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Abstract 
Internal models may be used by banks to calculate their regulatory capital for 
credit risk. There are a variety of methodologies for estimating default proba-
bilities, which leads to major differences in credit provisions and capital re-
quirements. Using either a classical or a Bayesian technique, the computation 
of default probabilities can be ensured. Reduced form models are a choice. 
These models, however, might not be used to quantify economic capital be-
cause they assume independence among default events. Banks are compelled 
to employ structural models since defaults in the real world of banking are 
not solely due to exogenous causes. Because of the diversification effects be-
tween credit losses for one obligor and credit losses for other obligors in each 
bank’s portfolio, total unexpected losses do not equal the sum of individual 
unexpected losses. Those two types of models—reduced form and structural— 
are provided in either a theoretical or a numerical format. This paper covers 
both the classical and Bayesian techniques, with the latter employing a 
broader set of prior functions that offer considerably different probabilities. 
Distinguishing between imprudence, conservatism, and exaggeration might 
be difficult in the context of low default portfolios with scarce data. A realistic 
rule is proposed for finding the minimum and maximum bounds and there-
fore assessing the required conservatism margin by comparing classical and 
Bayesian probabilities. 
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1. Introduction 

Banks may use internal models to assess their credit risk exposure within an in-
ternal ratings-based framework under the Basel Accords issued by the Basel 
Committee on Banking Supervision, according to capital requirements rules 
adopted by banking institutions and transposed into the legal system across the 
European Union1. The default probability is the same for different internal rat-
ing systems, whether foundation internal rating-based or advanced internal rat-
ing-based—nomenclature used in such accords. 

Loans with no defaults over a lengthy period of time are a utopian concept. 
Indeed, during an economic downturn, it is projected that unemployment will 
grow and, as a result, higher default rates will emerge, projections that are heigh-
tened by the contagion risk. It will be impossible to generate accurate and realis-
tic estimations of default probabilities if there is no correlation among individual 
exposures within portfolios. 

Therefore, the zero-default assumption for all risk classes will not be pre-
sented here. In any case, if the observed default number is nil, the formulas in 
this paper can be immediately converted to the zero-presume assumption. 

A utopia would likewise imply independence of default events foreseen in re-
duced form models. This independence will be studied in order to compare the 
results to those obtained from structural models (which account for the exis-
tence of a dependence structure among borrowers in the same risk class) and to 
assess the significance of the asset correlation component. 

The methodology used in this document is explained in Chapter 2, which is 
divided into four sections. Section 2.1 addresses general considerations (specifi-
cally, asset correlation) that are necessary for each axis of credit risk models ap-
plied to low default portfolios—reduced form models and structural models— 
and for each axis of statistical approaches used in credit risk assessment—clas- 
sical and Bayesian approaches. The classical technique is covered in Section 2.2, 
which has two subsections: one for reduced form models and the other for 
structural models. The Bayesian technique is covered in Section 2.3, which is 
broken into two subsections: prior distributions and posterior distributions, the 
latter of which encompasses both reduced form models and structural models. 
In Section 2.4, a reasonable criterion is used to connect the classical and Baye-
sian approaches, allowing one to distinguish between imprudence, conservatism, 
and exaggeration in terms of default probability. 

The outputs of such models and approaches are provided in Chapter 3. In the 
last section of this chapter, the main conclusions drawn from the comparison of 
those models and approaches are presented. 

Finally, some closing remarks are made. They address subjects like uncertain-
ty, mix of prior functions, and other open issues that need to be investigated 
further. 

 

 

1Prudential requirements for credit institutions and investment firms—Regulation 575/2013 of the 
European Parliament and the Council of 26 June 2013 and its several amending. 
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2. Formulae and Other Technical Issues 
2.1. General Considerations 

Reduced form models are based on the default independence hypothesis, which 
indicates that asset correlation, “ρ”, is assumed to be zero. The use of these mod-
els to assess banking regulatory capital for credit risk should not be acceptable 
because the reality follows a completely different pattern, defined by interde-
pendence among default occurrences. 

Because loss defaults are not independent, reduced form models must be re-
placed with structural models. In these last models, the default events are as-
sumed to be positively connected. The stronger the link to the systematic risk, 
the larger “ρ”. When 0ρ >  the default probabilities are computed using an in-
tegrating algorithm, which requires a stochastic treatment or a simulation pro-
cedure for the classical (or frequentist) approach. The algorithm takes into ac-
count all possible values “y” of a standard and normally distributed random va-
riable “Y” that represents the systematic risk’s realization range. Under the 
Bayesian (or subjective) approach, the stochastic treatment or the simulation 
procedure must be doubled: one for “y” and the other for “λ”, the default proba-
bility. 

The frequentist approach and the subjective approach are used to discuss both 
reduced form models and structural models. The trapezoidal rule for numerical 
integration approximation is used to obtain outputs when an analytical solution 
is not attainable. 

For each risk class, the binomial and Poisson distributions are used to simu-
late the default probability random variable. Nonetheless, unlike the binomial 
distribution, using the Poisson distribution to represent the default probability is 
not entirely accurate because the size of the risk class, “n”, is not fixed in this 
type of distribution. 

The posterior distribution, according to Bayesian inference, corresponds to 
the conditional distribution of the default probability random variable, “Λ”, 
given a set number of borrowers, “n”, and a fixed number of defaults, “k”, as well 
as the previous distribution of the default probability. The posterior density of 
the default probability is obtained by matching the likelihood function and the 
prior function. 

The Bayesian approach provides another conceptual distinction. In the clas-
sical approach, there are frequentist confidence intervals, while in the Bayesian 
approach, there are posterior credible intervals. Despite the fact that the latter 
are commonly conceived of as a Bayesian variant of confidence intervals used in 
classical probability, they have different meanings. The highest density interval 
existing a unimodal posterior density2 is related to the shortest possible interval, 
determined by numerical calculation. Because “n”, “k”, and “ρ” are regarded as 
constants, there is a ( )100 %− δ  probability that the true value of the unidi-

 

 

2If the posterior density is a multimodal distribution, “the highest density region” should be used, 
instead of “the highest density interval”. 
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mensional parameter, “λ”, falls inside the credible interval, being “δ” the risk 
level (equivalent to the significance level of classical probabilities)3. 

2.2. Classical Approach 
2.2.1. Classical Approach with Reduced Form Models 
Being “K” the random variable that represents the number of defaults, “k” the 
number of defaults, “n” the number of obligors, “λ” the default probability and 
“ω” the confidence level; and assuming that “K” follows a standard binomial dis-
tribution, the probability of having no more than “k” defaults inside a risk class 
with “n” obligors is given by: 

( ) ( )0P 1 1n ik i
i

n
K k

i
−

=

 
≤ = λ −λ ≥ −ω 

 
∑                (1) 

If a standard Poisson distribution is used to represent “K”, the probability is: 

( ) ( )0P e ! 1in
i
kK k n i− λ
=

≤ = λ ≥ −ω∑                  (2) 

When default events are completely independent (ρ = 0%), “upper confidence 
bounds”4 for both binomial and Poisson distributions can be computed analyti-
cally through beta and gamma approximations or numerically. They provide the 
same outputs because the binominal distribution is proportional to the beta dis-
tribution and the Poisson distribution is proportional to the gamma distribution: 

( ) ( )

( ) ( ) ( ) ( ) ( ) 11

Binomial , Beta , , 1 and

1 Γ Γ Γ 1n kk

n k k n k

n
k

− β−α−

∝ α β α = + β = −

 
λ − λ ∝ α +β α β λ −λ    

 

        (3) 

and 

( ) ( )
( ) ( ) 1

Poisson Gamma , , 1 and 1

e ! Γ ekn

n k n

n k− λ α −βλ α−

λ ∝ α β α = + β =

λ ∝ β α λ
         (4) 

2.2.2. Classical Approach with Structural Models 
The theoretical environment must be drastically changed by positive asset cor-
relation values, “ρ”. Instead of basic and unrealistic reduced form models that 
rely on default independence, complex and adequate structural models should 
be used. 

( ), ,J yλ ρ  represents the probability function of the sample data resulting 
from the binomial function of “λ” or the Poisson function of “λ”, ( )yφ  represents 
the standard normal probability density function of “Y”, ( ).Φ  represents the 
standard normal cumulative distribution function, and ( )1−Φ λ  represents the 
inversed standard normal cumulative distribution function for “λ”. The mean-

 

 

3The true value of “λ” has a ( )1 %− δ  probability of belonging to the shortest possible interval. If 

uppelower r, λ λ   is the 90% credible interval of “λ” then ( ) ( )upperlowerP 100 10 % 90%λ < λ < λ = − = . 
4This term is tied to Katja Pluto and Dirk Tasche’s “the most prudent estimation” concept that they 
established in 2005 and applied to the classical default probability. Each risk class contains not only 
“n” and “k” from that particular class, but also “n” and “k” from other classes with lower rating 
grades. 
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ings of “K”, “k”, “n”, “λ”, and “ω” are the same above mentioned. 
Therefore, the probability of having no more than “k” defaults inside a risk 

class with “n” obligors is provided by: 

( ) ( ) ( )0P , , d 1k
i iK k J y y y
=−∞

+∞  ≤ = λ ρ φ ≥ −ω ∫ ∑ ,           (5) 

with 

( ) ( ) ( ), , , , 1 , ,
i n i

i

n
J y G y G y

i
− 

λ ρ = λ ρ − λ ρ        
 

           (6) 

or 

( ) ( ) ( ), ,, , e , , !
inG y

iJ y nG y i− λ ρλ ρ = λ ρ   ,             (7) 

if the probability function of the sample data follows a binomial distribution or a 
Poisson distribution, respectively, and 

( ) ( ){ }1, , 1G y y− λ ρ = Φ Φ λ − ρ −ρ               (8) 

The function ( ), ,G yλ ρ  distinguishes the formulae of reduced form models 
from the structural models. A brief explanation of that crucial function and its 
origin can be found in Appendix A. 

2.3. Bayesian Approach 
2.3.1. Prior Distributions 
The default probability of the posterior distribution is derived from the likelihood 
and prior densities matching, as previously indicated. Multiple prior functions, 
ranging from less prudent to over conservative, are identified in this subsection. 
They reflect various elements or beliefs about the effective default probability. 

When there is no understanding of the behavior of posterior default probability, 
it is common to use a non-informative prior. The most non-informative prior is a 
flat prior, concretely a uniform distribution between 0 and 1. However, prior 
functions are useful in most circumstances since they represent the default risk 
profile, in which case distributions need to be parametrized. 

Because of its versatility in expressing the uncertainty of the default probability, 
the beta distribution is a widely used parametrized prior distribution. Let “Λ” be 
the random variable of the default probability “λ”. Assuming “Λ” follows a beta 
distribution, ( )Λ ~ Beta ,α β , with , 0α β >  and ] [0,1λ∈ , it is simple to adapt 
this distribution to subjective information about the mean (or average) and va-
riance of default probability using the hyperparameters “α” and “β”. The mean 
and variance of a beta distribution are respectively: 

( ) ( )E Λ = α α +β                         (11) 

( ) ( ) ( )2V 1 Λ = αβ α +β α +β+                   (12) 

When no (objective or subjective) information about the default probability is 
available, a beta distribution with 1α = β =  can be taken because it represents a 

https://doi.org/10.4236/jfrm.2022.111001


D. J. C. Dinis 
 

 

DOI: 10.4236/jfrm.2022.111001 6 Journal of Financial Risk Management 
 

uniform distribution between 0 and 1, making it a non-informative prior. 
The set of prior functions, ( )f λ , addressed in this document is listed below. 
1) Uniform distribution 

( ) ] ]1 , 0,f u uλ = λ∈ ,                  (13) 

being “u” the maximum limit of “λ”. Four possibilities of “u” are tested: 1, 0.25, 
0.1, and 0.01—the same values evaluated by Dirk Tasche in his work5. These val-
ues are also utilized in two other types of priors: linear growth and linear decrease, 
as shown below. A tighter representation should be used because when 1u =  
the condition uλ <  must be met, not uλ ≤ . This note is also applicable to 
prior functions with linear growth and linear decrease. 

2) Linear growth 

( ) ] ], 0,f uλ = λ λ∈                       (14) 

3) Linear decrease 

( ) ] ]1 , 0,f u uλ = −λ λ∈                    (15) 

4) Conservative6 

( ) ( ) ] [1 1 , 0,1f λ = −λ λ∈                   (16) 

5) Immoderate 

( ) ] [1 , 0,1f λ = λ λ∈                      (17) 

6) Expert judgement 
6.1) Base scenario (linear growth and linear decrease) 

( )
( ) ( )( ) ] ]
( ) ( )( ) ] ]

2 ,

2 ,

0 others 

m M m Mo m m Mo

f M M m Mo M Mo M

 λ − − − λ∈  λ = λ − − − λ∈   
 λ

,       (18) 

where “m” stands for the minimum of “λ”, “Mo” stands for the mode of “λ”, and 
“M” stands for the maximum of “λ”, as assumed by the expert who defines the 
prior distribution. The values for “m”, “Mo”, and “M” were initially set to be 
conservative: m = 0.01, Mo = 0.025, and M = 0.0757. 

6.2) Beta distribution as a proxy 
For the beta distribution, α = 6.67 and β = 175.31 were used. These two para-

meters were set to ensure that the beta distribution’s mean and variance matched 
those of the base scenario, as decided by expert opinion—prior 6.1—, resulting in 
μ = 0.03667 and σ2 = 0.00019, respectively. 

6.3) Normal distribution as a proxy 
To check that the normal distribution’s mean is equal to the mean of the prior 

6.1 and the variance is equal to 0.03667/1.645, one used μ = 0.03667 and σ2 = 

 

 

5Tasche (2012). 
6Term used by Tasche (2012). 
7In the second stage, another hypothetical scenario with m = 0.003, Mo = 0.01, and M = 0.02 was 
found considerably more suitable to the real-world issue of low default portfolios. 
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0.02229 for normal distribution8. 
7) Beta distribution based on empirical default rate 
The prior’s mean is assumed to be the observed default rate for each combina-

tion of “n” and “k”, and the prior’s variance is expected to be equal to the ratio 
between that rate (and thus the mean) and the number 1.645. These mean and 
variance, on the one hand, and Equation (11) and Equation (12), on the other 
hand, are used to compute the beta distribution’s parameters9. This prior will on-
ly be used in Section 3.4 to compare the classical and Bayesian approaches. 

2.3.2. Posterior Distributions 
1) Bayesian Approach with Reduced Form Models 
Let’s use “K” to represent the random variable of the default number once 

more. For any potential default probability, “λ”, each value “y” of a standard and 
normally distributed random variable, “Y”, and a specified asset correlation, “ρ”, 
the posterior probability computation based on the Bayes’ theorem10 of the oc-
currence exactly “k” and no more than “k” as for Equation (1) and Equation (2) 
defaults is as follows: 

( ) ( )

( ) ( ) ( )

( ) ( ) ( )
0

P ,

1 d

1 1 d d ,

n k

ku

k

nk

K k H y

n
f y y

k

n
f y y

k

−

−∞

−

−∞

+∞

+∞

= = λ

 
= λ λ −λ φ 

 
  

⋅ λ λ − λ φ λ  
  

∫

∫ ∫

      (19) 

if the likelihood function follows a binomial distribution, or 

( ) ( )
( ) ( ) ( )

( ) ( ) ( )
0

P ,

e ! d

1 e ! d d ,

kn

knu

K k H y

f n k y y

f n k y y

− λ

−∞

− λ

−∞

+∞

+∞

= = λ

= λ λ φ

 ⋅ λ λ φ λ  

∫

∫ ∫

        (20) 

if the likelihood function follows a Poisson distribution. 
It’s worth noting that “u” is the upper limit of “λ”11, ( )f λ  is the prior proba-

bility density function of “λ”as described in 2.3.1, and ( )yφ  is the standard 
normal probability density function of “Y”. 

The ( ),H yλ  denominator, also known as prior predictive distribution, nor-

 

 

8The 1.645 denominator corresponds to a 90% confidence level. 
9When there are no defaults, it is used at k = 0.000000001 instead of k = 0 to ensure that the analyti-
cal solution of the beta distribution is valid. 
10For events “X” and “Z”, the conditional probability of “X” given the occurrence of “Z”, representing 
“s” the number of disjoint events, is computed as follows: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1P | P P P | P P P | P P | Pj j

s

jX Z X Z Z Z X X Z Z X X Z X X
=

= = = ∑  

If the probability ( )P |Z X  is derived from a statistical model ( )|L z x  that describes the likelih-

ood function and the probability ( )P X  is derived from a prior function ( )xφ , the posterior den-

sity function is obtained by: 

( ) ( ) ( ) ( ) ( )| | | dL x z L z x x L z x x x= φ φ∫  
11It should be remembered that four different values of “u” were tested: 1, 0.25, 0.1, and 0.01. 
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malizes the posterior distribution function. 
Analytical outputs can be generated if no correlation of defaults among bor-

rowers is assumed—reduced form models—, as mentioned in Subsection 2.2.1. 
Only a few circumstances in Bayesian estimation have an explicit analytical solu-
tion: when there is also independence among borrowers, and simultaneously 
when joining the prior function with the likelihood function yields a standard 
distribution. 

Concretely, analytical forms occur in the following special cases: when the like-
lihood is a binomial distribution and the prior is a beta distribution, on the one 
hand, and when the likelihood is a Poisson distribution and the prior is a gamma 
distribution, on the other hand. The beta-binomial distribution and the gam-
ma-Poisson distribution derive from those joining. 

2) Bayesian Approach with Structural Models 
It should be noted that the existence of correlation requires numerical outputs 

from stochastic treatments or simulation procedures. Being ρ > 0, the formulae 
stated in the preceding subsection must be changed: 

( ) ( )
( ) ( ) ( )

( ) ( ) ( )
0

P , ,

, , d

1 , , d d ,
u

K k H y

f L y y y

f L y y y

−∞

−∞

+∞

+∞

= = λ ρ

= λ λ ρ φ

 ⋅ λ λ ρ φ λ  

∫

∫ ∫

          (21) 

with 

( ) ( ) ( ), , , , 1 , ,
k n kn

L y G y G y
k

− 
λ ρ = λ ρ − λ ρ        

 
           (22) 

or 

( ) ( ) ( ), ,, , e , , !
knG yL y nG y k− λ ρλ ρ = λ ρ   ,              (23) 

if the likelihood function is represented respectively by a binomial or a Poisson 
distribution, and ( ), ,G yλ ρ  has the meaning expressed in Equation (8). 

( ), ,L yλ ρ  denotes the probability of the sample data generated from binomial 
or Poisson likelihood functions of “λ”, for a risk class with “n” counterparties and 
“k” defaults. ( ).Φ  stands for the standard normal cumulative distribution func-
tion, and ( )1−Φ λ  is the inversed standard normal cumulative distribution func-
tion for “λ” (see 2.2.2). 

The ( ), ,H yλ ρ  denominator ensures that the posterior distribution function 
is normalized once again. 

2.4. Conservative Zone 

The posterior default probabilities differ significantly depending on the priors 
used. Some of those probabilities are unwise, while others are overblown. The key 
goal is to establish limits that will allow for the identification of a conservative 
zone. 

Drift and volatility should be included in every estimate of a random variable 
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to explain the uncertainty. The historical default data for the drift and the stan-
dard deviation of the likelihood distribution for the volatility are adopted to en-
sure an acceptable margin of conservatism, avoiding unwanted levels of impru-
dence and exaggeration. The coefficient of skewness is also included in the rule 
because default distributions are heavily skewed toward positive asset correla-
tions. 

On the one hand, if at least one default occurrence is recorded, the following 
rule is applied to create imprudent, conservative, and exaggerated zones: 

97.5%λ < λ Imprudent zone, 
[ ]97.5% 99.9%,λ∈ λ λ Conservative zone, 

99.9%λ > λ Exaggerated zone. 
The default probability “ cλ ” is determined as follows for a given confidence 

level “c”: 

( )1
c L Lk n n c− λ = + σ Φ γ                   (24) 

The ratio k/n represents the empirical default experience, Lσ  represents the 
standard deviation of the correlated likelihood function, Lγ  represents the coef-
ficient of skewness of this function, and ( )1 c−Φ  represents the inversed stan-
dard normal cumulative distribution function for “c”. The likelihood function is 
used to indicate the level of conservatism since that function depicts the group’s 
intrinsic risk and so eliminates the need for any prior risk data. Furthermore, to 
improve the required conservatism, volatility is computed using the standard 
deviation of the likelihood function at 97.5% and 99.9% confidence levels. 

The expression inside square brackets in Equation (24) is the result of a bi-
nomial test of significance adaptation12. It should be noted that the conventional 
binomial test assumes mutual independence of events, which is an incorrect as-
sumption in the default probability models. Aside from the standard deviation of 
the correlated binomial distribution—i.e., the correlated likelihood function—, 
the conservative margin should also account for the asymmetry of the same dis-
tribution. 

On the other hand, when no default event is identified, Lλ = µ  is assumed, 
reflecting Lµ  the mean of the correlated likelihood distribution, instead of the 
conservative zone [ ]97.5% 99.9%,λ∈ λ λ . One keeps in mind that when 0ρ >  the 
posterior distribution’s mean is much greater than when default events indepen-
dence is assumed. As a result, when no past defaults have been recorded, the 
mean will be an overly cautious estimator of default probability. 

It is important to note that the suggested practical rule should not be used to 
calculate default probabilities. Its advantage is that it provides for a more impar-
tial comparison between an expected default probability and a conservative thre-
shold based on the likelihood distribution. 

 

 

12It’s worth noting that the rule is an approximation, thus it does not exactly match the conventional 
binomial test. The mean for drift and the standard deviation for volatility from the same distribu-
tion, the ratio of the standard deviation to the number of observations, a two tailed method, and the 
lack of skewness are all used in that conventional test. 
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3. The Application of the Methodology 
3.1. Risk Classes and Asset Correlation 

The figures in the tables of this paper were made for three different risk categories 
described in Table 113. 

The results are provided from two perspectives: an individual approach by 
credit risk class, in which each class is seen as a separate group; and an inte-
grated approach combining two or more classes14, in which the upper confi-
dence bound concept15 is used assuming that the classes combined have the 
same rating category. When a unique rating grade is assigned to homogenous 
classes, it is presumed that default risks for all counterparties within the inte-
grated group are exposed to the same default probability (and the same asset 
correlation). 

As a result of regulatory regimes, banks are frequently subjected to a constant 
“ρ”. The Basel Committee on Banking Supervision recognizes that major corpo-
rations are more dependent on systematic risk than small firms and retail coun-
terparties because they are more exposed to overall economic conditions. Small 
firms and retail counterparties are less affected by economic cycles, therefore 
their defaults are more idiosyncratic rather than systematic. 

It will always be set to ρ = 12%, as this is one of the standards available to 
banking regulators. 

Four risk criteria are used to calculate the classical confidence intervals and the 
Bayesian credible intervals: 50%, 25%, 10%, and 5%. 

3.2. Classical Approach 

The binomial and Poisson distributions describe the counting of defaults. Table 2 
and Table 3 show that those distributions produce effectively identical outcomes. 
In fact, it is expected that the means of both distributions are identical, n kλ = , 
and the variances are likewise quite similar16. In the tables, the terms “basic bi-
nomial” and “basic Poisson” are used to describe the corresponding distributions 
where default occurrences are assumed to be completely independent. It is also 
worth noting that the default probability increases as the confidence level rises. 
The observed default rates are presented in the tables so that the results from 
those distributions can be quickly compared to these rates. 

Assuming ρ = 0%, upper confidence bound computations can be done analyti-
cally (through beta and gamma approximations) or numerically, as described in 
Subsection 2.2.1. For the five scenarios assumed, the largest discrepancy between 
the numerical simulation method and the analytical alternative approximation is 
0.0003%. 

 

 

13Similar to Pluto and Tasche (2005). 
14 ( ) ( ) ( ) ( )A B C 150,0 500,1 350,2 1000,3+ + = + + = ; and ( ) ( ) ( )B C 500,1 350,2 850,3+ = + = .  
15See also footnote 4. 
16Because the default probability is believed to be low, the binomial variance, ( )1nλ − λ , is margi-

nally lower than the Poisson variance, nλ . 
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Table 1. Number of obligors (n) and defaults (k) for each risk class. 

Risk class n k 

A 150 0 

B 500 1 

C 350 2 

 
Table 2. Classical default probability for basic binomial (asset correlation = 0%). 

 

Individual approach (by risk class) Integrated approach 

A B C A + B + C B + C 

  
(n, k) 

  
Confidence level (150, 0) (500, 1) (350, 2) (1000, 3) (850, 3) 

50% 0.46% 0.34% 0.76% 0.37% 0.43% 

75% 0.92% 0.54% 1.12% 0.51% 0.60% 

90% 1.52% 0.78% 1.51% 0.67% 0.78% 

95% 1.98% 0.95% 1.79% 0.77% 0.91% 

Empirical default 
rate (k/n) 

0.00% 0.20% 0.57% 0.30% 0.35% 

 
Table 3. Classical default probability for basic Poisson (asset correlation = 0%). 

 

Individual approach (by risk class) Integrated approach 

A B C A + B + C B + C 

  
(n, k) 

  
Confidence level (150, 0) (500, 1) (350, 2) (1000, 3) (850, 3) 

50% 0.46% 0.34% 0.76% 0.37% 0.43% 

75% 0.92% 0.54% 1.12% 0.51% 0.60% 

90% 1.53% 0.78% 1.52% 0.67% 0.79% 

95% 2.00% 0.95% 1.80% 0.78% 0.91% 

Empirical default 
rate (k/n) 

0.00% 0.20% 0.57% 0.30% 0.35% 

 
When the independence assumption is replaced with the correlation assump-

tion and thus standard distributions are turned into correlated distributions, the 
greater the confidence level, the greater the difference between reduced form and 
structural models’ results. Table 4 and Table 5 shows that at a 50% confidence 
level, from ρ = 0% to ρ = 12%, default probabilities for binomial distribution 
range from 0.34% - 0.76% to 0.53% - 1.11% (depending on “n” and “k”). At a 95% 
confidence level, one rises from 0.77% - 1.98% to 2.89% - 5.16%. Therefore, at a 
50% confidence level, default probabilities increase by 46% - 59%17, and at a 95% 
confidence level, they increase by 138% - 274%18. At 75% and 90% confidence le-
vels, the growth ranges by 81% - 130%19, and 115% - 214%20, respectively. 
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Table 4. Classical default probability for correlated binomial (asset correlation = 12%). 

 

Individual approach (by risk class) Integrated approach 

A B C A + B + C B + C 

  
(n, k) 

  
Confidence level (150, 0) (500, 1) (350, 2) (1000, 3) (850, 3) 

50% 0.69% 0.53% 1.11% 0.58% 0.67% 

75% 1.66% 1.14% 2.20% 1.18% 1.35% 

90% 3.28% 2.13% 3.81% 2.10% 2.38% 

95% 4.71% 3.01% 5.16% 2.89% 3.26% 

Empirical default 
rate (k/n) 

0.00% 0.20% 0.57% 0.30% 0.35% 

 
Table 5. Classical default probability for correlated Poisson (asset correlation = 12%). 

 

Individual approach (by risk class) Integrated approach 

A B C A + B + C B + C 

  
(n, k) 

  
Confidence level (150, 0) (500, 1) (350, 2) (1000, 3) (850, 3) 

50% 0.69% 0.53% 1.12% 0.58% 0.67% 

75% 1.67% 1.14% 2.20% 1.18% 1.35% 

90% 3.29% 2.13% 3.81% 2.10% 2.38% 

95% 4.73% 3.01% 5.16% 2.89% 3.26% 

Empirical default 
rate (k/n) 

0.00% 0.20% 0.57% 0.30% 0.35% 

 
There are significant capital savings when an integrated approach is used ra-

ther than an individual approach21. The greater the confidence level, the greater 
the spread of savings: from 27%22 at a 50% confidence level to 45% at a 95% con-
fidence level when three risk classes are aggregated as one homogeneous group, 
and from 16% at a 50% confidence level to 30% at a 95% confidence level when 
risk classes B and C are aggregated as one homogeneous group. These savings 
were obtained with ρ = 0%. 

When reduced form models are replaced with structural models and asset cor-

 

 

1746% = 1.11% (Table 4)/0.76% (Table 2) – 1, for (350, 2), and 59% = 0.58% (Table 4)/0.37% (Table 2  
– 1, for (1000, 3). 
18138% = 4.71% (Table 4)/1.98% (Table 2) – 1, for (150, 0), and 274% = 2.89% (Table 4)/0.77% 
(Table 2) – 1, for (1000, 3). 
1981% = 1.66% (Table 4)/0.92% (Table 2) – 1, for (150, 0), and 130% = 1.18% (Table 4)/0.51% (Table 
2) – 1, for (1000, 3). 
20115% = 3.28% (Table 4)/1.52% (Table 2) – 1, for (150, 0), and 214% = 2.10% (Table 4)/0.67% 
(Table 2) – 1, for (1000, 3). 
21For the sake of simplicity, one assumes that the exposure amounts for all loan contracts are always 
the same, regardless of the rating grade associated with each risk class. 
22 ( ) [ ]27% 1 0.37% 150 500 350 0.46% 150 0.34% 500 0.76% 350= − ⋅ + + ⋅ + ⋅ + ⋅   . 
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relation is assumed to be uniform, with ρ = 12%, the savings are lower: from 23% 
at a 50% confidence level to 28% at a 95% confidence level, and from 13% at a 
50% confidence level to 16% at a 95% confidence level, respectively for three and 
two aggregated classes. 

3.3. Bayesian Approach 
3.3.1. Likelihood Functions 
Table 6 and Table 7, on the one hand, and Table 8 and Table 9, on the other 
hand, show that there are no significant differences between the binomial distri-
bution and the Poisson distribution used as the likelihood function of the Baye-
sian default probability, with the outcome being roughly the same for both the 
basic and correlated techniques (similar to the classical approach). Nonetheless, 
the Poisson distribution’s means are marginally higher than the binomial distri-
bution’s because the Poisson distribution is a little skewer than the binomial dis-
tribution23. Hence the matching percentiles associated with the mean in the bi-
nomial distribution are immaterially higher than the equivalent percentiles in the 
Poisson distribution. 

 
Table 6. Bayesian default probability—Likelihood: basic binomial (asset correlation = 
0%). 

 

Individual approach (by risk class) Integrated approach 

A B C A + B + C B + C 

  
(n, k) 

  
(150, 0) (500, 1) (350, 2) (1000, 3) (850, 3) 

Empirical default rate (k/n) 0.00% 0.20% 0.57% 0.30% 0.35% 

Mean 0.67% 0.40% 0.85% 0.40% 0.47% 

(matching percentile) 63.59 61.70 57.41 53.46 58.90 

Standard deviation 0.65% 0.28% 0.49% 0.20% 0.23% 

Coefficient of skewness 1.96 1.41 1.14 0.99 0.99 

 
Table 7. Bayesian default probability—Likelihood: basic Poisson (asset correlation = 0%). 

 

Individual approach (by risk class) Integrated approach 

A B C A + B + C B + C 

  
(n, k) 

  
(150, 0) (500, 1) (350, 2) (1000, 3) (850, 3) 

Empirical default rate (k/n) 0.00% 0.20% 0.57% 0.30% 0.35% 

Mean 0.68% 0.40% 0.86% 0.40% 0.47% 

(matching percentile) 63.21 61.53 57.12 53.35 58.76 

Standard deviation 0.67% 0.28% 0.49% 0.20% 0.24% 

Coefficient of skewness 2.00 1.42 1.15 1.00 1.00 

 

 

23The largest deviation in the mean of the default probability (0.014%) occurs with n = 150, k = 0 
and ρ = 12%. 
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Table 8. Bayesian default probability—Likelihood: correlated binomial (asset correlation 
= 12%). 

 

Individual approach (by risk class) Integrated approach 

A B C A + B + C B + C 

  
(n, k) 

  
(150, 0) (500, 1) (350, 2) (1000, 3) (850, 3) 

Empirical default rate (k/n) 0.00% 0.20% 0.57% 0.30% 0.35% 

Mean 1.87% 1.51% 2.64% 1.62% 1.80% 

(matching percentile) 66.73 65.16 63.50 64.04 64.14 

Standard deviation 2.21% 1.55% 2.34% 1.49% 1.64% 

Coefficient of skewness 2.66 2.42 2.03 2.16 2.12 

 
Table 9. Bayesian default probability—Likelihood: correlated Poisson (asset correlation = 
12%). 

 

Individual approach (by risk class) Integrated approach 

A B C A + B + C B + C 

  
(n, k) 

  
(150, 0) (500, 1) (350, 2) (1000, 3) (850, 3) 

Empirical default rate 
(k/n) 

0.00% 0.20% 0.57% 0.30% 0.35% 

Mean 1.88% 1.52% 2.64% 1.62% 1.80% 

(matching percentile) 66.51 65.09 63.37 64.00 64.09 

Standard deviation 2.23% 1.56% 2.35% 1.49% 1.64% 

Coefficient of skewness 2.67 2.42 2.03 2.16 2.12 

 
When comparing Table 6 and Table 8 (or Table 7 and Table 9), it is clear that 

(regardless of “n” and “k”) the larger “ρ”, the greater the likelihood function’s 
mean and standard deviation. When the asset correlation is introduced, the like-
lihood function becomes considerably skewer than when no correlation is em-
ployed. Furthermore, one verifies the rule that the larger the risk group, the high-
er the coefficient of skewness and the smaller the mean and the standard devia-
tion24. 

There are capital savings with the integration of risk categories, as seen in the 
classical approach. Savings in the Bayesian context, assuming ρ = 12%, equate to 
9% or 18% whether two risk classes (B + C) or three risk classes (A + B + C) are 
aggregated. For ρ = 0%, corresponding savings increase to 20% or 33%—34% 
(rather than 33%) regarding that the likelihood function follows a Poisson distri-
bution—if two or three risk classes are aggregated25. 

 

 

24This rule may also be shown comparing the values of the posterior probabilities in the last two 
columns of Table 10 and Table 11 which will be presented later. They are both tied to the same 
number of defaults, k = 3. 
The lowering effect on the standard deviation when “n” grows is explained by the fact that the per-
centage increase in “n” is smaller than the modulus of the percentage decrease in “λ”. 
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3.3.2. Posterior Distributions 
A binomial distribution is suitably better than a Poisson distribution for depicting 
the number of defaults within a risk class containing a fixed number of obligors, 
as stated in Section 2.1. As a result, for the sake of simplicity, only outcomes 
based on the binomial distribution are now reported. 

The prior functions discussed in 2.3.1 are used to find a group of statistical 
values for the posterior distributions: mean, median, mode, standard deviation 
and coefficient of skewness as well as four highest density intervals. Table 10 dis-
plays the outcomes of a 12% asset correlation, while Table 11 in Appendix B 
shows the results of no correlation26. These tables indicate that different prior 
functions and asset correlations have a big impact on posterior probabilities27. 

 
Table 10. Default probability distribution—Posterior using the correlated binomial (asset 
correlation = 12%) as likelihood, for several priors. 

 

Individual approach (by risk class) Integrated approach 

A B C A + B + C B + C 

  
(n, k) 

  
Types of prior function (150, 0) (500, 1) (350, 2) (1000, 3) (850, 3) 

1) Uniform distribution 
     

1.1) u = 1 
     

Mean 1.87% 1.51% 2.64% 1.62% 1.80% 

Median 1.07% 0.98% 1.87% 1.10% 1.24% 

Mode 0.03% 0.30% 0.79% 0.45% 0.51% 

Highest density interval 
     

50% 0.03 - 1.06 0.07 - 0.99 0.24 - 2.02 0.15 - 1.18 0.17 - 1.36 

75% 0.02 - 2.43 0.03 - 1.97 0.12 - 3.51 0.09 - 2.13 0.10 - 2.34 

90% 0.01 - 4.51 0.02 - 3.35 0.06 - 5.57 0.03 - 3.47 0.07 - 3.86 

95% 0.00 - 6.17 0.01 - 4.51 0.03 - 7.25 0.01 - 4.56 0.03 - 5.02 

Standard deviation 2.21% 1.55% 2.34% 1.49% 1.64% 

Coefficient of skewness 2.66 2.42 2.03 2.16 2.12 

1.2) u = 0.25 
     

Mean 1.87% 1.51% 2.64% 1.62% 1.80% 

Median 1.07% 0.98% 1.87% 1.10% 1.24% 

Mode 0.03% 0.30% 0.79% 0.45% 0.51% 

 

 

25When capital savings derived from the classical approach—see the last two paragraphs of 3.2—are 
compared to capital savings derived from the Bayesian approach, the former are higher (than the 
latter) at a 50% confidence level when ρ = 12%—13% > 9% and 23% > 18%—, and lower (at the 
same confidence level) when ρ = 0%—16% < 20% and 27% < 33%. 
26Although both priors 6.2 and 7 are connected to beta distribution, only the first one is included in 
Table 10 and Table 11. 
27With ρ = 12%, the means for likelihood distribution—or posterior with uniform distribution and u 
= 1 as a prior—are three or four times bigger than those with ρ = 0%, depending on the pair “n” and 
“k” considered. 
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Highest density interval 
     

50% 0.03 - 1.06 0.07 - 0.99 0.24 - 2.02 0.15 - 1.18 0.17 - 1.36 

75% 0.02 - 2.43 0.03 - 1.97 0.12 - 3.51 0.09 - 2.13 0.10 - 2.34 

90% 0.01 - 4.51 0.02 - 3.35 0.06 - 5.57 0.03 - 3.47 0.07 - 3.86 

95% 0.00 - 6.17 0.01 - 4.51 0.03 - 7.25 0.01 - 4.56 0.03 - 5.02 

Standard deviation 2.20% 1.55% 2.34% 1.49% 1.64% 

Coefficient of skewness 2.61 2.42 2.02 2.16 2.12 

1.3) u = 0.1 
     

Mean 1.74% 1.49% 2.47% 1.60% 1.77% 

Median 1.04% 0.97% 1.85% 1.08% 1.22% 

Mode 0.03% 0.30% 0.79% 0.44% 0.50% 

Highest density interval 
     

50% 0.03 - 1.05 0.07 - 0.97 0.29 - 1.99 0.16 - 1.17 0.18 - 1.34 

75% 0.02 - 2.35 0.03 - 1.93 0.14 - 3.37 0.09 - 2.10 0.10 - 2.29 

90% 0.01 - 4.22 0.02 - 3.31 0.07 - 5.28 0.03 - 3.42 0.08 - 3.78 

95% 0.00 - 5.67 0.01 - 4.47 0.05 - 6.57 0.01 - 4.48 0.04 - 4.90 

Standard deviation 1.83% 1.46% 1.97% 1.44% 1.55% 

Coefficient of skewness 1.96 2.00 1.31 1.90 1.78 

1.4) u = 0.01 
     

Mean 0.44% 0.50% 0.59% 0.55% 0.57% 

Median 0.37% 0.42% 0.61% 0.49% 0.53% 

Mode 0.03% 0.30% 0.77% 0.46% 0.49% 

Highest density interval 
     

50% 0.03 - 0.35 0.17 - 0.51 0.63 - 1.00 0.29 - 0.64 0.37 - 0.72 

75% 0.02 - 0.61 0.12 - 0.73 0.42 - 1.00 0.23 - 0.83 0.28 - 0.90 

90% 0.01 - 0.82 0.09 - 0.89 0.26 - 1.00 0.20 - 0.95 0.21 - 1.00 

95% 0.00 - 0.90 0.04 - 0.93 0.19 - 1.00 0.15 - 1.00 0.17 - 1.00 

Standard deviation 0.28% 0.27% 0.25% 0.26% 0.26% 

Coefficient of skewness 0.32 0.14 -0.21 0.01 0.07 

2) Linear growth 
     

2.1) u = 1 
     

Mean 4.47% 3.10% 4.72% 2.99% 3.29% 

Median 3.43% 2.42% 3.84% 2.40% 2.61% 

Mode 1.52% 1.20% 2.23% 1.33% 1.49% 
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Highest density interval 
     

50% 0.52 - 3.71 0.48 - 2.65 1.06 - 4.33 0.57 - 2.67 0.68 - 2.94 

75% 0.23 - 6.10 0.25 - 4.23 0.63 - 6.52 0.36 - 4.11 0.40 - 4.50 

90% 0.09 - 9.31 0.13 - 6.32 0.34 - 9.31 0.19 - 5.98 0.23 - 6.55 

95% 0.07 - 11.76 0.07 - 7.89 0.23 - 11.36 0.11 - 7.34 0.17 - 8.06 

Standard deviation 3.66% 2.42% 3.33% 2.18% 2.37% 

Coefficient of skewness 1.66 1.61 1.42 1.45 1.44 

2.2) u = 0.25 
     

Mean 4.46% 3.10% 4.72% 2.99% 3.29% 

Median 3.43% 2.42% 3.84% 2.40% 2.61% 

Mode 1.52% 1.20% 2.23% 1.33% 1.51% 

Highest density interval 
     

50% 0.52 - 3.71 0.48 - 2.65 1.06 - 4.33 0.57 - 2.67 0.68 - 2.94 

75% 0.23 - 6.10 0.25 - 4.23 0.63 - 6.52 0.36 - 4.11 0.40 - 4.50 

90% 0.09 - 9.29 0.13 - 6.32 0.34 - 9.31 0.19 - 5.98 0.23 - 6.55 

95% 0.07 - 11.71 0.07 - 7.89 0.23 - 11.30 0.11 - 7.34 0.17 - 8.06 

Standard deviation 3.61% 2.42% 3.32% 2.18% 2.37% 

Coefficient of skewness 1.56 1.61 1.40 1.45 1.44 

2.3) u = 0.1 
     

Mean 3.67% 2.93% 4.04% 2.89% 3.13% 

Median 3.10% 2.34% 3.59% 2.36% 2.58% 

Mode 1.51% 1.17% 2.22% 1.33% 1.50% 

Highest density interval 
     

50% 0.58 - 3.45 0.53 - 2.63 1.17 - 4.13 0.62 - 2.64 0.71 - 2.87 

75% 0.29 - 5.34 0.27 - 4.07 0.71 - 5.85 0.39 - 4.03 0.43 - 4.40 

90% 0.16 - 7.39 0.17 - 5.98 0.44 - 7.66 0.22 - 5.77 0.25 - 6.21 

95% 0.09 - 8.42 0.10 - 7.23 0.38 - 8.63 0.15 - 6.97 0.20 - 7.38 

Standard deviation 2.42% 2.07% 2.34% 1.98% 2.07% 

Coefficient of skewness 0.68 1.06 0.59 1.10 0.99 

2.4) u = 0.01 
     

Mean 0.63% 0.65% 0.71% 0.67% 0.68% 

Median 0.67% 0.68% 0.77% 0.70% 0.72% 

Mode 1.00% 1.00% 1.00% 1.00% 1.00% 

Highest density interval 
     

50% 0.69 - 1.00 0.16 - 0.51 0.75 - 1.00 0.72 - 1.00 0.70 - 1.00 

75% 0.44 - 1.00 0.10 - 0.73 0.60 - 1.00 0.51 - 1.00 0.57 - 1.00 
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90% 0.30 - 1.00 0.07 - 0.90 0.42 - 1.00 0.36 - 1.00 0.38 - 1.00 

95% 0.17 - 1.00 0.05 - 0.93 0.31 - 1.00 0.29 - 1.00 0.30 - 1.00 

Standard deviation 0.26% 0.24% 0.22% 0.23% 0.22% 

Coefficient of skewness -0.34 -0.37 -0.59 -0.44 -0.48 

3) Linear decrease 
     

3.1) u = 1 
     

Mean 1.82% 1.49% 2.58% 1.59% 1.77% 

Median 1.05% 0.94% 1.87% 1.10% 1.26% 

Mode 0.06% 0.29% 0.80% 0.45% 0.53% 

Highest density interval 
     

50% 0.00 - 1.04 0.07 - 0.98 0.25 - 1.97 0.16 - 1.20 0.19 - 1.34 

75% 0.00 - 2.37 0.02 - 1.91 0.12 - 3.43 0.10 - 2.09 0.09 - 2.33 

90% 0.00 - 4.36 0.02 - 3.32 0.07 - 5.47 0.03 - 3.38 0.06 - 3.80 

95% 0.00 - 6.00 0.01 - 4.46 0.02 - 7.07 0.01 - 4.45 0.03 - 4.91 

Standard deviation 2.14% 1.52% 2.28% 1.47% 1.61% 

Coefficient of skewness 2.65 2.41 2.03 2.16 2.12 

3.2) u = 0.25 
     

Mean 1.66% 1.41% 2.39% 1.52% 1.69% 

Median 0.96% 0.93% 1.74% 1.05% 1.20% 

Mode 0.04% 0.27% 0.76% 0.43% 0.49% 

Highest density interval 
     

50% 0.00 - 0.95 0.06 - 0.96 0.24 - 1.90 0.17 - 1.11 0.20 - 1.30 

75% 0.00 - 2.14 0.03 - 1.80 0.12 - 3.00 0.10 - 1.95 0.10 - 2.25 

90% 0.00 - 3.97 0.02 - 3.11 0.07 - 5.02 0.03 - 3.20 0.08 - 3.60 

95% 0.00 - 5.40 0.01 - 4.20 0.03 - 6.45 0.01 - 4.23 0.05 - 4.61 

Standard deviation 1.89% 1.42% 2.06% 1.38% 1.51% 

Coefficient of skewness 2.47 2.35 1.94 2.13 2.08 

3.3) u = 0.1 
     

Mean 1.33% 1.24% 1.96% 1.35% 1.48% 

Median 0.83% 0.80% 1.51% 0.97% 1.09% 

Mode 0.03% 0.25% 0.72% 0.41% 0.46% 

Highest density interval 
     

50% 0.00 - 0.80 0.07 - 0.84 0.28 - 1.66 0.15 - 1.07 0.19 - 1.20 
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75% 0.00 - 1.77 0.03 - 1.61 0.12 - 2.70 0.10 - 1.79 0.10 - 1.97 

90% 0.00 - 3.11 0.02 - 2.68 0.05 - 4.02 0.07 - 2.83 0.06 - 3.10 

95% 0.00 - 4.17 0.01 - 3.57 0.03 - 5.01 0.05 - 3.67 0.03 - 3.92 

Standard deviation 1.37% 1.16% 1.51% 1.15% 1.23% 

Coefficient of skewness 1.93 1.93 1.38 1.81 1.71 

3.4) u = 0.01 
     

Mean 0.30% 0.35% 0.47% 0.40% 0.41% 

Median 0.21% 0.27% 0.42% 0.32% 0.36% 

Mode 0.01% 0.14% 0.33% 0.25% 0.27% 

Highest density interval 
     

50% 0.00 - 0.20 0.10 - 0.31 0.22 - 0.49 0.16 - 0.40 0.18 - 0.47 

75% 0.00 - 0.39 0.07 - 0.48 0.15 - 0.62 0.11 - 0.54 0.13 - 0.60 

90% 0.00 - 0.59 0.03 - 0.63 0.10 - 0.71 0.07 - 0.68 0.10 - 0.72 

95% 0.00 - 0.70 0.02 - 0.70 0.07 - 0.79 0.04 - 0.75 0.06 - 0.78 

Standard deviation 0.22% 0.22% 0.22% 0.21% 0.21% 

Coefficient of skewness 0.81 0.58 0.25 0.43 0.38 

4) Conservative 
     

Mean 1.92% 1.54% 2.69% 1.64% 1.83% 

Median 1.10% 0.97% 1.94% 1.12% 1.30% 

Mode 0.05% 0.30% 0.78% 0.45% 0.51% 

Highest density interval 
     

50% 0.03 - 1.09 0.07 - 1.03 0.26 - 2.04 0.15 - 1.20 0.20 - 1.40 

75% 0.02 - 2.47 0.03 - 1.98 0.11 - 3.60 0.10 - 2.17 0.10 - 2.42 

90% 0.01 - 4.61 0.02 - 3.43 0.06 - 5.74 0.03 - 3.48 0.07 - 3.93 

95% 0.00 - 6.40 0.01 - 4.62 0.03 - 7.45 0.01 - 4.62 0.03 - 5.11 

Standard deviation 2.28% 1.58% 2.41% 1.52% 1.67% 

Coefficient of skewness 2.67 2.42 2.03 2.16 2.12 

5) Immoderate 
     

Mean 0.38% 0.49% 1.09% 0.66% 0.75% 

Median 0.10% 0.19% 0.62% 0.35% 0.42% 

Mode 0.02% 0.02% 0.13% 0.10% 0.11% 

Highest density interval 
     

50% 0.03 - 0.08 0.03 - 0.19 0.03 - 0.60 0.03 - 0.37 0.03 - 0.41 
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Continued 

75% 0.02 - 0.32 0.02 - 0.54 0.02 - 1.36 0.02 - 0.80 0.02 - 0.90 

90% 0.01 - 0.90 0.01 - 1.17 0.01 - 2.53 0.01 - 1.47 0.01 - 1.70 

95% 0.00 - 1.53 0.00 - 1.72 0.00 - 3.51 0.00 - 2.13 0.00 - 2.38 

Standard deviation 0.75% 0.71% 1.30% 0.79% 0.89% 

Coefficient of skewness 5.84 4.07 3.09 3.31 3.21 

6) Expert judgement 
     

6.1) Base scenario 
     

Mean 2.84% 2.66% 2.94% 2.64% 2.70% 

Median 2.57% 2.40% 2.64% 2.39% 2.46% 

Mode 2.50% 2.33% 2.50% 2.31% 2.44% 

Highest density interval 
     

50% 1.67 - 2.87 1.60 - 2.72 1.76 - 3.03 1.62 - 2.73 1.67 - 2.78 

75% 1.33 - 3.54 1.30 - 2.99 1.41 - 3.73 1.27 - 3.25 1.30 - 3.36 

90% 1.17 - 4.48 1.11 - 4.10 1.20 - 4.58 1.12 - 4.07 1.13 - 4.14 

95% 1.10 - 5.07 1.07 - 4.69 1.10 - 5.21 1.07 - 4.62 1.09 - 4.80 

Standard deviation 1.13% 1.03% 1.14% 1.02% 1.04% 

Coefficient of skewness 0.98 1.09 0.92 1.10 1.06 

6.2) Beta distribution  
as a proxy      

Mean 2.86% 2.67% 2.97% 2.66% 2.72% 

Median 2.66% 2.47% 2.79% 2.48% 2.53% 

Mode 2.40% 2.22% 2.51% 2.21% 2.27% 

Highest density interval 
     

50% 1.80 - 3.16 1.64 - 2.90 1.88 - 3.25 1.66 - 2.92 1.71 - 2.98 

75% 1.40 - 3.80 1.31 - 3.57 1.53 - 3.92 1.30 - 3.53 1.34 - 3.57 

90% 1.10 - 4.55 1.02 - 4.26 1.20 - 4.67 1.01 - 4.19 1.04 - 4.30 

95% 0.90 - 5.05 0.87 - 4.76 1.00 - 5.14 0.86 - 4.70 0.90 - 4.79 

Standard deviation 1.13% 1.06% 1.12% 1.04% 1.06% 

Coefficient of skewness 0.79 0.81 0.77 0.80 0.80 

6.3) Normal distribution  
as a proxy      

Mean 2.10% 1.86% 2.61% 1.95% 2.09% 

Median 1.73% 1.48% 2.32% 1.61% 1.76% 

Mode 0.04% 0.50% 1.67% 0.74% 0.97% 
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Highest density interval 
     

50% 0.03 - 1.70 0.16 - 1.59 0.83 - 2.77 0.28 - 1.77 0.40 - 1.99 

75% 0.02 - 3.02 0.07 - 2.61 0.44 - 3.76 0.16 - 2.75 0.19 - 2.97 

90% 0.01 - 4.33 0.03 - 3.80 0.21 - 4.83 0.10 - 3.84 0.10 - 4.07 

95% 0.00 - 5.11 0.01 - 4.55 0.13 - 5.52 0.07 - 4.56 0.07 - 4.78 

Standard deviation 1.60% 1.40% 1.56% 1.36% 1.40% 

Coefficient of skewness 0.94 1.10 0.78 1.07 0.99 

Highest density intervals expressed in percentage. 
 
It’s worth noting that, according to the concept of expected value, the mean of 

the posterior probability of “λ”, λµ , is computed by: 

( ) ( ) ( )

( ) ( ) ( )
0

0

, , d d

1 , , d d ,

u

u

f L y y y

f L y y y

+∞

λ −∞

−∞

+∞

µ = λ λ λ ρ φ λ

⋅ λ λ ρ φ λ

∫ ∫

∫ ∫
              (25) 

having ( )f λ , ( ), ,L yλ ρ , and ( )yφ  the same meaning as before. 
The effect described in the last phrase of the penultimate paragraph of 3.3.1 

about the growth of “n” is validated for all priors used: the larger the risk group, 
the smaller the mean and the standard deviation, and the greater the coefficient of 
skewness. 

When the prior function is a uniform distribution spanning from 0 to 1 (i.e., 
the same figures as the default probability assumes), the values for posterior 
probabilities are obviously the same as those provided by the likelihood function. 
This can be seen by comparing Table 8 and Table 10 likewise Table 6 and Table 
11. By definition, default probabilities are tiny; empirical rates for the five scena-
rios range from 0% to 0.57%. As a result, a uniform distribution with values be-
tween 0 and 0.25 is expected to yield identical results (about the likelihood func-
tion and the posterior with uniform distribution as a prior). Even if the top limit 
of the uniform distribution is set to 0.1, there are no discernible differences. 

Table 10 shows that the posterior with an immoderate prior—the polar oppo-
site of the conservative prior—produces the lowest default probability, with the 
mean of 4.3 to 11.9 times lower than the posterior resulting from linear growth as 
a prior (being “u” constrained between 0 and 1) and between 2.4 and 5 times 
lower than the posterior resulting from the uniform distribution as a prior (being 
“u” between 0 and 1 too). Therefore, the most cautious or conservative prior is 
the linear growth function—the theoretical polar opposite of the linear decrease 
prior—, not the conservative prior itself. 

The uniform distribution, linear decrease (both with “u” between 0 and 1), and 
conservative priors generate comparable posterior default probabilities for all the 
pairs of “n” and “k” studied. Those three sorts of functions will appear to be the 
most appropriate and beneficial priors, in contrast to immoderate and linear 
growth priors. Comments on expert knowledge priors—base scenario as well as 
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beta and normal distributions as proxie—will be addressed later. 
One returns to capital savings through risk group integration. Using the linear 

growth function with “u” between 0 and 1 as a prior and ρ = 12%, savings are 
substantially equivalent to savings at a 50% confidence level under the classical 
approach: 13% for n = 850 and 23% for n = 1000. Furthermore, a 95% confidence 
level comparison is required when ρ = 0%. This is because, at a 95% confidence 
level, savings obtained using the linear growth function as a prior are similar to 
those obtained using the classical approach: 28% for n = 850 and 44% for n = 
1000, which are close to the 30% and 45% mentioned in 3.2, respectively. 

Because the uniform distribution is a non-informative prior, posterior distri-
bution outputs match to likelihood function outputs as aforementioned; corres-
ponding capital savings have already been presented (in the last paragraph of 
3.3.1). Being the means of posterior probabilities identical for uniform distribu-
tion, linear decrease, and conservative priors (ranging from 0 to 1), the savings 
are also equivalent. Immoderate prior yields the smallest savings. 

Table 10 and Table 11 show a simple rule: the stronger the asset correlation, 
the wider the tail of the right side of the distribution (or the higher the coefficient 
of skewness)28. However, this rule is not established in two instances: when u = 
0.01 (and in some cases, when u = 0.1 for linear growth prior), and when expert 
information is the base of the prior function. The first exception is self-evident, as 
“λ” has a smaller upper limit—0.01 (or 0.1 is some cases)—than the broad range 
of values that default probabilities can tolerate (based on the binomial distribu-
tion). 

The second exemption is explained by the nature of the prior subjected to ex-
pert judgment. The previous point concerning the 0.01 threshold also applies to 
priors based on that judgment. These judgments typically specify a much nar-
rower range of values than the likelihood function’s available values29. 

It is important to remember that priors that provide information have a strong-
er influence on the posterior than priors that do not. Furthermore, as previously 
stated, a prior based on expert opinion is excessively rigid because the posterior 
probability density is constrained by the range of values for expert knowledge as a 
prior. 

Table 12 compares the cumulative densities of prior and posterior distribu-
tions linked to expert information thresholds to the densities of different kinds of 
priors and their corresponding posterior distributions. The mean is utilized as a 
reference point for prior and posterior distributions. In the case of employing the 
normal distribution as a proxy for the base scenario of expert knowledge, μ = 
0.03912 rather than 0.03667 because only positive values less than 1 were used30. 

 

 

28The second paragraph of 3.3.1 came to a similar conclusion. 
29This is clear in the base scenario since the full mass of probability density is fixed between 0.01 and 
0.075, the minimum and maximum values of the expert prior function. However, it can be seen in 
any other priors that are used as a proxy for the base scenario. 
30One notes that unlike the beta distribution, which has an incognita that ranges from 0 to 1—the 
same range as the default probability—, the normal distribution’s domain is between –∞ and +∞, 
whereas the prior function’s domain may only allow values between 0 and 1. 
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Table 12. Prior and posterior distributions—Densities by intervals of default probabilities 
(λ), for 350 obligors, 2 defaults, and a 12% asset correlation. 

 
]0%; 1%[ [1%; 7.5%] ]7.5%; 100%[ Total 

Binomial likelihood 
    

Cumulative density 24.1% 71.3% 4.6% 100.0% 

Mean 0.14% 2.04% 0.45% 2.64% 

Uniform distribution, ] [0,1λ∈  
    

Posterior 
    

Cumulative density 24.1% 71.3% 4.6% 100.0% 

Mean 0.14% 2.04% 0.45% 2.64% 

Prior 
    

Cumulative density 1.0% 6.5% 92.5% 100.0% 

Mean 0.0% 0.3% 49.7% 50.0% 

Linear growth, ] [0,1λ∈  
    

Posterior 
    

Cumulative density 5.3% 77.4% 17.2% 100.0% 

Mean 0.04% 2.87% 1.81% 4.72% 

Prior 
    

Cumulative density 0.0% 0.6% 99.4% 100.0% 

Mean 0.0% 0.0% 66.6% 66.7% 

Linear decrease, ] [0,1λ∈  
    

Posterior 
    

Cumulative density 24.6% 71.2% 4.2% 100.0% 

Mean 0.14% 2.02% 0.42% 2.58% 

Prior 
    

Cumulative density 1.9% 12.5% 85.6% 100.0% 

Mean 0.0% 0.5% 32.8% 33.3% 

Conservative 
    

Posterior 
    

Cumulative density 23.6% 71.5% 4.9% 100.0% 

Mean 0.14% 2.06% 0.49% 2.69% 

Prior 
    

Cumulative density 0.1% 0.8% 99.1% 100.0% 

Mean 0.0% 0.0% 88.3% 88.4% 

Immoderate 
    

Posterior 
    

Cumulative density 63.7% 35.8% 0.5% 100.0% 

Mean 0.26% 0.78% 0.05% 1.09% 
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Continued 

Prior 
    

Cumulative density 46.2% 23.7% 30.1% 100.0% 

Mean 0.1% 0.8% 10.8% 11.6% 

Expert judgement 
    

Base scenario (#) 
    

Posterior 
    

Cumulative density 0.0% 100.0% 0.0% 100.0% 

Mean 0.00% 2.94% 0.00% 2.94% 

Prior 
    

Cumulative density 0.0% 100.0% 0.0% 100.0% 

Mean 0.0% 3.7% 0.0% 3.7% 

Beta distribution as a proxy 
    

Posterior 
    

Cumulative density 0.9% 98.9% 0.1% 100.0% 

Mean 0.01% 2.95% 0.01% 2.97% 

Prior 
    

Cumulative density 0.4% 98.5% 1.1% 100.0% 

Mean 0.0% 3.6% 0.1% 3.7% 

Normal distribution as a proxy 
    

Posterior 
    

Cumulative density 14.6% 84.9% 0.5% 100.0% 

Mean 0.09% 2.48% 0.04% 2.61% 

Prior 
    

Cumulative density 6.7% 88.9% 4.4% 100.0% 

Mean 0.0% 3.5% 0.4% 3.9% 

(#) minimum of λ = 0.01, mode of λ = 0.025, and maximum of λ = 0.075. 
 

Figure 1 graphically depicts the pattern of eleven types of default rates as a 
function of the number of obligors, when k = 2 and ρ = 12%: posterior default 
probabilities for nine prior functions (UD, LG, LD, C, I, EJ-BS, EJ-BD, EJ-ND, 
and EJ-ABS), probabilities for the likelihood of the default distribution (BL), and 
historical default occurrences (EDR). The most important topics of that figure are 
described below. 

When expert information is used as a prior, the general rule that the larger the 
risk group, the less relevant the prior distribution in defining the posterior dis-
tribution, and the stronger the convergence of the posterior distribution to the li-
kelihood function is not obvious. That rule and, in the case of expert judgment as 
a prior, the exception as well as the trend associated with an alternative base sce-
nario for expert judgment (EJ-ABS) are depicted in the figure. 
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Figure 1. Posterior default probability for different prior distributions (number of defaults = 2; asset corelation = 12%). 
 

In other words, when the size of the risk class, “n”, grows, the ratio between 
posterior probability with prior based on expert opinion and likelihood probabil-
ity climbs significantly. The likelihood probabilities decrease greatly when “n” 
rises, which is not the case with the posterior based on expert information as a 
prior. By contrast, when posterior probability is calculated from any other prior, 
the ratio remains roughly constant because both posterior and likelihood proba-
bilities are sensitive to “n” in almost equal proportions. Similarly, the ratio of em-
pirical default rate to likelihood probability is quite stable across “n”. 

When “k” and “ρ” are fixed, the figure shows that posterior default probabili-
ties tend to empirical rates as the number of obligors grows, as expected by the 
law of large numbers. There is no such coherence when posterior probabilities are 
generated from any prior that relies on expert judgment. 

From n = 50 to n = 500, with k = 2 and ρ = 12%, the empirical default rate falls 
by 360 basis points (bp), from 4% to 0.4%. The likelihood decreases by 770 bp, 
from 9.77% to 2.07%, corresponding to same drop as the posterior with uniform 
distribution between 0 and 1 as a prior. For posteriors with linear growth, con-
servative, linear decrease, and immoderate functions, the respective declines are 
1,072, 825, 721, and 441 bp. For posteriors with hypothetical scenarios related to 
1%/2.5%/7.5% (EJ-BS) and 0.3%/1%/2% (EJ-ABS)—for the minimum/mode/ 
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maximum values of the prior default probability—, the decreases are only 101 
and 16 bp, respectively. 

Finally, Figure 1 shows that the concavity verified in general for posterior 
functions of default probabilities does not exist when expert prior knowledge is 
provided, regardless of the values taken by the base scenario as a prior. To dem-
onstrate the (in)flexibility of expert distributions, one notes that coefficients of 
variation—the mean and variance of these coefficients are measured via the 10 
means (one for each n-value31)—in two aforesaid expert scenarios are vastly 
smaller: 0.1 or 0.04 regarding respectively EJ-BS or EJ-ABS. The coefficients of 
variation for posteriors with other priors are substantially greater, ranging from 
0.48 (linear growth) to 0.7 (immoderate). 

The prior density of the default probability for EJ-BS has a mean of 3.67% and 
a standard deviation of 1.39%, whereas EJ-ABS as a prior has a mean of 1.1% and 
a standard deviation of 0.35%. Although these two scenarios are quite different, 
they both display the same inflexibility: large risk class sizes are insufficient to 
ensure a substantial convergence of the posterior distribution to the likelihood 
function, and thus the prior is stronger than the likelihood. In light of the fore-
going concerns, selecting a prior based on expert information should be ap-
proached with caution. 

The 0.01 and 0.1 thresholds are retaken. The two formers of the four thresholds 
of “u” used for uniform, linear growth, and linear decrease priors—1, 0.25, 0.1, 
and 0.01—will be sufficient because they reflect the default probability profile. 
The others, particularly the latter (0.01), have some difficulties due to differences 
in probability profiles. The following is a quick rundown of these difficulties. 

There are a number of inconsistencies when the upper threshold assumed for 
“λ” is believed to be low. As previously mentioned (after the analysis of Table 10 
and Table 11), the stronger the asset correlation, the higher the coefficient of 
skewness. However, this rule does not work with u = 0.01 and (for linear growth 
function as a prior) with u = 0.1. 

The default distribution is right-skewed, regardless of the asset correlation 
percentages that are connected. Nevertheless, the coefficient of skewness might be 
negative when u = 0.01 (either for ρ = 0% or ρ = 12%). 

The higher the asset correlation, the broader the range of the highest density 
interval; this is, as correlation increases, the distance between the upper and lower 
bounds of the shortest credible interval growths. At times, such a rule is not veri-
fied when u = 0.01. Furthermore, in some circumstances with u = 0.01, that range 
is wider with ρ = 0% than with ρ = 12%. 

3.4. Comparison of the Results 

Table 13 compares the classical and Bayesian approaches. For each value of the 
mean linked to the posterior default probability of Table 10 and Figure 1, the 
corresponding matching percentile was found using the classical binomial ap-

 

 

31Multiples of 50, from n = 50 to n = 500. 
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proach, assuming a correlation of 12%. That table also provides the matching 
percentile associated with the beta prior for the empirical default rate as well as 
the matching percentile related to this empirical rate. It also provides minimum 
and maximum default probabilities, which are derived using the practical rule 
described in 2.4. 

 
Table 13. Mean of the Bayesian default distributions and corresponding matching per-
centiles based on the classical binomial approach (asset correlation = 12%). 

 

Individual approach (by risk class) Integrated approach 

A B C A + B + C B + C 

  
(n, k) 

  
Types of prior function (150, 0) (500, 1) (350, 2) (1000, 3) (850, 3) 

1) Uniform distribution 
     

1.1) u = 1 
     

Mean 1.87% 1.51% 2.64% 1.62% 1.80% 

Matching percentile 77.91 82.62 80.71 84.17 83.62 

1.2) u = 0.25 
     

Mean 1.87% 1.51% 2.64% 1.62% 1.80% 

Matching percentile 77.89 82.62 80.70 84.17 83.62 

1.3) u = 0.1 
     

Mean 1.74% 1.49% 2.47% 1.60% 1.77% 

Matching percentile 76.00 82.19 78.76 83.91 83.19 

1.4) u = 0.01 
     

Mean 0.44% 0.50% 0.59% 0.55% 0.57% 

Matching percentile 38.05 48.06 28.29 47.85 43.61 

2) Linear growth 
     

2.1) u = 1 
     

Mean 4.47% 3.10% 4.72% 2.99% 3.29% 

Matching percentile 94.38 95.34 93.76 95.41 95.11 

2.2) u = 0.25 
     

Mean 4.46% 3.10% 4.72% 2.99% 3.29% 

Matching percentile 94.33 95.34 93.75 95.41 95.11 

2.3) u = 0.1 
     

Mean 3.67% 2.93% 4.04% 2.89% 3.13% 

Matching percentile 91.72 94.68 91.12 95.01 94.48 

2.4) u = 0.01 
     

Mean 0.63% 0.65% 0.71% 0.67% 0.68% 

Matching percentile 47.19 56.67 33.88 55.27 50.52 

3) Linear decrease 
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Continued 

3.1) u = 1 
     

Mean 1.82% 1.49% 2.58% 1.59% 1.77% 

Matching percentile 77.22 82.21 80.06 83.81 83.21 

3.2) u = 0.25 
     

Mean 1.66% 1.41% 2.39% 1.52% 1.69% 

Matching percentile 74.81 80.83 77.70 82.59 81.81 

3.3) u = 0.1 
     

Mean 1.33% 1.24% 1.96% 1.35% 1.48% 

Matching percentile 68.75 77.24 71.00 79.31 78.01 

3.4) u = 0.01 
     

Mean 0.30% 0.35% 0.47% 0.40% 0.41% 

Matching percentile 28.91 37.15 21.48 36.75 32.93 

4) Conservative 
     

Mean 1.92% 1.54% 2.69% 1.64% 1.83% 

Matching percentile 78.61 83.03 81.36 84.54 84.02 

5) Immoderate 
     

Mean 0.38% 0.49% 1.09% 0.66% 0.75% 

Matching percentile 34.17 47.49 49.17 54.52 53.96 

6) Expert judgement 
     

6.1) Base scenario (a) 
     

Mean 2.84% 2.66% 2.94% 2.64% 2.70% 

Matching percentile 87.35 93.45 83.80 93.82 92.30 

6.2) Beta distribution as a 
proxy      

Mean 2.86% 2.67% 2.97% 2.66% 2.72% 

Matching percentile 87.45 93.51 84.05 93.91 92.43 

6.3) Normal distribution as a 
proxy      

Mean 2.10% 1.86% 2.61% 1.95% 2.09% 

Matching percentile 80.76 87.38 80.41 88.52 87.33 

6.4) Alternative base scenario 
(b)      

Mean 1.01% 1.01% 1.08% 1.02% 1.04% 

Matching percentile 60.96 71.12 48.77 70.38 66.02 

7) Beta distribution based on 
EDR      

Mean 0.38% 0.50% 1.11% 0.67% 0.76% 

Matching percentile 34.54 47.88 49.87 54.95 54.43 

EDR 0.00% 0.20% 0.57% 0.30% 0.35% 
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Continued 

Matching percentile 0.05 22.51 27.39 27.92 28.18 

Practical rule 
     

k = 0 
     

Mean 1.87% - - - - 

Matching percentile 77.91 - - - - 

k = 1, 2, 3 
     

Minimum bound (97.5%) - 0.81% 1.66% 0.85% 0.98% 

Matching percentile - 64.31 65.03 63.83 64.03 

Maximum bound (99.9%) - 1.00% 1.95% 0.96% 1.12% 

Matching percentile - 71.02 70.83 68.35 68.65 

(a) minimum of λ = 0.01, mode of λ = 0.025, and maximum of λ = 0.075; (b) minimum of 
λ = 0.003, mode of λ = 0.01, and maximum of λ = 0.02; EDR - Empirical default rate. 

 
Because the data in Table 13 shows a wide range of percentiles, it is necessary 

to distinguish between imprudence, conservatism, and exaggeration. Applying 
the practical rule aforementioned to the figures in the table, one may deduce that 
the 65th percentile can be used to separate imprudence from conservatism, and 
the 70th percentile can be used to separate conservatism from exaggeration. Oth-
er caps may be considered, in part because evaluating probabilities in low default 
portfolios requires a great deal of personal judgment. Given this, a 70th minimum 
percentile would be dangerous for some people, whereas a 75th maximum per-
centile would not be excessive. Over and above percentiles, the most significant 
consideration is the need to objectively discern different levels of safety or pru-
dence, which demand the use of a practical rule like the one stated above. 

Figure 2 shows the percentiles for all posterior distributions established in this 
paper (also assuming 12% for asset correlation). 

When there are one or more defaults, the 65th and 70th percentiles—dashed 
vertical lines—correspond to the lower and upper limits of conservatism. When 
using the practical rule as a reference to choose the model to estimate the default 
probability, one notes that only the prior related to the alternative base scenario 
of the expert judgement may be deemed acceptable to establish a prudent ap-
proach estimating. In that scenario, it is reliable combining empirical data (inte-
grated into the likelihood function) with expert knowledge (integrated into the 
prior function). The other priors do not deliver such reliable outputs because they 
produce either imprudent or exaggerated default probabilities. 

When there is no default event (therefore, only for n = 150), the reference cor-
responds to the 77.91th percentile—solid vertical line. The priors 1.1 and 1.2 
(uniform distribution), 3.1 (linear decrease), and 4 (conservative) are suitable 
since they correspond to the intended conservatism32. 

 

 

32The probability indicated by the prior 6.3 might also be adequate. It is, nevertheless, connected to 
an exaggerated base scenario of expert knowledge (i.e., the prior 6.1). 
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Figure 2. Percentiles of the classical binomial approach corresponding to mean of several Bayesian 
default distributions (asset correlation = 12%). 

 
Because default distributions are heavily skewed to the right, using the mean to 

distinguish between conservatism and exaggeration in defaulted portfolios looks 
to be unnecessarily cautious. On the other hand, if there are no defaults in the 
portfolios, using the mean of the default distributions is a good strategy. When n 
= 150 and k = 0, the mean of default probability is 1.87%, which corresponds to 
the 77.91th percentile in a classical approach (see the prior 1.1 in Table 13)33. The 
corresponding upper limits of the highest density interval for 75%, 90%, and 95% 
are 2.43%, 4.51%, and 6.17%, respectively (as shown in Table 10), which are 
clearly unrealistic default probabilities for a low default portfolio. 

 

 

33If there is no default occurrence, one expects that the prudence level given by the percentile is 
higher than the one when there are historical defaults. 
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Table 14 compares the effective number of observed defaults in each risk class 
to the projected number of defaults using the practical rule. Even with 65th and 
70th percentiles, which would appear to be insufficiently cautious at first glance, 
default estimates are significantly higher than empirical data, a condition that any 
risk management tool for capital buffer measurement must take into account. 
 
Table 14. Effective and estimated number of defaults. 

 
  

(n, k) 
  

(150, 0) (500, 1) (350, 2) (1000, 3) (850, 3) 

k effective 0 1 2 3 3 

k estimated 
     

Minimum bound 
2.8 

4.1 5.8 8.5 8.3 

Maximum bound 5.0 6.8 9.6 9.5 

 
The disparities between effective defaults and estimated defaults for risk groups 

having at least one default (corresponding to the 63.83th - 71.02th percentiles) are 
larger than for risk group with no default (corresponding to the 77.91th percen-
tile). Adaptations to the standard binomial test result in more prudent results, 
ensuring that the prudence margin demanded by internal models is sufficient to 
absorb losses in low default portfolios. 

4. Final Thoughts 

Both classical and Bayesian techniques have a degree of uncertainty in default 
probabilities, as seen in the figures. The estimation of default probabilities for low 
default portfolios is a wide topic with many questions. Each question has a num-
ber of possible answers. This diffusion process of answers is mainly intensified in 
the Bayesian approach because there are a very broad array of possible prior 
functions, ranging from the non-informative flat prior distribution (where there 
is no information about the parameter representing the default probability) to the 
most informative priors based solely on expert opinion (where it will have to be 
put in place all data about that parameter, both quantitative and qualitative ele-
ments). 

It is easier to apply a non-informative prior if there is no idea about the default 
probability. Nonetheless, it is beneficial to make efforts to get information about 
that probability. Although the prior function is just one of many assumptions in 
the entire complex model, it is desirable if it reflects knowledge or feelings about 
the default probability. In low default portfolios with a lack of loss observations, 
additional information and expertise become particularly crucial. 

The more informative the prior function, the worse the convergence of the 
posterior distribution to the likelihood function. This resistance holds true for 
both the base scenarios (regardless of how conservative they are) and the theoret-
ical distributions generated by these scenarios, particularly the beta distribution. 

https://doi.org/10.4236/jfrm.2022.111001


D. J. C. Dinis 
 

 

DOI: 10.4236/jfrm.2022.111001 32 Journal of Financial Risk Management 
 

The figures also show that the prior distribution can be chosen with a lot of 
freedom. Thus, it is possible to use a combination of priors, i.e., an average prior 
rather than simply one as a way of attempting to reflect the uncertainty degree of 
the default probability. However, differentiations between imprudence, conser-
vatism, and exaggeration must first be made. 

Subjectivity is present in both “the Bayesian (or subjective) approach” and “the 
classical (or frequentist) approach”—terminology stated in the second paragraph 
of 2.1. Indeed, the classical approach requires the subjective selection of confi-
dence levels (as well as upper confidence bounds), whereas the Bayesian approach 
requires the selection of prior functions. A realistic rule was proposed to deal with 
such a wide variety of arbitrary choices. The rule will have the benefit of validat-
ing default financial models in general and Bayesian options in particular. As a 
result, unduly optimistic or overly pessimistic default probabilities are eliminated, 
allowing banks’ pricing to reflect adequate and consistent levels of provisioning 
and economic capital. 

Practical experts, theoretical academics and wary regulators cannot agree on 
methods and strategies for estimating default probabilities in portfolios with 
scarce historical data. Some topics were addressed in this paper; others, such as 
the model calibrations, and the use of a multi-period method by estimating mod-
els, are difficult open issues that require further exploration. 
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Appendix A. A Brief Summary of Vasicek’s Model (See 2.2.2) 

The Basel Committee on Banking Supervision’s structural models for credit risk 
are based on an approximation of Vasicek’s equations, which use one-factor 
Gaussian copula to incorporate asset correlation between each pair of counter-
parties. Merton pioneered that type of models in 1974, when he developed the 
default theory using the Black-Scholes option pricing and the associated stochas-
tic process. 

The value of an asset changes over time and follows a dynamic evolution 
marked by drift and volatility. The systematic and idiosyncratic features incorpo-
rated into Vasicek’s (2002) portfolio value model in 2002 correspond to the Mer-
ton model’s concepts of drift and volatility. 

A corporation “j” breaks its payment obligation if the probability of a random 
variable “ jX ”, which reflects its asset value, falls below a specific default thre-
shold “ jm ”, according to this model. In addition, under the same model, over a 
specified length of time, “t”—usually a one year period of time—, it comes: 

1jt t jtX S Z= ρ + −ρ ,                     (9) 

where “S” and “ jZ ”are the systematic and idiosyncratic components of the asset 
value, respectively, and “ρ” is the constant asset correlation between two separate 
corporations. 

Despite the fact that each corporation “j” has its own individual and idiosyn-
cratic risk (represented by 1jtZ −ρ ), corporations are all exposed to a common 
and systematic risk, namely the overall status of the economy in which they oper-
ate (represented by tS ρ )34. 

“S” and “ jZ ” are standardized normal random variables that are equicorre-
lated. Being these variables mutually independent, “X” is also a standardized 
normal random variable. 

As ( ) ( )P X m m p< = Φ = , it equals: 

( ) ( )

( ){ }
( ){ }

( )

1 1

1

1

P P 1

P 1

1

, , ,

j

j

X p s z p

z p s

p s

G p s

− −

−

−

  < Φ = ρ + −ρ < Φ   

 = < Φ − ρ −ρ 

 = Φ Φ − ρ −ρ 
= ρ

       (10) 

the main theoretical axis in structural default models. 
  

 

 

34For instance, an economic index could be a random variable “S” that reflects the portfolio’s expo-
sure to a common factor. 
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Appendix B. Posterior Default Probabilities Assuming  
Independence of Events (See 3.3.2) 

Table 11. Default probability distribution—Posterior using the basic binomial (asset cor-
relation = 0%) as likelihood, for several priors. 

 

Individual approach (by risk class) Integrated approach 

A B C A + B + C B + C 

  
(n, k) 

  
Types of prior function (150, 0) (500, 1) (350, 2) (1000, 3) (850, 3) 

1) Uniform distribution 
     

1.1) u = 1 
     

Mean 0.67% 0.40% 0.85% 0.40% 0.47% 

Median 0.43% 0.28% 0.70% 0.33% 0.39% 

Mode 0.02% 0.17% 0.57% 0.31% 0.34% 

Highest density interval 
     

50% 0.03 - 0.43 0.12 - 0.33 0.35 - 0.89 0.18 - 0.37 0.26 - 0.50 

75% 0.02 - 0.89 0.07 - 0.53 0.23 - 1.14 0.15 - 0.53 0.18 - 0.63 

90% 0.01 - 1.47 0.03 - 0.73 0.13 - 1.51 0.13 - 0.66 0.12 - 0.79 

95% 0.00 - 1.91 0.02 - 0.88 0.07 - 1.77 0.09 - 0.74 0.10 - 0.88 

Standard deviation 0.65% 0.28% 0.49% 0.20% 0.23% 

Coefficient of skewness 1.96 1.41 1.14 0.99 0.99 

1.2) u = 0.25 
     

Mean 0.67% 0.40% 0.85% 0.40% 0.47% 

Median 0.43% 0.28% 0.70% 0.33% 0.39% 

Mode 0.02% 0.17% 0.57% 0.31% 0.34% 

Highest density interval 
     

50% 0.03 - 0.43 0.12 - 0.33 0.35 - 0.89 0.18 - 0.37 0.26 - 0.50 

75% 0.02 - 0.89 0.07 - 0.53 0.23 - 1.14 0.15 - 0.53 0.18 - 0.63 

90% 0.01 - 1.47 0.03 - 0.73 0.13 - 1.51 0.13 - 0.66 0.12 - 0.79 

95% 0.00 - 1.91 0.02 - 0.88 0.07 - 1.77 0.09 - 0.74 0.10 - 0.88 

Standard deviation 0.65% 0.28% 0.49% 0.20% 0.23% 

Coefficient of skewness 1.96 1.41 1.14 0.99 0.99 

1.3) u = 0.1 
     

Mean 0.67% 0.40% 0.85% 0.40% 0.47% 
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Median 0.43% 0.28% 0.70% 0.33% 0.39% 

Mode 0.02% 0.17% 0.57% 0.31% 0.34% 

Highest density interval 
     

50% 0.03 - 0.43 0.12 - 0.33 0.35 - 0.89 0.18 - 0.37 0.26 - 0.50 

75% 0.02 - 0.89 0.07 - 0.53 0.23 - 1.14 0.15 - 0.53 0.18 - 0.63 

90% 0.01 - 1.47 0.03 - 0.73 0.13 - 1.51 0.13 - 0.66 0.12 - 0.79 

95% 0.00 - 1.91 0.02 - 0.88 0.07 - 1.77 0.09 - 0.74 0.10 - 0.88 

Standard deviation 0.67% 0.28% 0.49% 0.20% 0.23% 

Coefficient of skewness 1.75 1.41 1.14 0.99 0.99 

1.4) u = 0.01 
     

Mean 0.40% 0.37% 0.57% 0.39% 0.45% 

Median 0.27% 0.28% 0.60% 0.33% 0.40% 

Mode 0.01% 0.20% 0.63% 0.30% 0.35% 

Highest density interval 
     

50% 0.03 - 0.27 0.10 - 0.32 0.41 - 0.76 0.20 - 0.37 0.27 - 0.48 

75% 0.02 - 0.54 0.05 - 0.49 0.36 - 0.90 0.17 - 0.53 0.18 - 0.59 

90% 0.01 - 0.79 0.03 - 0.64 0.30 - 1.00 0.13 - 0.63 0.13 - 0.73 

95% 0.00 - 0.86 0.02 - 0.77 0.21 - 1.00 0.10 - 0.70 0.11 - 0.81 

Standard deviation 0.27% 0.23% 0.24% 0.19% 0.20% 

Coefficient of skewness 0.52 0.72 −0.10 0.70 0.50 

2) Linear growth 
     

2.1) u = 1 
     

Mean 1.31% 0.60% 1.13% 0.50% 0.59% 

Median 1.07% 0.51% 0.97% 0.43% 0.49% 

Mode 0.64% 0.38% 0.85% 0.40% 0.46% 

Highest density interval 
     

50% 0.29 - 1.23 0.27 - 0.58 0.54 - 1.17 0.30 - 0.53 0.35 - 0.63 

75% 0.16 - 1.79 0.17 - 0.78 0.37 - 1.53 0.23 - 0.64 0.25 - 0.76 

90% 0.07 - 2.53 0.11 - 1.03 0.29 - 1.93 0.16 - 0.78 0.21 - 0.95 

95% 0.03 - 3.03 0.06 - 1.23 0.23 - 2.21 0.13 - 0.92 0.15 - 1.07 

Standard deviation 0.92% 0.34% 0.56% 0.22% 0.26% 

Coefficient of skewness 1.37 1.14 0.98 0.89 0.88 

https://doi.org/10.4236/jfrm.2022.111001


D. J. C. Dinis 
 

 

DOI: 10.4236/jfrm.2022.111001 36 Journal of Financial Risk Management 
 

Continued 

2.2) u = 0.25 
     

Mean 1.31% 0.60% 1.13% 0.50% 0.59% 

Median 1.07% 0.51% 0.97% 0.43% 0.49% 

Mode 0.64% 0.38% 0.85% 0.40% 0.46% 

Highest density interval 
     

50% 0.29 - 1.23 0.27 - 0.58 0.54 - 1.17 0.30 - 0.53 0.35 - 0.63 

75% 0.16 - 1.79 0.17 - 0.78 0.37 - 1.53 0.23 - 0.64 0.25 - 0.76 

90% 0.07 - 2.53 0.11 - 1.03 0.29 - 1.93 0.16 - 0.78 0.21 - 0.95 

95% 0.03 - 3.03 0.06 - 1.23 0.23 - 2.21 0.13 - 0.92 0.15 - 1.07 

Standard deviation 0.92% 0.34% 0.56% 0.22% 0.26% 

Coefficient of skewness 1.37 1.14 0.98 0.89 0.88 

2.3) u = 0.1 
     

Mean 1.31% 0.60% 1.13% 0.50% 0.59% 

Median 1.07% 0.51% 0.97% 0.43% 0.49% 

Mode 0.64% 0.38% 0.85% 0.40% 0.46% 

Highest density interval 
     

50% 0.29 - 1.23 0.27 - 0.58 0.54 - 1.17 0.30 - 0.53 0.35 - 0.63 

75% 0.16 - 1.79 0.17 - 0.78 0.37 - 1.53 0.23 - 0.64 0.25 - 0.76 

90% 0.07 - 2.53 0.11 - 1.03 0.29 - 1.93 0.16 - 0.78 0.21 - 0.95 

95% 0.03 - 3.03 0.06 - 1.23 0.23 - 2.21 0.13 - 0.92 0.15 - 1.07 

Standard deviation 0.92% 0.34% 0.56% 0.22% 0.26% 

Coefficient of skewness 1.37 1.14 0.98 0.89 0.88 

2.4) u = 0.01 
     

Mean 0.58% 0.51% 0.69% 0.48% 0.54% 

Median 0.56% 0.47% 0.70% 0.43% 0.52% 

Mode 0.64% 0.39% 0.85% 0.38% 0.46% 

Highest density interval 
     

50% 0.49 - 0.87 0.24 - 0.55 0.73 - 1.00 0.31 - 0.53 0.36 - 0.59 

75% 0.38 - 1.00 0.19 - 0.73 0.57 - 1.00 0.23 - 0.63 0.28 - 0.73 

90% 0.27 - 1.00 0.17 - 0.87 0.43 - 1.00 0.17 - 0.77 0.23 - 0.87 

95% 0.17 - 1.00 0.13 - 0.93 0.33 - 1.00 0.17 - 0.87 0.20 - 0.93 

Standard deviation 0.25% 0.23% 0.21% 0.20% 0.21% 
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Coefficient of skewness −0.17 0.23 −0.41 0.44 0.22 

3) Linear decrease 
     

3.1) u = 1 
     

Mean 0.67% 0.40% 0.85% 0.40% 0.47% 

Median 0.43% 0.30% 0.70% 0.33% 0.39% 

Mode 0.02% 0.18% 0.57% 0.27% 0.37% 

Highest density interval 
     

50% 0.00 - 0.43 0.11 - 0.33 0.33 - 0.84 0.22 - 0.39 0.25 - 0.48 

75% 0.00 - 0.89 0.06 - 0.53 0.23 - 1.17 0.16 - 0.53 0.21 - 0.63 

90% 0.00 - 1.48 0.03 - 0.73 0.13 - 1.47 0.13 - 0.65 0.13 - 0.80 

95% 0.00 - 1.93 0.01 - 0.89 0.08 - 1.78 0.11 - 0.76 0.09 - 0.92 

Standard deviation 0.65% 0.28% 0.49% 0.20% 0.23% 

Coefficient of skewness 1.96 1.41 1.14 0.99 0.99 

3.2) u = 0.25 
     

Mean 0.66% 0.40% 0.84% 0.40% 0.47% 

Median 0.43% 0.29% 0.70% 0.32% 0.39% 

Mode 0.02% 0.18% 0.56% 0.27% 0.35% 

Highest density interval 
     

50% 0.00 - 0.41 0.11 - 0.33 0.34 - 0.83 0.22 - 0.39 0.25 - 0.48 

75% 0.00 - 0.84 0.06 - 0.53 0.25 - 1.15 0.16 - 0.53 0.21 - 0.63 

90% 0.00 - 1.39 0.03 - 0.73 0.14 - 1.42 0.13 - 0.65 0.13 - 0.80 

95% 0.00 - 1.81 0.01 - 0.89 0.09 - 1.68 0.11 - 0.76 0.09 - 0.92 

Standard deviation 0.64% 0.28% 0.48% 0.20% 0.23% 

Coefficient of skewness 1.96 1.41 1.13 0.99 0.99 

3.3) u = 0.1 
     

Mean 0.63% 0.39% 0.83% 0.40% 0.46% 

Median 0.39% 0.28% 0.70% 0.32% 0.39% 

Mode 0.01% 0.18% 0.54% 0.27% 0.31% 

Highest density interval 
     

50% 0.00 - 0.40 0.11 - 0.33 0.34 - 0.82 0.22 - 0.39 0.23 - 0.46 

75% 0.00 - 0.83 0.06 - 0.53 0.23 - 1.11 0.16 - 0.53 0.18 - 0.60 

90% 0.00 - 1.38 0.03 - 0.73 0.12 - 1.36 0.13 - 0.65 0.11 - 0.77 
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95% 0.00 - 1.79 0.01 - 0.89 0.08 - 1.61 0.11 - 0.76 0.08 - 0.89 

Standard deviation 0.61% 0.27% 0.47% 0.20% 0.23% 

Coefficient of skewness 1.85 1.40 1.13 0.99 0.99 

3.4) u = 0.01 
     

Mean 0.27% 0.29% 0.45% 0.34% 0.37% 

Median 0.19% 0.23% 0.40% 0.29% 0.33% 

Mode 0.03% 0.17% 0.38% 0.27% 0.30% 

Highest density interval 
     

50% 0.00 - 0.18 0.10 - 0.27 0.28 - 0.53 0.17 - 0.37 0.23 - 0.40 

75% 0.00 - 0.37 0.07 - 0.39 0.18 - 0.63 0.13 - 0.43 0.17 - 0.47 

90% 0.00 - 0.53 0.03 - 0.50 0.13 - 0.73 0.10 - 0.53 0.13 - 0.63 

95% 0.00 - 0.67 0.01 - 0.58 0.10 - 0.77 0.09 - 0.63 0.08 - 0.67 

Standard deviation 0.20% 0.18% 0.20% 0.16% 0.17% 

Coefficient of skewness 0.93 0.86 0.27 0.69 0.57 

4) Conservative 
     

Mean 0.68% 0.40% 0.85% 0.40% 0.47% 

Median 0.43% 0.31% 0.73% 0.33% 0.42% 

Mode 0.02% 0.20% 0.54% 0.27% 0.35% 

Highest density interval 
     

50% 0.03 - 0.43 0.09 - 0.33 0.36 - 0.90 0.20 - 0.39 0.27 - 0.48 

75% 0.02 - 0.87 0.07 - 0.53 0.23 - 1.16 0.15 - 0.53 0.20 - 0.63 

90% 0.01 - 1.49 0.03 - 0.73 0.13 - 1.48 0.13 - 0.64 0.13 - 0.77 

95% 0.00 - 1.97 0.02 - 0.90 0.08 - 1.74 0.09 - 0.75 0.10 - 0.89 

Standard deviation 0.66% 0.28% 0.49% 0.20% 0.23% 

Coefficient of skewness 1.96 1.41 1.14 0.99 0.99 

5) Immoderate 
     

Mean 0.21% 0.22% 0.57% 0.30% 0.35% 

Median 0.07% 0.11% 0.43% 0.22% 0.24% 

Mode 0.03% 0.03% 0.29% 0.20% 0.22% 

Highest density interval 
     

50% 0.03 - 0.05 0.03 - 0.12 0.11 - 0.48 0.12 - 0.26 0.17 - 0.34 

75% 0.02 - 0.17 0.02 - 0.25 0.07 - 0.76 0.10 - 0.38 0.10 - 0.46 
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90% 0.01 - 0.47 0.01 - 0.42 0.02 - 1.04 0.06 - 0.51 0.07 - 0.60 

95% 0.00 - 0.75 0.00 - 0.54 0.01 - 1.28 0.02 - 0.59 0.05 - 0.73 

Standard deviation 0.31% 0.20% 0.40% 0.17% 0.20% 

Coefficient of skewness 3.74 2.00 1.40 1.15 1.15 

6) Expert judgement 
     

6.1) Base scenario 
     

Mean 2.08% 1.45% 1.76% 1.26% 1.31% 

Median 1.90% 1.32% 1.61% 1.19% 1.23% 

Mode 1.67% 1.20% 1.44% 1.11% 1.15% 

Highest density interval 
     

50% 1.36 - 2.12 1.13 - 1.37 1.20 - 1.71 1.10 - 1.22 1.10 - 1.23 

75% 1.20 - 2.48 1.07 - 1.54 1.13 - 2.02 1.05 - 1.31 1.06 - 1.40 

90% 1.10 - 2.97 1.03 - 1.82 1.07 - 2.36 1.03 - 1.47 1.03 - 1.54 

95% 1.05 - 3.33 1.01 - 1.98 1.01 - 2.59 1.02 - 1.56 1.01 - 1.67 

Standard deviation 0.68% 0.30% 0.46% 0.17% 0.21% 

Coefficient of skewness 1.12 1.25 0.98 1.31 1.27 

6.2) Beta distribution as a 
proxy      

Mean 2.01% 1.13% 1.63% 0.82% 0.94% 

Median 1.84% 1.03% 1.53% 0.75% 0.86% 

Mode 1.70% 0.97% 1.42% 0.71% 0.83% 

Highest density interval 
     

50% 1.29 - 2.20 0.77 - 1.21 1.12 - 1.80 0.58 - 0.87 0.69 - 1.01 

75% 1.03 - 2.66 0.60 - 1.45 0.91 - 2.08 0.50 - 1.02 0.54 - 1.20 

90% 0.80 - 3.17 0.49 - 1.73 0.77 - 2.47 0.41 - 1.18 0.46 - 1.34 

95% 0.65 - 3.47 0.42 - 1.88 0.67 - 2.69 0.36 - 1.27 0.39 - 1.50 

Standard deviation 0.77% 0.40% 0.55% 0.26% 0.30% 

Coefficient of skewness 0.75 0.71 0.66 0.63 0.63 

6.3) Normal distribution as a 
proxy      

Mean 0.91% 0.45% 0.98% 0.43% 0.51% 

Median 0.67% 0.30% 0.84% 0.36% 0.41% 

Mode 0.02% 0.22% 0.70% 0.33% 0.35% 
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Highest density interval 
     

50% 0.03 - 0.67 0.12 - 0.43 0.41 - 1.03 0.23 - 0.42 0.26 - 0.51 

75% 0.02 - 1.24 0.06 - 0.59 0.30 - 1.35 0.16 - 0.54 0.18 - 0.67 

90% 0.01 - 1.97 0.03 - 0.82 0.17 - 1.70 0.11 - 0.73 0.12 - 0.83 

95% 0.00 - 2.46 0.01 - 1.03 0.12 - 2.01 0.10 - 0.80 0.07 - 0.95 

Standard deviation 0.80% 0.31% 0.54% 0.21% 0.25% 

Coefficient of skewness 1.47 1.34 1.01 0.98 0.97 

Highest density intervals expressed in percentage. 
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