicles temporal paths in GIS format from aerial video, a 
three steps process is adopted:  
• To solve the problem of handling continuous aerial video stream, which 

represents a big technical challenge [43], the video stream is converted into a se-
ries of images, with a suitable resolution for the trained YOLOv2 algorithm. 

• Each individual image is then processed with YOLOv2 algorithm trained be-
forehand. 

• With LinkTheDots algorithm, the detected vehicles are then tracked through-
out the output series of images, generating a specific GIS dated path for each 
vehicle. 

Figure 4 shows the general process, and Figure 5 presents the process of 
YOLOv2 algorithm training (LinkTheDots algorithm process is detailed later in 
this section). 

2.1. Input Data: From Areal Video to a Series of Images 

From an aerial video of a busy parking lot [44], the series of frames was ex-
tracted. Figure 6 presents one of the extracted images. 
 

 
Figure 4. Method’s general process. 

 

 
Figure 5. YOLOv2 algorithm training. 
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Figure 6. A frame from the series of extracted images from the areal video [44]. 

 
The metadata of each frame contains the detailed date of the image, which is 

inherited by all detected vehicles on the frame. 
At this stage of the study, the set of images are ready to be processed one by 

one, with the trained YOLOv2 algorithm for vehicles detection. 

2.2. YOLOv2 Algorithm Training 

1) Training data 
YOLO and CNN algorithms in general, when applied on imagery data, can be 

trained with data from anywhere and applied with the same degree of certainty 
elsewhere [45]. For this reason, in the absence of local data sources of areal im-
agery, VEDAI (Vehicle Detection in Aerial Imagery) data source [45] is used. In 
addition to its open access and the important number of offered images (more 
than 10,000), VEDAI database offers labels for each vehicle, ready to use for 
recognition algorithms trainings Figure 7. 

The YOLOv2 model was trained and tested with a set of images of 1024 × 
1024 resolution. Overall, a dataset of 1200 images were used; 70% of them as 
training data and 30% for tests. 

2) Training platform 
YOLO algorithm training, like all deep learning models, requires considerable 

computing capacity [32]. Therefore, the used platform was in the cloud with the 
configuration specified in Table 1. One of the most important aspects of this 
configuration is the high performance GPU (Graphics Processing Unit), as it has 
an efficient parallel architecture for model learning. Combined with clusters or 
cloud computing, it considerably reduces network training time. 

Darknet [46] was used as a training framework; it is an open source Neural 
Network framework written in C and CUDA that supports CPU and GPU 
computation. 
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Figure 7. VEDAI dataset image. 

 
Table 1. YOLOv2 training environment specifications. 

Environment Amazon AWS 

Instance type p2.xlarge 

System Windows Server 2016-X64 

Processor 4 CPU Intel Xeon E5-2686 V4 2.30Ghz 

RAM 61Go 

GPU 1 GPU NVIDIA TESLA K80 with 12Go in memory 

HDD 100Go 

2.3. LinkTheDots Algorithm  

In order to track the same vehicle throughout successive frames, LinkTheDots 
algorithm was developed. Its main task is to link the centroid of a vehicles 
bounding box on a certain frame, to the centroid of the same vehicle’s bounding 
box on the next frame. This would indicate that, between the two frames in-
stants, this particular vehicle has moved from the first point to the second.  

After all the frames are processed with the trained YOLOv2 algorithm and all 
bounding boxes are generated, all vehicles’ centroids are created with GIS tools. 
LinkTheDots algorithm processes then all of these resulting frames, starting with 
the first, where all points should be identified by a vehicle’s ID. From there, 
starting with the second frame, the algorithm must check if the associated ve-
hicle has already been identified in the previous frame in order to obtain its ID, 
otherwise, a new vehicle’s ID must be attributed. Figure 8 shows the detailed 
process of LinkTheDots algorithm. 

LinkTheDots identifies the position of the vehicle position in the previous 
frame by performing a geographic search, within a distance of Δmax, beyond 
which, no vehicle would ever be able—supposedly—to move between two frames 
time, given the assumed parameters such as maximum vehicle speed. Therefore 
Δmax is considered as an algorithm adjustment parameter. 

3. Results and Discussion 
3.1. YOLOv2 Algorithm Training Results 

Here below, in Table 2, the main parameters of a YOLOv2 training: 
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Figure 8. LinkTheDots algorithm process. 

 
Table 2. YOLOv2 training output parameters. 

Parameter Indication Target 

Avg IOU 

Average “Intersection over Union” 
IOU = Area of Overlap/Area of Union 
The two areas are: “the predicted bounding box” and 
“the ground truth of target object” 

100% 

Avg recall 
Average “Recall” = Recall/Count 
The ratio of the number of detected objects to the total 
number of objects to be detected 

100% 

Count 
The total number of objects to be detected in the  
current set (number of originals) 

- 

Number of iterations The number of iterations - 

Average loss The average loss error As low as possible 

Total time The total time spent processing this batch - 

 
In Table 3, the results of the YOLOv2 training are presented: images resolu-

tion, dataset size, beginning of convergence, number of iterations, average loss 
and training duration. 

The evolution of the average loss during the iterations of the learning process 
is presented in Figure 9 and test results illustration is presented in Figure 10. 
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Table 3. Parameters and overall results of YOLOv2 training. 

Training images 
resolution 

Number of 
images 

Beginning of  
convergence 

Number of 
iterations 

Average loss 
Training  
duration 

1024 × 1024 1200 802 Iteration 22,000 0.05 7 days 

 

 
Figure 9. Evolution of the average loss according to the number of iterations. 

 

 
Figure 10. YOLOv2 test results illustration. 

 
The model detected 91% of test vehicles. These results show that the trained 

model can identify vehicles with satisfactory accuracy that meets the intended 
application requirements for spatio-temporal tracking. With a larger set of 
training images, this accuracy can be significantly improved.  

3.2. Vehicles Tracking Results 

The results of the trained YOLOv2 algorithm and the processing of the output 
data (Figure 4), are 1) the table of positions of moving vehicles, produced by 
LinkTheDots algorithm, an extract of which is presented in Table 4; And 2) ve-
hicles’ positions throughout the input areal video time, shown in Figure 11. 
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Table 4. Excerpt from LinkTheDots space-time table of moving vehicles. 

Point ID Frame Vehicle ID TimeStamp (ddmmyyHHMMSS) 

1503 7 8 08052018133553 

1489 6 8 08052018133551 

1202 5 8 08052018133549 

835 4 8 08052018133547 

652 3 8 08052018133545 

354 2 8 08052018133543 

193 1 8 08052018133541 

 

 
Figure 11. Generated centroids throughout time. 

 
Using GIS tools to convert collections of points to lines, these points were 

converted into circuits, sorted by vehicles’ ID numbers. Thus, the spatio-temporal 
tracks of moving vehicles in the areal video were obtained (Figure 12). 

3.3. The LinkTheDots Algorithm Limits 

LinkTheDots algorithm is based on the assumption that the nearest bounding 
box centroid in the following image is related to the same vehicle. The algorithm 
parameter ∆max must be then set to a value that avoids confusion between two 
different vehicles on two successive frames. 

Let:  
∆: The vehicle’s travelled distance between two frames 
Wvehicle: The vehicle’s width  
Then, to avoid confusion between vehicles, we must have:  

∆ < Wvehicle                           (1) 
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Figure 12. Veihicles GIS spatio-temporal tracks. 

 
This means that ∆max must be less than the minimum vehicle’s width. 
Let: 
Vvehicle: The vehicle’s velocity 
Vcamera: The velocity of the camera 
Fr: the number of frames per second (frames’ rate)  
Then: 

vehicle camera

r

V V
F
−

∆ =                        (2) 

From (1) and (2):  

vehicle came
vehic

a
e

r
l

r

W
V V

F
<

−
                     (3) 

This implies that, in the case of a static camera (Vcamera = 0), for an average ve-
hicle width of 2 meters and a camera frame rate of 15 frames per second, the 
maximum velocity up to which a vehicle can be tracked is 30 m/s (108 km/h). 

Another implication would be that if it is intended to track a vehicle with a 
velocity of 150 km/h—still with a static camera—the used camera should have a 
rate of 21 frames per second or better. 

4. Conclusion 

In this work, YOLOv2 model was trained for the detection of vehicles on aerial 
images. The trained model was coupled with LinkTheDots algorithm for GIS 
spatio-temporal tracking. The limits and the conditions of validity of the pro-
posed algorithm were discussed according to the frames’ rate in the raw aerial 
video and the speed of the tracked vehicles. The accuracy of the trained model 
which was found around 91% can be significantly improved, with a larger set of 
training images. 
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