
Journal of Environmental Protection, 2023, 14, 561-582 
https://www.scirp.org/journal/jep 

ISSN Online: 2152-2219 
ISSN Print: 2152-2197 

 

DOI: 10.4236/jep.2023.147033  Jul. 28, 2023 561 Journal of Environmental Protection 
 

 
 
 

Air Quality Estimation Using Nonhomogeneous 
Markov Chains: A Case Study Comparing Two 
Rules Applied to Mexico City Data 

Eliane R. Rodrigues1*, Juan A. Cruz-Juárez2, Hortensia J. Reyes-Cervantes2, Guadalupe Tzintzun3 

1Instituto de Matemáticas, Universidad Nacional Autónoma de México, Mexico City, Mexico 
2Facultad de Ciencias Fsico-Matemáticas, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico 
3Instituto Nacional de Ecologa y Cambio Climático, Secretara de Medio Ambiente y Recursos Naturales, Mexico City, Mexico 

  
 
 

Abstract 
A nonhomogeneous Markov chain is applied to the study of the air quality 
classification in Mexico City when the so-called criterion pollutants are used. 
We consider the indices associated with air quality using two regulations 
where different ways of classification are taken into account. Parameters of 
the model are the initial and transition probabilities of the chain. They are es-
timated under the Bayesian point of view through samples generated directly 
from the corresponding posterior distributions. Using the estimated parame-
ters, the probability of having an air quality index in a given hour of the day is 
obtained. 
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1. Introduction 

Air quality may be defined as the air characteristics in an environment when the 
levels of the so-called criterion pollutants are taken into account. These criterion 
pollutants are those considered as keys to establish how polluted an area is and 
they may vary from location to location. The classification of air quality in a 
given environment at a particular time is made, for instance, in terms of the cri-
terion pollutants concentrations in sites in that environment at that time (see, 
for example, [1] [2]). In the case of Mexico City, the pollutants considered as 
criterion are ozone (O3), sulphur dioxide (SO2), carbon monoxide (CO), nitro-
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gen dioxide (NO2), particulate matter with diameter smaller that 10 microns 
(PM10), and those with diameter smaller than 2.5 (PM2.5). These pollutants are 
chosen because of their possible harmful impacts on human health, as well as the 
environment ([3] [4]). For instance, if we have high levels of ozone, the ill, new-
born, and elderly may experience serious health deterioration (see, for example, 
[5] [6] [7] [8], among others). We also know that SO2 and NO2 when in contact 
with the right level of humidity in the atmosphere, may produce acid rain ([9] 
[10]). Additionally, exposure of pregnant women to CO, PM10, and PM2.5 may 
produce adverse effects on the newborn ([11] [12] [13] [14]), and exposure to 
PM10 and PM2.5 may cause cardiovascular problems to the population in general 
and an increase in mortality of at-risk groups ([15] [16] [17] [18]). 

The air quality in the metropolitan area of Mexico City follows the so-called 
“Metropolitan Index of Air Quality” (IMECA for its name in Spanish)—legisla- 
tion NADF-009-AIRE-2017 (see [1]). The IMECA is a value without a unit of 
measure which is obtained from the pollutants’ measurements through a linear 
by parts transformation. This transformation is given in [1]. In 2019 a new leg-
islation—NOM-172-SEMARNAT-2019 ([2])—was introduced in Mexico as a 
country and also adopted in Mexico City. This new legislation considers what is 
called the “Air and Health Index”. This index is obtained directly from the pol-
lutants’ measurements and more on that will be said when the model is applied 
to the data. 

When there is a new legislation introduced, one question that may rise is how 
the existing and new rules compare when assigning the air quality at a given 
hour in a given region. For instance, if we take the case of Mexico City, one 
question that may arise is related to how strict NOM-172 is when compared to 
NADF-009. That is one of the questions studied here. Other interests are the es-
timation of the probability that a given air quality index occurs at an hour of in-
terest in a given region; the probability of having a given sequence of air quality 
indices in consecutive hours in a given region; the probability of having a given 
air quality index in a given hour taking into account the observed indices some 
hours in the past, as well as the probability of having an air quality index few 
hours ahead given that you have the present hour index. 

In order to analyze the questions posed in this work, we consider the sets of 
criterion pollutants measurements obtained in the year 2020 and see how the air 
quality indices assigned to them, as dictated by NADF-009 and NOM-172 rules, 
behave. In order to analyze the behavior under the different regulations we use a 
nonhomogeneous Markov chain model. 

Even though, nonhomogeneous Markov models have already been used to 
study air pollution (such as exceedances of environmental thresholds), as well as 
other environmental problems (such as tornado activity and rain)—see, for in-
stance, [19]-[25]—in the present work we use this type of model to study air 
quality indices. Air quality classification has also been studied by [26] [27] [28] 
[29]. However, these works use homogeneous Markov chains (with and without 
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a spatial component) to analyze Malaysia’s data. 
Although we use a nonhomogeneous Markov chain model and the Bayesian 

point of view ([30]) to estimate the parameters present in the model, the novelty 
and difference of the present study, when compared to previous works, is that 
this approach is used to study the behavior of air quality indices associated with 
some pollutants’ measurements obtained from the Mexico City’s monitoring 
network. Additionally, the data used differ from the ones used previously since 
the subject of air quality indices is not tackled in any of the previous works using 
nonhomogeneous Markov chains. Another novelty here is that we are compar-
ing two different regulations and analyszing how strict they are when contrasted 
with each other. 

The aim of this work is to use a nonhomogeneous Markov chain model to 
study the sequence of air quality indices assigned to each hour in a day in Mex-
ico City. Using this model we aim to compare the performance of the two rules 
applied in Mexico City analyzing how strict they are when contrasted with each 
other. This work is organized as follows. In Section 2, we present the mathemat-
ical and the Bayesian formulations of the model. Section 3 gives an application 
to the case of Mexico City air quality indices. In Section 4, a series of comments 
regarding the results, as well as more general comments are presented. Finally, 
in Section 5 we conclude. An appendix, placed after the list of references, gives 
some of the plots and results mentioned in the main text. 

2. The Mathematical and Bayesian Models 

Let 0N >  and 0T >  be, respectively, the number of days and the number of 
hours in a given day where we have air quality indices assigned. Assume there 
are 1d ≥  criterion pollutants whose concentrations are taken into account 
when obtaining the air quality indices. Let { }1,2, ,S M= � , for some known 

1M ≥ , be a set of integer numbers which are associated with the air quality in-
dices that may be assigned to a pollutant, where smaller numbers are assigned to 
better air quality and larger to worse. (Air quality classification and the integer 
numbers associated with them will be used indistinctly). 

Denote by ( )
,
j

i tZ  the index associated with the ith pollutant at the tth hour of 
the jth day; 1,2, ,i d= � ; 1,2, ,t T= � ; 1,2, ,j N= � . Denote by ( )j

tZ  the air 
quality index at the tth hour of the jth day defined as  

( ) ( ){ },max , 1,2, ,j j
t i tZ Z i d= = � ; 1,2, ,t T= � ; 1,2, ,j N= � . Let  

( ) ( ){ }: 1,2, ,j j
tZ t T= = �Z  be the process recording the air quality indices in the 

jth day, 1,2, ,j N= � . As in [31] and [32], we assume that ( )jZ  is ruled by a 
nonhomogeneous Markov chain. Denote this chain by { }: 1,2, ,tX t T= = �X  
and let   be its state space. Therefore, in the present case we will have a total 
of 366 realizations of the the chain X . The corresponding transition probabili-
ties are given by ( ) ( ) ( )1, 1 |ij ij t tP t P t t P X j X i+= + = = = ; ,i j S∈ ; 1 1t T≤ ≤ − . 
We define ( )iQ t , i∈ , as the probability ( )tP X i= , 1,2, ,t T= � . Hence, 
when 1t = , we have ( )1iQ , i∈ , the initial distribution of X . Denote by 
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( )P t  the transition matrix whose components are ( )ijP t ; ,i j∈ ; i.e.,  
( ) ( )( ) ,ij i j S

P t P t
∈

= ; 1,2, , 1t T= −� . These initial and transition probabilities are  

parameters to be estimated. 
Remark. Note that even though we do not have explicit time dependent for-

mulas for the transition probabilities they do depend on time, since for different 
values of t we allow different values for the probability of a given transition. 

As additional information provided by the model, we are able to obtain 
( )tP X i= , i∈ . The function ( )tP X = ⋅  reports the probability of having a 

given air quality index at time t. They are obtained by taking advantage of the 
Markov property and using a recursive form as follows ([22] [33]). For a given 
time t, we have, for k∈ ,  

( ) ( ) ( ) ( ) ( )1 1 | ,t t t t ik t
i S i S

P X k P X k X i P X i P t P X i+ +
∈ ∈

= = = = = = =∑ ∑     (1) 

where ( ) ( )1 1iP X i Q= = , i∈ ; 1,2, , 1t T= −� . 
Remark. Note that even though the recursive formula has similar form as that 

valid for homogeneous Markov chain, in the nonhomogeneous case the transi-
tion probabilities are dependent of t, i.e., we have ( )ijP t  instead of ijP , and the 
values, for the same transition, may vary for different values of t; ,i j∈ ; 

1,2, , 1t T= −� . The principle is the same, but the values of the transition prob-
abilities may differ for different values of t. 

The initial and transition probabilities may be estimated, for instance, using 
the maximum likelihood method ([34]) and empirical estimators ([35]). In the 
present work, we use the Bayesian approach to estimate them. Inference is per-
formed using information provided by the so-called posterior distribution of the 
parameters. The posterior distribution of a vector of parameters θ  of a model 
describing an observed data set D, denoted by ( )|P Dθ , is such that 
( ) ( ) ( )| |P L P∝D Dθ θ θ , where ( )|L D θ  is the likelihood function of the 

model and ( )P θ  is the prior distribution of θ . 
In the present case, the vector of parameters is ( ) ( )( )1 , , 1,2, , 1Q P t t T= = −�θ   

which belongs to the sample space ( ){ }1T −Θ = ∆ ×∆   , where  

( ){ }1 2 1, , , : 0, 1,2, , ; 1ll
l l i ilx x x x i l x

=
∆ = ∈ ≥ = =∑� � �  is the ( 1l − )-dimensional 

simplex. We will use as our observation the values given by ( ) ( )( )1 , , N= �Z Z Z . 

Since a nonhomogeneous Markov model is assumed, the likelihood function 
is given by (see, for instance, [25] [34] [36] [37])  

( ) ( ) ( ) ( )1

1
| 1 ,jki

T n tn
i jk

i t j k
L Q P t

−

∈ = ∈ ∈

        ∝               
∏ ∏ ∏ ∏Z
  

θ          (2) 

where in  is the number of days in which we have state i at time 1t =  and 
( )jkn t  is the number of days in which a transition from a state j at time t to a 

state k at time 1t +  has occurred; , ,i j k∈ ; 1,2, , 1t T= −� . 
Another component to be established is the prior distribution of the vector of 

parameters. In order to do that, we assume a prior independence of ( )P t  as 
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functions of t, and also a prior independence between the initial and transition 
probabilities. Given the nature of transition matrices, we assume that rows are 
independent and that each row of ( )P t  will have as prior distribution a Di-
richlet distribution with appropriate hyperparameters. Therefore, row  

( ) ( ) ( )( )1 2, , ,i i iMP t P t P t�  has as prior distribution a Dirichlet with hyperpara-
meters ( ) ( ) ( )( )1 2, , ,i i iMt t tα α α� , ( ) 0ik tα > ; ,i k∈ ; 1,2, , 1t T= −� . The 
initial distribution ( )1Q , will also have a Dirichlet prior distribution, but now 
with hyperparameters ( );i iα ∈ , 0iα > , i∈ . The hyperparameters of the 
prior distributions will be considered known and will be specified when the 
model is applied to the data. Hence, we have the following,  

( ) ( )( ) ( )( )

( ) ( ) ( )

1

1

11 1

1

1

1 .i ik

T

t

T t
i ik

i t i k

P P Q P P t

Q P t
α α

−

=

−− −

∈ = ∈ ∈

 =   
         ∝               

∏

∏ ∏ ∏ ∏
  

θ

         (3) 

(Recall that the hyperparameters iα , ( )jk tα ; , ,i j k∈ ; 1 1t T≤ ≤ − , are 
given and hence, are known). 

Therefore, because we have a likelihood function proportional to a product of 
multinomial distributions and the prior distribution of the vector of parameters 
also a product of Dirichlet distributions, the marginal conditional posterior dis-
tributions of the initial distribution and each row of the transition matrices are 
also Dirichlet distributions (see, for instance, [32]). The hyperparameters of 
these posterior distributions are, respectively, ( );i in iα+ ∈  and  

( ) ( ) ( ) ( ) ( ) ( )( )1 1 2 2, , ,i i i i iM iMn t t n t t n t tα α α+ + +� , for the initial distribution 
and row i of the transition matrix at time t; i∈ ; 1,2, , 1t T= −� . Therefore, 
we may generate samples of these probabilities directly from their posterior dis-
tributions and use the law of large numbers to obtain the parameters estimates 
without the need to perform an explicit Markov chain Monte Carlo algorithm. 

Remark. The posterior distribution of each row of the transition matrices may 
be obtained using the expression for the joint posterior distribution which is the 
product of the expressions for the likelihood function and prior distribution 
given, respectively, by the formulas (2) and (3) displayed above, and integrating 
with respect to the remaining variables 

3. Application to Air Quality Indices of Mexico City 

Application will be made to measurements of the criterion pollutants collected at 
Mexico City’s monitoring network during the year 2020  
(http://www.aire.cdmx.gob.mx/default.php?opc=%27aKBh%27). Pollutants’  
concentrations are measured in parts per million (ppm) in the cases of O3, SO2, 
NO2, and CO, and in micrograms per cubic meter (μg/m3) when we consider 
PM10 and PM2.5. The monitoring network comprises of several monitoring sta-
tions placed throughout the metropolitan area. Measurements in each monitor-
ing station are obtained minute by minute and the averaged hourly results are 
reported at each station. The data primarily considered are the hourly averaged 
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measurements of each of the criterion pollutants collected during the year 2020. 
Even though the pollutants considered as criterion are the same in both regu-

lations, the difference lies in how the air quality indices are assigned to each 
pollutant. These indices are based on the pollutants measurements and how they 
are taken into account. Hence, we have the following. In the case of NADF-009, 
the respective hourly reported averaged measurements are considered in the 
cases of O3 and NO2; the 24-hour moving averages are taken into account in the 
cases of SO2, PM10, and PM2.5; and in the case of CO data, the 8-hour moving av-
erages are used. If we switch to the NOM-172 rule, then there are two types of 
measurements for O3, the hourly reported and the 8-hour moving averages. In 
the cases of PM10 and PM2.5, weighted 12-hour moving averages are used. When 
SO2, NO2, and CO are taken into account, the data are as in NADF-009. Another 
difference between these two rules is that in the NADF-009 legislation only one 
set of subintervals is used in order to classify the air quality. This set is a result of 
the linear by parts transformation applied to the pollutants measurements in 
order to produce the IMECA values (see [1]). In the case of NOM-172, mea-
surements are used directly in order to classify the air quality. Hence, there is a 
set of intervals for each pollutant (see [2]). Additionally, depending on the rule 
used, there are different classifications for the air quality. Therefore, in [1] six 
states for the air quality index were considered. They were “Good’’ (G), “Regu-
lar” (R), “Bad” (B), “Very Bad” (VB), “Extremely Bad” (EB), and “Dangerous” 
(D), if the calculated IMECA felt in the intervals [0, 50], (50, 100], (100, 150], 
(150, 200], (200, 300], and (300, 500], respectively. When the NOM-172 was im-
plemented, the intervals depended on each particular pollutant and the air qual-
ity was classified as “Good” (G), “Acceptable” (A), “Bad” (B), “Very Bad” (VB), 
and “Extremely Bad” (EB) (see [2]). In both cases, the assigned index to a given 
region at a given hour of the day is the worst of the indices associated with each 
criterion pollutant at that particular hour when measurements from all stations 
in the region are taken into account. For instance, if the indices associated with 
O3, SO2, CO, NO2, PM10, and PM2.5 at a given hour are, respectively, G, G, B, A, 
VB, and VB, then the air quality assigned to that hour is VB. 

Therefore, in the present case we have 366N =  (since 2020 is a leap year) 
and 24T = , since we have twenty four hours in a day. Even though, in both 
regulations we have six criterion pollutants, we have 6d =  and 7d =  in the 
cases of NADF-009 and NOM-172, respectively. The value 7d =  in the 
NOM-172 rule is because there are two types of O3 measurements used: the 
hourly averaged measurements and the 8-hour moving averages. Hence, using 
the classification provided by NADF-009 and NOM-172, air quality indices were 
assigned to each hour of the day. Depending on the rule considered we have ei-
ther six or five possible states for the indices. If we adopt NADF-009 we have the 
following association: G, R, B, VB, EB, and D corresponding to 1, 2, 3, 4, 5, and 
6, respectively. If we take the NOM-172 rule, then we associate G, A, B, VB, and 
EB with 1, 2, 3, 4, and 5, respectively. Hence, the state space of X  will be either 
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{ }1,2,3,4,5,6NADF =  or { }1,2,3,4,5NOM =  depending if we assume  
NADF-009 or NOM-172 rule, respectively. 

Remark. Note that for each pair of states ij and each time t, we have 366 values 
to obtain the empirical transition probabilities, as well as the counting variables 

( )ikn t ; ,i k∈ ; 1,2, , 1t T= −� . 

3.1. Data Analysis 

Since the metropolitan area of Mexico City is divided into five regions: north-
west (NW), northeast (NE), center (CE), southwest (SW), and southeast (SE), we 
will assign to each region its own air quality indices and analysis will be per-
formed for each region separately. During the observed time considered here, we 
have 8784 hours. In each of these hours the air quality index is produced by at 
least one of the criterion pollutants. In Table 1 we have the number of times 
each pollutant was responsible by the air quality index in each region. Note that 
we may have more than one pollutant producing an air quality index since we 
might have, for instance, two or more pollutant with value “3” assigned to them 
with no larger value associated to any other pollutants. In this case, we have that 
these two pollutants are responsible for the air quality assigned to that particular 
region. 

Looking at Table 1, we see that, in all regions, when NADF-009 is taken into 
account the pollutant with the largest number of times in which it was responsi-
ble for the air quality index is PM2.5, followed by PM10 and ozone as the pollu-
tants with the second and third largest numbers. If we consider the NOM-172 
rule, then the pollutants with the largest, second, and third largest number of 
times producing the air quality indices vary. In the cases of region NE and CE,  
 
Table 1. Number of times each pollutant dictated the air quality index in each region ac-
cording to the rule used. 

  NW NE CE SE SW 

PM10 NADF 6113 6611 5253 5105 3536 

 NOM 6466 6012 5737 4958 4450 

PM2.5 NADF 7769 7073 8163 8187 8158 

 NOM 3980 4323 5423 5433 5558 

O3 NADF 1864 1935 2280 2484 3129 

 NOM_h 3305 3195 4264 4345 4723 

 NOM_8h 3209 3357 4421 4882 5221 

NO2 NADF 877 969 1131 1118 1683 

 NOM 2962 2522 3780 3518 3826 

CO NADF 874 966 1131 1117 1683 

 NOM 2073 1719 2780 2642 2996 

SO2 NADF 1026 1092 1147 1117 1683 

 NOM 3579 2797 3830 3165 3948 
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we have that the pollutants with the largest, second, and third largest numbers 
are, respectively, PM10, PM2.5, and O3 with the 8-hour moving average. In the 
cases of regions NW, SE, and SW, the pollutants are, respectively, PM10, PM2.5, 
and SO2; PM2.5, PM10, and O3 with the 8-hour moving averages; and PM2.5, O3 
with the 8-hour moving averages, and O3 hourly averages. Therefore, we see that 
depending on the rule, we have different pollutants as the responsible for the air 
quality indices, with NOM-172 producing more heterogeneous results depend-
ing on the region analized. 

Of all regions, SW and CE are considered critical regions because of their 
geographic positions and the prevailing wind direction (from NE to SW). Region 
NE has several industries and pollution produced there may be transported to 
the center and southwest regions; region CE has many vehicles circulating, 
hence in this region high levels of pollution are produced and it also receives 
part of that produced in region NE; and region SW receives the pollution pro-
duced in the first two regions in addition to that produced at the south end of 
the city. The SW region also has some mountains which trap the pollution in 
that area. Region SE has large areas of dry patches with scarce vegetation and 
hence, it is not surprising that it has high indices of particulate matter. 

Focussing on regions CE and SW, looking at Table 1 we see that under the 
legislation NADF-009 most of the times (about 92% of the hours) we have that 
the air quality indices in these regions had the contribution of PM2.5 measure-
ments. Under the legislation NOM-172, most of the times, about 65% and 63% 
of the hours, respectively, air quality indices were results of the contribution of 
PM10 measurements in region CE and PM2.5 in the case of region SW. Note that, 
when comparing the two rules, there is a large difference between the percen-
tages of hours in which particulate matter was a contributor to the air quality in-
dices assigned to the regions, with NOM-172 giving the lower percentage. How-
ever, this rule captures the contribution pollutants, other than ozone and parti-
culate matter, may have in the air quality indices assignation. For instance, we 
have region NW where SO2 appears as having the third largest number of times 
in which it contributed to the assignation of the air quality index to that region. 

3.2. Results 

The assignation of the hyperparameters of the Dirichlet prior distributions, de-
scribed in Section 2 when the model was presented, is made in a similar manner 
as in [22] [33]. Hence, we assign values to ( )ik tα  and kα ; , ,NADF NOMi k∈   
as follows: ( ) 1 16ik ktα α= = , for 1,2,3k = , and ( ) 1 64ik ktα α= = , for 

4,5,6k =  in the case of NADF-009, and ( ) 1 16ik ktα α= = , for 1,2k = , and 
( ) 1 64ik ktα α= = , for 3,4,5k =  in the case of NOM-172, ,NADF NOMi∈  , for 

all regions. 
Remark. Note that the hyperparameters of the Dirichlet prior distributions are 

chosen to reflect the occurrences of the events with which they are associated. 
For instance, events that have not been observed during the time interval taken 

https://doi.org/10.4236/jep.2023.147033


E. R. Rodrigues et al. 
 

 

DOI: 10.4236/jep.2023.147033 569 Journal of Environmental Protection 
 

into account, but are part of the space of possible events, will have small proba-
bilities assigned to them whereas those that have been observed will have proba-
bilities that absorb the contributions of both observed data and prior distribu-
tions. 

Estimation of the initial and transition probabilities was performed using a 
sample of size 1000 generated directly from their corresponding posterior dis-
tributions. As an example of how the fit of the estimated to the observed values 
are, in Figures A1-A5 given in Appendix A.1 we give the plots of the transition 
probabilities in the case of region SW when both rules are applied. Looking at 
Figures A1-A5 we see that the estimated values represent well the observed and 
that indeed the Markov chain is nonhomogeneous. The fit and non-homogeneous 
behavior in the remaining cases is also corroborated. 

The estimated values of the initial and transition probabilities are then used to 
obtain the corresponding values of ( )tP X i= ; i∈ ; 1,2, ,24t = � , using (1). 
Figure A6 and Figure A7, in Appendix A.2, show the plots of these estimated 
probabilities for all regions and both rules. Since, the values of ( )tP X k= ; 

5,6k = , for NADF-009 are negligible, we have clumped them together and use 
the combined state “5” to compare to state 5 of NOM-172. Looking at Figure A6 
and Figure A7 we see that depending on the regulation and region, sometimes 
NADF-009 rule provides larger probabilities to some states in some regions 
whereas in other times and regions this behavior is given by NOM-172. For in-
stance, in the case of state 2 (corresponding to regular and acceptable air quali-
ties in NADF-009 and NOM-172, respectively), in all regions the values of the 
probabilities using NADF-009 is higher than those given by NOM-172 at all 
hours of the day. The opposite happens when we consider states 4 and 5 (cor-
responding, respectively, to states VB and EB+D states in NADF-009 and VB 
and EB air quality indices in NOM-172). The rules given by NOM-172 favors 
state 3 (bad air quality under both rules) over NADF-009 if we consider the time 
period after around 8 am (one of the rush hours—when people go to work) in 
almost all regions with the exception of region SW where both rules give similar 
weights until around 3 pm which is another of the rush hours in Mexico City 
(lunch time around 2 pm). After 3 pm, NOM-172 gives higher probabilities to 
state 3 than NADF-009. Additionally, NOM-172 always gives a higher probabil-
ity to good air quality (state 1) until around noon when we compare to the 
probabilities given by NADF-009. This is consistent with the fact that during the 
early hours of the day some activities that threatens to increase the levels of pol-
lution have not started yet and those that have started have not yet produced 
enough quantity to be considered hazardous. Notice that under NADF-009, state 
1 (good air quality) has always low probability of occurrence. Similar behavior 
may be observed when we consider states 4 and 5 (VB and EB air quality in 
NOM-172 and VB and EB+D states in NADF-009). However, the reason for the 
small values of the probabilities of their occurrences may be that the thresholds 
associated with those states are high. 
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4. Comments 

In this study we have used a nonhomogeneous Markov chain model to investi-
gate the behavior of air quality indices in Mexico City when different rules are 
applied. We consider both the NADF-009 and NOM-172 regulations. Using the 
rules specified by them, air quality indices were assigned to the criterion pollu-
tants and the regional air quality indices were assigned to each region of Mexico 
City for every hour of the day during the year 2020. In the present case, results 
show that the behaviors of the estimated quantities of interest mimic well those 
of the observed (see plots given in the appendix) showing the suitability of the 
model and results presented in this work in the study of air quality indices. 

We may also compare, as in [22] and [32], the probabilities of having the oc-
currence of a given air quality index in a given hour of the day when we have in-
formation of few hours earlier. For instance, consider region SW and NOM-172 
and assume we want to know the probability that at 1 pm the air quality index 
will be 3, i.e., B under the NOM-172 legislation, and that at 10 am, 11 am, and 12 
pm we have the sequence of states 1, 1, and 2 (i.e., G, G, and A air quality). 
Therefore, we want to know the probability of the following sequence of states, 

10 11 12 131, 1, 2, 3X X X X= = = = . Hence, we have,  

( )
( ) ( ) ( ) ( )

10 11 12 13

13 12 12 11 11 10 10

1, 1, 2, 3

3 | 2 2 | 1 1| 1 1
0.202 0.483 0.625 0.491 0.03.

P X X X X

P X X P X X P X X P X

= = = =

= = = × = = × = = × =

≈ × × × ≈

 

(The values of the transition probabilities used in the calculations are those 
estimated using the samples generated from their corresponding posterior dis-
tributions. The probability of a state at time 10 am, i.e., ( )10P X i= , i∈ , is 
obtained using the estimated transition and initial probabilities and the recursive 
formula (1).) 

If we compare to the other probabilities, i.e., of having at 1 pm either state 1, 
2, 4, or 5 (G, A, VB, or EB), then we have  

( )10 11 12 131, 1, 2,

0.013 0.483 0.625 0.491 1.927E 03, 1
0.763 0.483 0.625 0.491 0.113, 2
0.005 0.483 0.625 0.491 7.41E 04, 4
0.017 0.483 0.625 0.491 2.52E 03, 5

P X X X X i

i
i
i
i

= = = =

× × × ≈ − =
 × × × ≈ =≈  × × × ≈ − =
 × × × ≈ − =

 

Hence, this sequence of states gives a high probability of having an A (accept-
able) air quality at 1 pm. 

When we consider the NADF-009 legislation, the same sequences of states, 
i.e., 10 11 12 131, 1, 2,X X X X i= = = =  have probabilities approximately equal to 
1.13E−04, 0.0145, 1.135E−03, 8.488E−07, 6.34E−07, and 1.369E−07 for  

1,2,3,4,5i = , and 6 respectively. Thus, under the NADF-009 legislation, we also 
have the occurrence of the sequence 10 11 12 131, 1, 2, 2X X X X= = = =  with the 
highest probability. However, under NADF-009 the probability of this string of 
states is small when compared to that given the case of NOM-172. Similar analy-
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sis may be performed for any sequence of states in a given day in a given region 
of interest. 

Another question that may rise is related to the probability of having a given 
state in a time t s+  into the future given the state at time t. In order to do that, 
we just need to obtain the product of matrices ( )1t s

l t P l+ −

=∏ . Hence, take for in-
stance the results associated with region SW. Suppose we have a state at time 

10 amt =  and want to know the probability of a given state at time 4 pmt s+ = . 
Hence, we need the values of the transition matrices at times 10, 11, 12, 13, 14, 
and 15, since ( )15P  will give the transition from time 3 pm to 4 pm. The val-
ues of the matrices at different times, using both the NADF-009 and NOM-172 
rules, are given in Appendix A.3 and Appendix A.4, respectively. 

Consider first the cases where NADF-009 is used. We may see that the highest 
probability is associated with the transition from state 3 to state 3, i.e., if at 10 am 
we have bad air quality, then the highest probability is given to the event that at 
4 pm we will still have bad air quality. However, if we look at the transitions at 
the intervals ( )10, 10t t s s= + = + , 2,3,4,5s = , we see that  

( ) ( )33 , 3 | 3t s tP t t s P X X++ = = =  decreases as s increases. Hence, even though 
we have a high probability of having bad air quality, it decreases as we move 
further away in time from the morning hour 10 am. We also note that a fast de-
crease occurs when we start with good air quality (state 1) and obtain the proba-
bility of having good air quality at time 4 pm. We see that the transition proba-
bility from 1 at 12 pm, which is approximately 0.83, drops to approximately 0.49 
at 4 pm, i.e., the probability of continuing to have a good air quality at 4 pm 
given that we have a good air quality at 12 pm drops almost 50%. On the other 
hand, we see a substantial increase in the probability of having state 3 (bad air 
quality) at 4 pm given that we have good air quality (state 1) at 10 am. Similar 
behavior occurs when we consider state 2 (regular air quality) at time 10 am. 
Proceeding in this way, we may analyze the other possible transitions. 

If we take into account NOM-172, then the highest transition probability is of 
going from state 4 to state 3, i.e., going from extremely bad to very bad air quality. 
This behavior is also observed when we take the intervals ( )10, 10t t s s= + = + , 

2,3,4s = . Note that the extremely high transition probability obtained for the 
interval ( )10, 10 2t t s= + = +  (corresponding to the transition from state 2 to 
2, i.e., acceptable to acceptable air quality) with value approximately 0.838, 
drops drastically to approximately 0.38 when we consider the interval 
( )10, 10 6t t s= + = + . We also see that the low value of the transition from state 
2 (acceptable air quality) at time 10 am to state 3 (bad air quality) at time 12 pm 
(approximately 0.11) increases to approximately 0.41 if we consider the transi-
tion to state 3 at time 4 pm. Similar analysis may be performed for the other 
transitions. 

Consider now a specific transition. Say, we have good air quality (i.e., state 1) 
at time 10 am. The highest probability is given by the transition to state 2 (i.e., 
acceptable air quality) followed closely by a transition to state 3 (bad air quality) 
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when we consider the NOM-172. In the case of NADF-009, we have that the 
highest value is to a transition to state 1 (good air quality) followed, not so 
closely, by a transition to state 2 (regular air quality) at time 4 pm. Therefore, in 
this specific case we have NOM-172 giving a more pessimistic value to the air 
quality at 4 pm, giving high probability to a worse scenario. This is more consis-
tent with what happens in reality, since region SW is the one with more serious 
air pollution problems followed by region CE. 

Analyses similar as that made for region SW may be performed for the other 
regions. Looking at the results given by the model considered here, we see that 
they reflect the behavior of the data. Using them as a first approach to predict 
the behavior of the air quality in a given hour of the day can be very useful, since 
if there is a high probability of having an ill-suited air quality in a given hour, 
measures can be taken in order to avoid it, as well as to prevent population ex-
posure to unsuitable air quality. Using the estimated probabilities and the me-
thod for simulating Markov chains, we may also simulate different scenarios for 
the sequence of states in a given day. 

Remark. Recently, a working group has been assembled in order to revise the 
intervals considered in the “Air and Health Index”. The new extremes would 
take into account the information provided by the limits of the intervals given in 
the regulations considered in 2019 in the case of SO2. 

5. Conclusion 

Some conclusion points regarding the results obtained in this work are: esti-
mated initial, transition and probabilities are at time t represent well the corres-
ponding observed (empirical) probabilities; the air quality indices associated us-
ing the NOM-172 represent well the observed behavior of the pollutants consi-
dered in this analysis, however, it is worth mentioning that in some cases 
NADF-009 also gives a good representation; the air quality indices produced by 
the NOM-172 allow to detect more times the contribution of pollutants other 
than ozone and PM10 to the air quality classification in Mexico City; the model 
used in this study allows us to obtain the probability of having a given air quality 
in a given time of the day using information of the current and past air quality 
indices. We may also use the model to simulate strings of air quality states in 
given hours.  
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Appendix 

In this appendix we present the plots of the estimated and observed transition 
probabilities for region SW when both the NADF-009 and NOM-172 rules are 
taken into account (Figures A1-A5). We also present a comparison between the 
plots of the estimated probabilities ( )tP X k= ; k∈ ; when we take into ac-
count both NADF-009 and NOM-172 rules and data from all regions (Figure 
A6 and Figure A7). We also have the products of the transition matrices at time 
t s+  with 10t =  for 2,3,4,5s = , for both the NADF-009 and NOM-172 rules 
when we consider data from region SW. 

A.1. Estimated and Observed Transition Probabilities in the Case 
of NOM-172 and NADF-009 in the Case of Region SW 

In this section we present the plots of the estimated and observed transition 
probabilities for region SW when both the NADF-009 and NOM-172 rules are 
taken into account. 
 

 
Figure A1. Estimated (dashed red lines) and observed (black lines) transition probabili-
ties 1iP , 2iP , and 3iP , 1, 2,3, 4,5i =  (from left to right) together with the 95% credible 
intervals (blue dashed lines) when data from region SW are used and the NOM-172 is 
taken into account. 
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Figure A2. Estimated (dashed red lines) and observed (black lines) transition probabilities 4iP  
and 5iP , 1, 2,3, 4,5i =  (from left to right) together with the 95% credible intervals (blue dashed 
lines) when data from region SW are used and the NOM-172 is taken into account. 

 

 
Figure A3. Estimated (dashed red lines) and observed (black lines) transition probabilities 1iP  
and 2iP , 1, 2,3, 4,5,6i =  (from left to right) together with the 95% credible intervals (blue dashed 
lines) when data from region SW are used and the NADF-009 is taken into account. 
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Figure A4. Estimated (dashed red lines) and observed (black lines) transition probabilities 3iP  and 

4iP , 1, 2,3, 4,5,6i =  (from left to right) together with the 95% credible intervals (blue dashed lines) 
when data from region SW are used and the NADF-009 is taken into account. 

 

 
Figure A5. Estimated (dashed red lines) and observed (black lines) transition probabilities 5iP  and 

6iP , 1, 2,3, 4,5,6i =  (from left to right) together with the 95% credible intervals (blue dashed lines) 
when data from region SW are used and the NADF-009 is taken into account. 
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A.2. Estimated Probabilities at Time t. 

In this section we present the plots of the probabilities ( )tP X k= ; k∈ , un-
der the two rules for all regions. 
 

 
Figure A6. Estimated probabilities ( )tP X k= , k∈  under the NOM-172 (red dashed lines) and NADF-009 

(black continuous lines) legislations when data from regions NW, NE, and CE are used. 
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Figure A7. Estimated probabilities ( )tP X k= , k∈  under the NOM-172 (red dashed lines) and 

NADF-009 (black continuous lines) legislations when data from regions SE and SW are used. 

A.3. Transition Matrices under NADF-009 Legislation 

In this appendix we present the values of the k-step transition matrices at time 
t k+  with 10t =  for 2,3,4,5k = , in the case of NADF-009 legislation. 

( ) ( )10 11

0.86728496 0.1298228 0.002121038 2.879144e 04 2.463245e 04 2.369375e 04
0.01365320 0.9822032 0.003951540 5.186911e 05 7.529605e 05 6.488195e 05
0.03903096 0.0457814 0.898957725 5.823604e 03 5.473678e

NADF NADFP P×

− − −
− − −
− −

=
03 4.932630e 03

0.29932902 0.3450891 0.312730790 1.368365e 02 1.512898e 02 1.403840e 02
0.31738536 0.3265309 0.317425648 1.237760e 02 1.361011e 02 1.267042e 02
0.31223209 0.3461313 0.296905120 1.426511e 02 1.573003e 02

−
− − −
− − −
− − 1.473641e 02

 
 
 
 
 
 
 
  − 

 

( ) ( ) ( )10 11 12

0.7932578 0.19378723 0.01233826 2.016255e 04 2.081614e 04 0.0002069464
0.0196220 0.90565576 0.07445590 8.758518e 05 6.919422e 05 0.0001095604
0.0538462 0.06322078 0.86970851 5.419730e 03 4.404

NADF NADF NADFP P P× ×

− −
− −
−

=
689e 03 0.0034000942

0.2916582 0.35972633 0.33633613 4.749636e 03 4.079265e 03 0.0034504618
0.3070073 0.34309148 0.33840815 4.457437e 03 3.818362e 03 0.0032172889
0.3036946 0.36207284 0.32174396 4.820716e 03 4.148161e

−
− −
− −
− − 03 0.0035197486

 
 
 
 
 
 
 
  
 
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( ) ( ) ( ) ( )10 11 12 13
0.68680192 0.2673267 0.04511503 0.0002562627 0.0002452247 0.0002548267
0.03024087 0.7463856 0.22299945 0.0001071835 0.0001426761 0.0001241934
0.05279191 0.1002298 0.84258347 0.0014552

NADF NADF NADF NADFP P P P× × ×

=
637 0.0015653432 0.0013742223

0.26060852 0.3517038 0.38429445 0.0011734771 0.0011592651 0.0010604524
0.27339790 0.3400793 0.38327522 0.0011196013 0.0011118267 0.0010161472
0.27103968 0.3546869 0.37085747 0.0011841772 0.0011644084 0.0010673418

 
 
 
 
 
 
  
 

 

( ) ( ) ( ) ( ) ( )10 11 12 13 14
0.53391704 0.3477369 0.1176640 0.0001952744 0.0002189690 0.0002678320
0.03967104 0.5471454 0.4128126 0.0001053052 0.0001352007 0.0001304123
0.04489038 0.1678843 0.7858325 0.000

NADF NADF NADF NADF NADFP P P P P× × × ×

4363241 0.0004813575 0.0004751864
0.20924004 0.3434012 0.4462270 0.0003514340 0.0003857189 0.0003945451
0.21878027 0.3381339 0.4419779 0.0003431609 0.0003772599 0.0003875900
0.21731255 0.3465122 0.4350389 0.0003529732 0.0003869620 0.0003964589

 
 
 
 
 
 
  
 

 

( ) ( ) ( ) ( ) ( ) ( )10 11 12 13 14 15
0.48586234 0.3612326 0.1512670 0.001124792 0.0002913879 0.0002219073
0.04223916 0.5142324 0.4399513 0.003309384 0.0001454586 0.0001223727
0.04309104 0.2269008 0.72330

NADF NADF NADF NADF NADF NADFP P P P P P× × × × ×

=
28 0.006280240 0.0002133945 0.0002117309

0.19314011 0.3592690 0.4434931 0.003650928 0.0002378757 0.0002089682
0.20168003 0.3552357 0.4390186 0.003618069 0.0002387894 0.0002088093
0.20045489 0.3615969 0.4339320 0.003565676 0.0002402178 0.0002103127

 
 
 
 
 
 
 
 
 

 

A.4. Transition Matrices under NOM-172 Legislation 

In this appendix we present the values of the k-step transition matrices at time 
t k+  with 10t =  for 2,3,4,5k = , in the case of NOM-172 legislation. 

( ) ( )10 11

0.285894695 0.60830515 0.0525356 0.010681151 0.04258341
0.033856513 0.82729570 0.1094398 0.002901937 0.02650608
0.061911956 0.61773813 0.2720796 0.018161457 0.03010885
0.006429186 0.49019092 0.4710980 0.0

NOM NOMP P×

=
01851115 0.03043082

0.003974996 0.06809812 0.1226210 0.172475314 0.63283053

 
 
 
 
 
 
 
 

 

( ) ( ) ( )10 11 12

0.143991494 0.6361475 0.1629568 0.00854453 0.04835969
0.026945924 0.6838821 0.2379670 0.01134303 0.03986202
0.038092906 0.5963030 0.3022516 0.01951440 0.04383815
0.010307591 0.5203849 0.3922892 0.0

NOM NOM NOMP P P× ×

=
2969768 0.04732061

0.006163374 0.1916220 0.2043570 0.05157009 0.54628758

 
 
 
 
 
 
 
 

 

( ) ( ) ( ) ( )10 11 12 13

0.12491464 0.4985168 0.3024831 0.01945058 0.05463489
0.03654933 0.5169363 0.3769723 0.02347644 0.04606565
0.04322419 0.4638306 0.4113310 0.03097039 0.05064374
0.02042782 0.4139566 0.4706395

NOM NOM NOM NOMP P P P× × ×

=
0.04069420 0.05428188

0.01104967 0.1608835 0.2752688 0.09512706 0.45767094

 
 
 
 
 
 
 
 
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( ) ( ) ( ) ( ) ( )10 11 12 13 14

0.10671288 0.4315340 0.3561246 0.03426467 0.07136387
0.04444095 0.4365171 0.4184575 0.03894169 0.06164268
0.04742384 0.4011857 0.4395324 0.04297404 0.06888403
0.02954652 0.3654060 0.

NOM NOM NOM NOM NOMP P P P P× × × ×

=
4813401 0.04899905 0.07470838

0.01517133 0.1600377 0.3090895 0.09287188 0.42282963

 
 
 
 
 
 
 
 

 

( ) ( ) ( ) ( ) ( ) ( )10 11 12 13 14 15

0.13251298 0.3737090 0.3580718 0.05113890 0.08456733
0.07629579 0.3811442 0.4091275 0.05511971 0.07831278
0.07663088 0.3589040 0.4222203 0.05928177 0.08296309
0.05798270 0.33

NOM NOM NOM NOM NOM NOMP P P P P P× × × × ×

=
76266 0.4522358 0.06525374 0.08690114

0.02922407 0.1669670 0.3159645 0.13466304 0.35318148

 
 
 
 
 
 
 
 
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