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Abstract 
Unlike traditional options, indexed stock options use market performance as 
a benchmark reference index, and the option exercise price is a variable that 
changes with market performance. This paper, by taking the expected loss at 
the end of the hedging period as a risk measure, conducts a study on the 
hedging strategies for indexed stock option hedgers. Empirical analysis shows 
that, firstly, it is more conducive for indexed stock options to play an incen-
tive role by adjusting the exercise price according to changes in market con-
ditions, secondly, when the frequency of hedging position adjustment is rela-
tively high, it can better cope with the price fluctuations in the market, there-
by reducing the risk of possible loss and achieving a better hedge effect, but 
the hedging costs will increase for because of the existence of transaction 
costs. 
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1. Introduction 

All kinds of contingent claims may be perfectly replicated by self-finance strategy 
if the market is complete, and the cost to replicate is the fair price of the contin-
gent claim; in an incomplete market, investors may also perfectly replicate a con-
tingent claim by super hedging strategy (Bayraktar & Zhou, 2017), however, with 
the exception of being costly, super hedging causes the loss of chance to get more 
profits, thus, many investors are unwilling to do this. In fact, most people only 
want to pay a small quantity of initial cost to hedge the terminal contingent claim, 
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but they have to endure a level of risk, how to find the optimal hedging strategy 
for such kind of hedging has been a hot topic in finance. Before seeking for the 
optimal strategy, we should decide a criterion to measure the risk, a simple and 
exclusively accepted method is the minimal variance hedging (Last & Penrose, 
2011; Makogin, Melnikov, & Mishura, 2017), even though it’s shortcoming to 
simultaneously punish the profit and the loss; another method to measure risk is 
VaR (Cong, Tan, & Weng, 2014; Soloviev, 2016; Capiński, 2015), which antic-
ipates the heaviest lost under given criterion level, however, VaR may be given 
different value for different investors. As for hedging, only potential shortfall will 
be considered, with an example European claim, investors’ goal is to seek the op-
timal strategy to minimize the expected loss ( )( )T TE H V ϕ

+
−   , which had 

been originally researched by Follmer & Leukert (Follmer & Leukert, 2000), and 
many subsequently research results have achieved (Kim, 2012; Kabaila & Mainzer, 
2018). 

Unlike traditional options, indexed stock options use market performance as a 
benchmark reference index, and the option exercise price is a variable that 
changes with market performance, i.e. 0 0T TK S I I= , where IT represents the 
market performance, or the overall market trend of the stock market, or the per-
formance of competitors in the same industry at the end of the hedging period, 
while S0 and I0 represent the initial price of the underlying stock and the initial 
market price, respectively. In this way, even in a bull market, a rise in the market 
will cause the benchmark reference index to rise, and drive the option exercise 
price to rise, thereby filter the stock price changes in the market due to 
non-manager efforts, if the performance level of the company is lower than the 
benchmark index, the value of stock options may still be zero in a bull market, 
and managers will not receive huge profits when they execute stock options; 
Conversely, even in a bear market, if the corporate performance is higher than 
the benchmark index, the option value can also be positive, and the manager can 
still get incentives for option returns. 

This paper, by taking the expected loss i.e. ( )min T TE H V
ϕ

ϕ
+

−   , at the end of 
the hedging period as a risk measure, and using the Monte Carlo method, con-
ducts a study on the hedging strategies for indexed stock option hedgers. Enligh-
tened by Longstaff and Schwartz (Longstaff & Schwartz, 2001), Potters M. et al. 
(Potters, Bouchaud, & Sestovic, 2001), who priced the option with numerical 
method, we firstly generate many asset price paths by Monte-Carlos simulation 
and look on the averaged terminal shortfall as the expected loss, then, basis 
functions are introduced to estimate hedging positions and finally the optimal 
strategy is achieved through an algorithm (Seydel, 2017, Monte-Carlo-Simulation 
[M]). 

2. Some Preliminaries 

Assume there are two kinds of assets: risky asset (Security) and riskless asset (Bond). 
Let ( ), ,F PΩ  be a complete probability space with filtration ( ) [ ]0,t t T

F F
∈

= , 
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and the price of risky asset ( ) [ ]0,t t T
S S

∈
=  and the market index (in this paper, 

which is CSI) ( ) [ ]0,t t T
I I

∈
=  be nonnegative and adapted to F, satisfying:  

( )
( ) ( ) ( ) ( ) ( )( )

d d d d

d d d d

t t t t t

I I I I I
t t t t

S S t w q N

I I t w q N

µ σ

µ σ

 = + +


= + +

,               (1) 

where , I
t tw w  are standard Brownian motions, ( ), I

t tN N  are Poisson processes 
with Poisson strength ( ), Iλ λ  and respectively independent with tw  and ( )I

tw , 
( )Iq , 1tq > −  are amplitudes of price jumps and ( ) ( )2ln 1 ~ ,t t J JJ q N µ σ= + , 
( ) ( )( ) ( ) ( )( )2

ln 1 ~ ,I I I I
t t J JJ q N µ σ= + . 
Let ( ) [ ]0,t t T

B B
∈

=  be riskless asset’s price process, satisfying:  

d dt tB rB t= , r denotes riskless interest rate.           (2) 

As for random sequence ( ) 0,1, ,t t T
l l

=
=



, let ( )lΘ  be a space consisting of all 
predictable sequences ( ) 0,1, ,t t T

ϑ
= 

 which satisfies ( )2
t tl L Pϑ ∆ ∈ . 

Call a 2-demension stochastic process ( ) 0, , 1
,t t t T

ϕ ϑ δ
= −

=


 be a investment 
strategy and ( )t Sϑ ∈Θ , tδ  is an adapted process, satisfying:   

( ) ( )2:t t t t tV S B L Pϕ ϑ δ= + ∈ , { }0,1, , 1t T∈ − ,             (3) 

where ( )V ϕ  is the value of strategy ϕ , when ( ),t tϑ δ  denotes the hedging 
position held at time t. 

Furthermore, we call it a self-finance strategy when ( ), , 0, , 1t t t Tϕ ϑ δ= = −  
satisfies:  

1 1 1 1, 0,1, , 1t t t t t tS S t Tϑ δ ϑ δ+ + + ++ = + = − .               (4) 

As to strategy ( ) 0,1, , 1
,t t t T

ϕ ϑ δ
= −

=


, we define its shortfall risk as the following:  

( ) ( ){ }, , | , 0,1, , 1t t t T T tR V S E H V F t Tϕ ϕ
+

= − = −    ,         (5) 

where ,t tV S  denote the portfolio value and the stock price at time t respectively, 

( )T T TH S K += −  is a TF -measurable and nonnegative random variable which 

denotes the hedger’s payment reliability at the expiration.  
Suppose an investor has initially written a share of European Call Option with 

the exercising price K and T horizon, in order to minimize the terminal shortfall, 
he hedges the option by self-financing at discrete time { }0,1, , 1T −  with 

0 0 0 0V Sϑ δ= +  as his initial cost, thus, we can express the hedging model as fol-
lowing: 

( ){ }
1 1 1 1 1 1

min

s.t.
0,1, , 1

T T

t t t t t t t t

E H V

S B S B
t T

φ
ϕ

ϑ δ ϑ δ

+

+ + + + + +

 −  
 + = +


= − 

.                 (6) 

3. Solution 
3.1. The Parameter-Estimation of the Price Process 

According to the expression (1): 

https://doi.org/10.4236/jfrm.2019.84019


J. H. Guo, L. J. Deng 
 

 

DOI: 10.4236/jfrm.2019.84019 278 Journal of Financial Risk Management 
 

( )

( )2

1 12

N t

t t i
i N t

y Jσµ σε
= − +

 
= − + + 
 

∑ ,                    (7) 

where ( )1 ~ 0,1t t tw w Nε −= − , ( )1 ~t t tZ N N p λ−= − , ( )2~ ,i J JJ IIDN µ σ . 
Let ( )2 2, , , ,J Jµ σ λ µ σΘ = , { }1 2, , , Ty y y y=  , ( ){ },t tX Z J=  be jump times 

and jump amplitude respectively, MCMC technology has been used to estimate 
all parameters, i.e. a Markovian chain of each parameter has been drawn from 
( ) ( ) ( ) ( ), | | , |p X y p y X p X pΘ ∝ Θ Θ Θ  with observations { }1 2, , , Ty y y   

and prior distribution ( )p Θ , and averaging the chain as estimator of parameter 
(Johannes & Polson, 2006). 

With the estimated parameters we can produce: 

( ) ( )
2

2 2 2
1ln ~ ,

2t t t J J Jy S S N σµ λµ σ λ σ µ−

  
= − + + +     

.       (8) 

3.2. The Monte-Carlo Simulation of Price Process 

Let ( )1, , nf x x  be the union density function of random vector ( )1, , nX X , 
( )1 1| , ,i if x x x+   be conditional density function of 1iX +  with 1, , iX X  be-

ing known, according to the Bayesian theory:  

( ) ( ) ( ) ( )1 1 2 1 1 1, , | | , ,n n nf x x f x f x x f x x x −=   . 

Theoretically, we can draw ( )1, , nX X  from the union density function 
( )1, , nf x x , but in fact, we do the following:  
Firstly, drawing ( )1 1~X f x ; then, ( )2 2 1~ |X f x X   and so on, drawing 

( )1 1~ | , ,n n nX f x X X −
  

 , and we can deduce that the drawn sequence  

( )1, , nX X 

  has a union density function ( )1, , nf x x . 

3.3. Strategy Decision 

On discrete time { }0,1, , 1T − , assuming Bond’s price 1B ≡ , the stock price 
has been discounted. Under the constraint of self-financing (4), we have: 

( )

1 1 1

2 2 2 1 1
1

0
0

T T T T

T T T T T
T

t t
t

V V S
V S S

V S

ϑ
ϑ ϑ

ϑ

− − −

− − − − −

−

=

= + ∆
= + ∆ + ∆

= = + ∆∑

,                  (9) 

where 1 , 0,1, , 1t t tS S S t T+∆ = − = − , 0V  is the initial cost. Now, substituting 
(6) with (9), the optimizing problem (6) becoming into:  

( )
1

0
0

min
T

T t t
t

E H V S
ϕ

ϑ
+−

=

   − − ∆     
∑ ,                 (10) 

Up to now, our goal is to find a self-financing strategy for optimization problem (10), 
however, it is a stochastic programming problem, and ( )1

0 0
T

T t ttH V Sϑ−

=
− − ∆∑  

depends on the whole price path, so, it is difficult to directly solve (10). Having 
generated M independent price paths by Monte-Carlo simulation method, solv-
ing problem (10) is equivalent to solving the following optimizing problem: 
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( ) ( ) ( )( )
1

0
1 0

min
M T

m m m
T t t

m t
H V S

ϕ
ϑ

+−

= =

 − − ∆  
∑ ∑ .                (11) 

Obviously, the unknown variables in (11) equal M T⋅ , where M denotes the 
number of scenarios and T denotes the adjusting frequency, thus, it is computa-
tionally challenging to directly solve problem (11) when the number of scenarios 
is large and the adjusting is frequent. In order to simplify (11), we try to ap-
proximate holdings tϑ  by basis functions, having done this, the number of un-
knowns at each hedging time is reduced to the number of parameters in the basis 
functions, which is typically very small.  

Assume that the holding tϑ  is decided by the underlying stock price at any 
time t, i.e. ( )t tSϑ ϑ= , by definition 1, ( )2

t tS L Pϑ ∆ ∈ , and the Hilbert space 
( )2L P  is of countable orthonormal basis, so, the holding tϑ  can be linearly 

represented by basis functions (Potters, Bouchaud, & Sestovic, 2001): 

( ) ( ) ( )
1

, 0,1, , 1
p

t
t t j j t

j
S a L S t Tϑ ϑ

=

= = = −∑  ,            (12) 

where ( )j tL S  denotes basis function and ( )t
ja  denotes the corresponding con-

stant coefficients, p is the number of selected basis functions such as Hermite 
polynomial, Legendre polynomial, Chebyshev polynomial, Laguerre polynomial, 
hereafter we choose Laguerre polynomial as basis function which is formed as 
following: 

( ) ( ) ( )exp dexp e
2 ! d

n
n x

n n

xxL x x
n x

− = − 
 

. 

After substituting (12) into (11), the optimizing problem (17) changes into:  

( ) ( ) ( )( ) ( )
1

0
1 0 1

min
pM T

m t m m
j j t t

m t j
H V a L S S

ϕ

+
−

= = =

   
− − ∆        

∑ ∑ ∑ .       (13) 

Comparing (13) with (11), we find the number of unknowns has greatly de-
creased, and the holding tϑ  may be deduced by (12) only with the selected ba-
sis functions and the simulated price scenarios, which is solved by the steepest 
descent method. 

3.4. The Steepest Descent (Wahab & Khan, 2018) 

Assuming objective function ( )f x , nx R∈ , when ( ) 0kf x∇ ≠ , at kx , ex-
pressing ( )f x  with:  

( ) ( ) ( ) ( ) ( )k k k kf x f x f x x x o x x′= +∇ − + − .          (14) 

Denoting ( )0k kx x dα α− = > , then the expression (20) can be expressed: 

( ) ( ) ( ) ( )k k k k k kf x d f x f x d o dα α α′+ = + ∇ + .         (15) 

We call kd  the descent direction of ( )f x  when ( ) 0k kf x d′∇ < . As to 
small α , there is ( ) ( )k k kf x d f xα+ < , and with smaller ( )k kf x d′∇ , ( )f x  
has greater descent at kx . denoting kθ  as the plane included angle of  
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( )kf x ′−∇  and kd , by ( ) ( ) cosk k k k kf x d f x d θ′−∇ = ∇ ⋅ , when 0kθ = , i.e., 
( )k kd f x= −∇ , ( )k kf x d′∇  arrives at the smallest value, and ( )kf x−∇  is 

called as the steepest descent direction, ( )k kd f x= −∇  is the optimal searching 
direction. The iterative format of the steepest descent method is as following: 

( )1k k k kx x f xα+ = + ∇ ,                       (16) 

where kα  denotes the step length decided by linear searching method. 
The process of the steepest descent method is as following: 
Step 1: Given the initial 0

nx R∈  and the terminating error 0ε > , set : 0k = ;  
Step 2: Calculating ( )k kd f x= −∇ , stop when kd ε<  and kx  is the op-

timal solution; 
Step 3: Deciding the step length kα  by the linear searching method; 
Step 4: Setting ( )1k k k kx x f xα+ = + ∇ , : 1k k= + , transfer to the step 2. 

4. Numerical Example 
4.1. The Parameter Deciding of the Price Model 

In this subject, we sampled 11,598 high frequency history data of Shanghai Se-
curities Complex Index and the stock ICBC from the 2nd, January to the 28th, 
December, 2018, and estimated the jump-diffusion process’s parameters in 
WinBugs1.4 by Monte Carlo technology, the estimating results are expressed in 
Table 1. 

4.2. The Simulated Scenarios and Strategies 

Firstly, according to the parameter values in Table 1, we simulated 10000M =  
price scenarios for the underlying asset by the Monte-Carlo technology submit-
ted in subsection 2.1; Then, deciding the number of basis function, since the 
computation result does not obviously improve when the number of basis func-
tion is more than 3, we choose the first 3 Lagurre polynomials as basis function 
to approximate the holding position; Finally, in the light of the optimization 
model (12), the optimal holdings are acquired through numerical algorithm pre-
sented in subsection 2.4 with the Matlab software. 

4.3. Analyzing Results 

We assume that a hedger has written the 1-month and 3-month expiration in-
dexed stock option based on the stock ICBC at the 28th, December, 2018, in or-
der to minimize the terminal expected loss, he hedges the contingent claim with 
stock ICBC and Bond by self-financing with daily, weekly and biweekly  
 
Table 1. parameter valuation of the jump-diffusion process (Data source,  
http://quotes.money.163.com/stock). 

parameters ( )( )Iµ µ  ( )( )Iσ σ  ( )( )I
J Jµ µ  ( )( )I

J Jσ σ  ( )( )Iλ λ  

Underlying tock (S) 0.0025 0.0411 0.0183 0.0522 0.0490 

Index (I) 0.0023 0.019 0.0155 0.0519 0.0453 
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rebalancing frequency, the initial Index price and ICBC price are 0 2493.9I = , 

0 5.29S = , respectively, and the riskless interest rate is 0.30% equal to the current 
savings interest rate offered by the PBC in December, 2018  
(http://www.pbc.gov.cn/), the transaction fee rate 0.001,0.002,0.004f = , re-
spectively. 

As for all hedging cases, we calculate: 
Total risk: 

( )T TH V +− .                            (17) 

Total cost: 
1

0 0 0 1 1
1

T

t t t T T T T
t

V fS fS fS H Vϑ ϑ ϑ ϑ
−

− −
=

+ + − + + −∑ ,          (18) 

where 0V  is the initial cost; TV  denotes the terminal portfolio valuation. 
Substituting (12) into (18): 
Total cost:  

( )
1 1

0 0 1 1
1 0

T T

t t t T T T t t
t t

fS fS fS H Sϑ ϑ ϑ ϑ ϑ
− −

− −
= =

+ − + + − ∆∑ ∑ .       (19) 

As a matter of fact, with the exception 0V , transaction fee and the terminal 

TH , no other hedging cost is required. 
The averaged hedging cost and expected loss with different striking price and 

different strategy adjustment frequency are calculated in Table 2 and Table 3 
with 10,000 price simulations. 

Firstly, because the price fluctuation will be heavier if option’s expiration is 
longer, a European indexed stock option hedger may be faced with higher risk 
and must invest more to hedge possible loss risk, for example, in Table 3, the av-
eraged hedging costs (with 3-month expiration) for all kinds of strategy adjust-
ment frequencies and all kinds of transaction fee rates are more than those in 
Table 2 (with 1-month expiration), i.e., for daily hedging strategy adjustment 
frequency, 1.5011 is bigger than 1.3251, 2.7656 is bigger than 2.4930, 5.2962 is 
bigger than 4.6254, and for weekly and biweekly hedging strategy adjustment 
frequencies, there are similar results. Other more, We can also see that the ex-
pected loss may be smaller when the hedging strategy adjusting time step is 
shorter, for example, in Table 2, 0.702 is the least expected loss, which corres-
ponds to daily hedging strategy adjustment frequency, while 0.8010 is the biggest 
expected loss, which corresponds to biweekly hedging strategy adjustment fre-
quency, similar results in Table 3. 

In addition, we can know by the expression ( ) ( )( )T T T T TH V S K V
++ +− = − −  

that the higher the striking price is, the smaller the expected loss may be; and it 
is more impossible for the indexed stock option with higher striking price to be 
executed, which results in decreased hedging cost. In fact, Table 2 and Table 3 
indicate the reverse relationship between expected loss with striking price, and 
the following Figure 1, indicating the relationship between the holding position 
at the middle time point with the terminal exercising price for the indexed stock  
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Table 2. Averaged hedging cost and expected loss with 1-month expiration over 10,000 
scenarios ( 0 0 5.29 2584.57 2493.9 5.48T TK S I I= = × = ). 

frequency 
f 

Daily Weekly Biweekly 

Expected loss cost Expected loss cost Expected loss cost 

0.001 0.0702 1.3251 0.0731 1.0031 0.0810 1.0005 

0.002 0.0702 2.4930 0.0731 1.9821 0.0810 1.8964 

0.004 0.0702 4.6254 0.0731 3.6987 0.0810 3.5102 

 
Table 3. Averaged hedging cost expected loss with 3-month expiration over 10,000 scena-
rios ( 0 0 5.29 3090.76 2493.9 6.56T TK S I I= = × = ). 

frequency 
f 

Daily Weekly Biweekly 

Expected loss cost Expected loss cost Expected loss cost 

0.001 0.0508 1.5011 0.0526 1.2513 0.0529 1.2120 

0.002 0.0508 2.7656 0.0526 2.3111 0.0529 2.2589 

0.004 0.0508 5.2962 0.0526 4.4596 0.0529 4.3254 

 

 
Figure 1. Relationship between holdings and striking prices at middle time point. 
 
option with single month expiration. In Figure 1, the horizontal axis data shows 
the end-of-period execution prices, while the data on the vertical axis represent 
the hedging positions that need to be held for 1 share of stock to be hedged at the 
middle time point with 1-month hedging period. Taking the hedging practice for 
the ICBC stock as an example, if the terminal exercising price is 5.2CNY, the op-
timal hedging position is 0.522 shares of stock index futures contract, while the 
terminal exercising price is 5.68CNY, the optimal hedging position is 0.496 
shares of stock index futures contract.  

Figure 2 illustrates the relationship between holding positions and different 
executing prices for 1-month time limit indexed stock option with daily hedging  
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Figure 2. Monthly adjusting position plot with different striking prices.  

 
strategy adjusting frequency. As a whole, the reverse relationship between holding 
position with striking price can still be found; what’s more, the three dash dot 
lines denoting holding position changing in Figure 2 all rightward incline, which 
explains that the required holding position may be decreased with time’s going by. 
it is well known that the indexed stock option will be executed at the maturity 
date, because the farer away the maturity date is, the more heavily the underlying 
asset’s price fluctuates, therefore, more hedging cost must be invested to acquire 
the same hedging efficiency. 

Finally, it is obvious that the lowest line in Figure 2 fluctuate mildly, especially 
when TK  equals to 5.56, the curve almost fluctuates around a line, however, the 
upper two curves denoting 5.4,5.48K = , the option being in the money, fluc-
tuate more heavily than the lowest curve, the option being out of the money, 
which correspond to the third column in Table 2, the hedging cost of option in 
the money augments more heavily than option out of the money corresponding 
to the augment of striking price TK . 

5. Conclusion 

It is well-known that the goal of hedging is to decrease the risk arising from the 
price fluctuating, the core objective of hedging is to ascertain reasonable hedging 
strategies. In this paper, we construct the optimizing model to minimize the ter-
minal shortfall risk under the constraint of self-financing, by Monte-Carlo simu-
lation, many price scenarios are generated and are averaged to estimate the ex-
pected shortfall, then, basis functions are imported to approximate the holding 
positions, finally, the optimal hedging positions are acquired by numerical tech-
nology. Table 2, Table 3, Figure 1 and Figure 2 indicate: the technique put for-
ward in this paper is feasible and valuable for investors to hedge risk. 

1) Table 2 and Table 3 illustrate, the higher the hedging strategy adjusting 
frequency is, the more superior the hedging efficiency is. 

2) Figure 1 and Figure 2 indicate, the holding position is in inverse propor-
tion to the striking price, i.e., the higher executing price the European call option 
has, the lower holding position may be held, vice versa. In this way, we can hedge 
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risk and save cost at the same time. 
In conclusion, because the market is changing rapidly, in order to obtain better 

hedging results, it is necessary to make reasonable adjustments for hedging posi-
tions based on market changes. In other words, frequent hedging strategy ad-
justments can reduce period-end losses, but because of the existence of transac-
tion costs, excessively frequent hedging strategy adjustments may not be desira-
ble, conversely, if the adjustment frequency of the hedging strategy is too low, it 
is difficult to achieve expected hedging effect. 

Relative to existing research results, in this paper, there are two innovations 
and main contribution, the first is to expand the application of indexed stock op-
tions in the field of hedging, the second is to propose a solution for the nonlinear 
optimization problem (As shown in expression 6). However, the relevant conclu-
sions of this study are all based on simulation data. Whether different simulated 
data have influence on the conclusion has not been explained theoretically. This 
is also our future research direction. 
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