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Abstract 
This study assessed the levels of oxidative stress biomarkers in gills and liver, 
as well as the activities of transaminases in the liver of Nile tilapia (Oreoch-
romis niloticus), exposed to pharmaceutical effluents. The pharmaceutical ef-
fluents were collected from two pharmaceutical industries in Lagos, Nigeria. 
The assessment of physicochemical characteristics of the effluents indicated 
that some parameters were not in accordance with NESREA limits. The acute 
toxicity studies showed that 96hrLC50 values of “effluent A” and “effluent B” 
were 27.0 ml/L and 18.0 ml/L respectively. The juveniles of O. niloticus were 
exposed to 1/100th and 1/10th LC50s of the two effluents for a period of 14 and 
28 days. These concentrations significantly increased the level of the lipid pe-
roxidation product, malondialdehyde. There was also inhibition of the activi-
ties of superoxide dismutase and catalase as well as significantly lower levels 
of reduced glutathione after 28 days. The levels of the transaminases (aspar-
tate aminotransferase and alanine transaminase) were elevated in the liver of 
the fish after the exposure to the effluents. The present findings showed that 
the wastewater caused oxidative stress and hepatocellular damage in the fish 
suggesting potential ecotoxicological risks of the wastewater to aquatic or-
ganisms. 
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1. Introduction 

The pharmaceutical industry has been noted as one of the major sources of ef-
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fluent discharge into aquatic ecosystems [1]. There are a few pharmaceutical 
companies in Nigeria of which most are located in Lagos and Ogun States and 
these companies discharge their wastewater into nearby creeks, rivers, and la-
goons [2]. The effluents commonly known as pharmaceutical effluents are waste-
water generated during drug production by these pharmaceutical industries [3]. 
The fate of pharmaceutical effluents in aquatic ecosystems is dependent on the 
physical and chemical characteristics of the individual components of the efflu-
ents and the nature of the receiving water body [4]. During wastewater treat-
ment in sewage treatment plants (STPs), components with low adsorption coef-
ficient tend to remain in the aqueous phase which enhances their mobility into 
the receiving water body [5]. Pharmaceutical effluents contain a vast number of 
chemicals and microorganisms depending on the drug that is being produced 
and are toxic to biological organisms due to the presence of salt, surfactants (de-
tergents, emulsifiers and dispersant), ionic metals and their metal complexes, 
organic chemicals, biocides, unmetabolized drugs, toxic anions and microorgan-
isms [6] [7] [8] [9]. Some of these components can combine with unsaturated 
fatty acids of phospholipids located in the cell membranes [10]. This leads to 
oxidative damage and the production of malondialdehyde and then the oxidative 
stress is countered by the action of antioxidative stress enzymes such as supe-
roxide dismutase (SOD) and catalase (CAT) [11]. Results from a biochemical assay 
indicated that environmentally relevant concentrations of Benzo[b]fluoranthene 
increased aspartate aminotransferase and alanine transaminase levels in fish. 
Glutathione-S-transferase, superoxide dismutase and catalase were inhibited in 
the exposed fish, while malondialdehyde was significantly increased [12]. Several 
studies have reported that specific constituents of pharmaceutical effluents have 
deleterious effects on living organisms [13] [14]. It has been noted that the ap-
proach of investigating the effects of individual components of pharmaceutical 
effluents had a limitation of providing information on the effects of all compo-
nents present as a mixture in the effluent [15]. Lots of research has assessed the 
toxicity of pharmaceutical effluents [16] [17]. It was established in a study that 
bacterial isolates from pharmaceutical waste water investigated revealed mul-
ti-drug resistant strains [18]. In that regard, this study investigated the acute and 
biochemical effects of pharmaceutical effluents on an ecotoxicologically relevant 
organism. The term waste water used in the study represents treated effluents 
collected from the discharge point before entry into the water body. 

2. Methodology 
2.1. Pharmaceutical Effluents Collection and Physicochemical  

Analyses  

“Pharmaceutical effluent A” was collected from a pharmaceutical industry lo-
cated at Victoria Island, Lagos, Nigeria while “Pharmaceutical effluent B” was 
from a pharmaceutical industry at Ikeja, Lagos, Nigeria. The physicochemical 
parameters of the effluents were assessed according to the methods of APHA [19].  
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2.2. Test Fish 

Juveniles of Nile tilapia, Oreochromis niloticus (length 7.4 - 8.1 cm; weight 13.3 - 
14.6 g) were acquired from a fish farm at Ikorodu Town, Lagos and transported 
to the laboratory. Upon arrival, they were transferred to holding tanks and ac-
climatized for a week, during which they were fed twice (morning and evening) 
daily with Coppens fish feed following established techniques [20]. 

2.3. Bioassay Procedure 

A total of 90 acclimatized juvenile Nile tilapia specimens were exposed to 
sub-lethal concentrations (1/100thLC50 and 1/10thLC50) of the effluents based on 
the results from an initial acute toxicity evaluation. The fish were divided into 
three groups of 30 per group for the control and effluent treatments in glass 
aquaria. Each test concentration along with the control was set in triplicates of 
10 fish per replicate. The test media were renewed every 48 h to maintain the 
concentration and minimize oxygen stress for the duration of the exposure. 
Physical-chemical water parameters were monitored daily using appropriate 
digital instruments (Jenway). After days 14 and 28, fish samples were dissected 
to obtain tissues (liver and gill) required for biochemical assays. All procedures 
performed in studies involving the fish were in accordance with the ethical 
standards of the University of Lagos Committee on the use of animal subjects in 
scientific research. 

2.4. Determination of Oxidative Stress Enzyme Biomarkers  

The oxidative stress biomarker responses in the liver and gills of Nile tilapia 
evaluated after exposure to pharmaceutical effluents after the 14 and 28 days 
bioassay were reduced glutathione (GSH), superoxide dismutase (SOD), catalase 
(CAT) and lipid peroxidation (MDA). The reduced glutathione (GSH) content 
of liver and gill tissues as non-protein sulphydryls was estimated according to 
the method described by Sedlak and Lindsay [21]. Superoxide dismutase activity 
was determined by its ability to inhibit the auto-oxidation of epinephrine by the 
increase in absorbance at 480 nm as described by Sun and Zigma [22]. Catalase 
activity was determined according to Sinha et al. [23]. It was assayed colorimetr-
ically at 620 nm and expressed as micromoles of hydrogen peroxide (H2O2) 
consumed/min/ml/mg protein at 25˚C. Malondialdehyde (MDA) an index of li-
pid peroxidation was determined using the method of Buege and Aust [24].  

2.5. Determination of Transaminase Enzymes Responses 

Aspartate aminotransferase (AST) and alanine transaminase (ALT) levels were 
determined following the methods of Reitman and Frankel [25].  

2.6. Data Analyses 

Toxicological dose-response data involving quantal response was analyzed by 
Probit analysis. One-way analysis of variance (ANOVA) was used to determine 
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the differences (p < 0.05) among the various groups. Difference between each 
treatment group and the control was determined using Duncan multiple range 
test at p < 0.05. 

3. Results 
3.1. Physicocphemical Characteristics of the Pharmaceutical  

Effluents 

The results of the physicochemical characterization of pharmaceutical effluent A 
indicated that suspended solids (90.1 mg/L), nitrate (225 mg/L), sulphate (450 
mg/L), phosphate (164 mg/L), total hardness (600 mg/L) and cobalt (0.725 
mg/L), colour (2490 PCU), turbidity (402 NTU), alkalinity (250 mg/L) were 
above NESREA limits [26] (Table 1). 
 
Table 1. Physicochemical properties of pharmaceutical effluents. 

Parameters Effluent A Effluent B NESREAa 

Temperature ˚C 24.4 25.9 <40 
pH 6.65 6.81 6.5 - 9.0 
DO (mg/L) 3.5 1.8 - 

Conductivity (µS/cm) 333.5 526 500 

Colour (PCU) 2490 100 3 

Appearance Yellow Whitish Clear 

Alkalinity (mg/L) 250 212.5 200 
Chloride 425.4 63.81 600 
Turbidity NTU 402 102 5 

Total Dissolved Solid (mg/L) 169 255 2000 

Total Suspended Solid (mg/L) 90.1 24.5 30 

Nitrate (mg/L) 225 148 20 

Nitrite (mg/L) 53.4 42.5 - 

Sulphates (mg/L) 450 0 200 

Phosphate (mg/L) 164 40.5 5 

Salinity (ppt) 0.16 0.24 0.6 
Total Hardness (mg/L) 600 600 150 
Sodium (mg/L) 120 100 200 

Magnesium (mg/L) 200 150 200 

Hydrogen Sulphide (mg/L) 0.1 0.15 0.2 

TOC % 4.67 4.51 10 

COD (mg/L) 80 100 80 

BOD (mg/L) 20 31 30 

Oil and Grease (mg/L) 17.1 11.2 - 

Iron (mg/L) 0.547 1.753 20 

Lead (mg/L) <0.001 <0.001 0.05 

Zinc (mg/L) 0.199 0.594 1 

Copper (mg/L) 0.033 0.036 1.5 

Cobalt (mg/L) 0.724 0.533 0.5 

Manganese (mg/L) 0.144 0.226 5 

Effluent A—Pharmaceutical effluent A; Effluent B—Pharmaceutical effluent B; aNESREA [26]. 

https://doi.org/10.4236/jep.2021.124019


S. M. Lan et al. 
 

 

DOI: 10.4236/jep.2021.124019 300 Journal of Environmental Protection 
 

The results of pharmaceutical effluent B physicochemical analysis indicated 
colour (100), turbidity (102 NTU), nitrate (148 mg/L) and total hardness (600 
mg/L) were higher than NESREA stipulated limits (Table 1). Equally, higher 
than the NESREA limits were the levels of conductivity (526.0 µS/cm), alkalinity 
(212.50 mg/L), phosphate (40.5 mg/L), cobalt (0.533 mg/L), chemical oxygen 
demand (100 mg/L) and biological oxygen demand (31 mg/L) (Table 1). 

3.2. Acute Toxicities of the Pharmaceutical Effluents on  
Oreochromis niloticus 

The 96-hour lethal concentration (LC50) of pharmaceutical effluent A on juvenile 
tilapia fish was 27.0 ml/L (V:V) (Table 2) whereas that of pharmaceutical efflu-
ent B was 18.0 ml/L (V:V) (Table 3). The fish responded to the pharmaceutical 
effluents in a dose-dependent manner. 

3.3. Oxidative Stress Enzymes Responses of Nile Tilapia  
(Oreochromis niloticus) to Pharmaceutical Effluent A 

The results of the oxidative stress biomarkers in the gill and liver are presented 
in Table 4. The levels of GSH in the gills from the treated groups significantly (p < 
0.05) decreased on days 14 and 28 in relation to the control. Activities of SOD in 
the gills of the treated groups were significantly (p < 0.05) lower than the control 
throughout the duration of exposure. 1/10thLC50 of the effluent A inhibited (p < 
0.05) the activities of gill CAT on days 14 and 28. The levels of MDA in the gills 
of the treated groups significantly significant (p < 0.05) increased throughout the 
period of exposure. 

The levels of GSH in the liver of the treated groups were significantly lower 
(p < 005) than the control on day 14. However, there was no significant (p > 
005) between the control and the 1/100thLC50 group on day 28. After 28 days, the 
activities of SOD in the liver of the treated groups were significantly (p < 0.05) 
lower than the control. CAT activities in the liver of the treated groups signifi-
cantly (p < 0.05) decreased after 14 and 28 days of exposure. The sub-lethal con-
centrations of effluent A caused a significant (p < 0.05) elevation in the levels of 
MDA. 
 
Table 2. Sub-lethal dose determination for pharmaceutical A after 96 hours. 

Effluent A 
LC5 
(ml/L) 

LC50 
(ml/L) 

LC95 
(ml/L) DF SE 

Equation  
of line 

Concentration 
Confidence  

Interval 

1.9 27.0 38.84 
3 0.36 Y = 1.2x ± 0.6 

0.01 - 0.53 1.39 - 4.00 18.28 - 258.53 

 
Table 3. Sub-lethal dose determination for pharmaceutical B after 96 hours. 

Effluent B 
LC5 
(ml/L) 

LC50 
(ml/L) 

LC95 
(ml/L) DF SE 

Equation  
of line 

Concentration 
Confidence  

Interval 

7.00 18.00 42.63 
3 0.37 Y = 2x ± 0.5 

0.00 - 0.38 0.44 - 3.00 15.20 - 2211.00 
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Table 4. Oxidative stress enzymes responses of the Oreochromis niloticus to pharma-
ceutical effluent A. 

Gills     

Days 
Concentrations 

GSH 
(µmol/ml/mg 

pro) 

SOD 
(µmol/ml/mg 

pro) 

CAT 
(µmol/ml/mg 

pro) 

MDA 
(µmol/ml/mg 

pro) 

14 days     

Control 18.90 ± 0.88 4.52 ± 0.14 30.71 ± 1.80 0.78 ± 0.10 

1/100thLC50 16.10 ± 0.61* 3.92 ± 0.12* 26.08 ± 1.06 3.49 ± 0.68* 

1/10thLC50 13.99 ± 0.30* 3.21 ± 0.02* 23.21 ± 1.41* 4.47 ± 0.35* 

28 days     

Control 17.25 ± 0.67 4.62 ± 0.36 30.36 ± 1.42 0.88 ± 0.05 

1/100thLC50 13.79 ± 0.85* 3.06 ± 0.05* 27.83 ± 0.75 4.03 ± 0.36* 

1/10thLC50 11.02 ± 0.43* 2.94 ± 0.03* 25.55 ± 0.50* 5.44 ± 0.61* 

Liver     

Days 
Concentrations 

    

14 days     

Control 15.74 ± 0.22 4.06 ± 0.61 35.54 ± 1.15 0.73 ± 0.05 

1/100thLC50 12.91 ± 0.56* 2.69 ± 0.32 23.36 ± 0.54* 2.00 ± 0.29* 

1/10thLC50 9.82 ± 0.49* 2.27 ± 0.04* 22.03 ± 0.95* 4.41 ± 0.06* 

28 days     

Control 16.10 ± 1.00 4.36 ± 0.20 34.12 ± 1.07 0.76 ± 0.04 

1/100thLC50 12.41 ± 1.42 3.17 ± 0.41* 19.32 ± 1.20* 1.820 ± 0.38* 

1/10thLC50 9.31 ± 0.75* 1.85 ± 0.33* 14.50 ± 0.43* 5.69 ± 0.34* 

*Denotes treatments that are significantly (p < 0.05) different from the control within the same duration of 
exposure. 

3.4. Oxidative Stress Enzymes Responses in the Liver of Nile  
Tilapia (Oreochromis niloticus) to Pharmaceutical Effluent B 

The results of the oxidative stress biomarkers in the gills and liver of the fish ex-
posed to effluent B are presented in Table 5. GSH levels in the gills of the treated 
groups were significantly (p < 0.05) lower than the control after the duration of 
exposure. The SOD activities in the gills of the treated groups were lower than 
the control, however, only those in the 1/10thLC50 group were significant (p < 
0.05) after 14 days of exposure. On day 28, the SOD activities in the treated-
groups were markedly (p < 0.05) lower than the control. CAT activities in the 
gills of were markedly (p < 0.05) lower throughout the duration of the exposure. 
The levels of MDA in the gills of the treated groups were significantly (p < 0.05) 
higher than the control throughout the period of exposure. 

The GSH levels in the liver of the treated groups were significantly (p < 0.05) 
lower than the control on day 28. The activities of the SOD in the liver of the 
treated groups were significantly lower than the control but did not vary signifi-
cantly (p > 0.05). CAT activities of the liver of the treated groups were significantly  
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Table 5. Oxidative stress enzymes responses in the liver of the Tilapia Fish (Oreochromis 
niloticus) to pharmaceutical effluent B. 

Gills     

Days 
Concentrations 

GSH 
(µmol/ml/mg 

pro) 

SOD 
(µmol/ml/mg 

pro) 

CAT 
(µmol/ml/mg 

pro) 

MDA 
(µmol/ml/mg 

pro) 

14 days     

Control 18.04 ± 0.72 5.76 ± 0.616 31.33 ± 0.65 0.83 ± 0.07 

1/100thLC50 15.09 ± 0.60* 4.296 ± 0.648 27.76 ± 0.75* 1.41 ± 0.04* 

1/10thLC50 13.90 ± 0.32* 2.82 ± 0.51* 26.48 ± 0.94* 2.91 ± 0.50* 

28 days     

Control 17.18 ± 0.57 5.28 ± 0.33 33.87 ± 0.60 0.82 ± 0.04 

1/100thLC50 14.49 ± 0.77* 3.75 ± 0.058* 26.26 ± 1.27* 1.30 ± 0.20* 

1/10thLC50 13.50 ± 0.39* 3.506 ± 0.15* 22.67 ± 0.83* 2.61 ± 0.28* 

Liver     

Days 
Concentrations 

    

14 days     

Control 19.70 ± 0.232 4.10 ± 0.07 35.28 ± 0.61 0.74 ± 0.05 

1/100thLC50 18.85 ± 0.90 3.46 ± 0.28 28.47 ± 1.12* 1.88 ± 0.08* 

1/10thLC50 14.83 ± 0.26* 3.82 ± 0.52 21.39 ± 0.62* 2.31 ± 0.10* 

28 days     

Control 21.04 ± 0.89 4.18 ± 0.36 24.47 ± 0.23 1.27 ± 0.30 

1/100thLC50 18.14 ± 0.65* 3.61 ± 0.30 22.82 ± 0.87 1.85 ± 0.18* 

1/10thLC50 15.54 ± 0.39* 3.52 ± 0.37 18.82 ± 0.65* 2.78 ± 0.19* 

Denotes treatments that are significantly (p < 0.05) different from the control within the same duration of 
exposure. 

 
(p < 0.05) lower than the control after 14 days of exposure. After 28 days of ex-
posure, CAT activities in the liver of 1/10thLC50 group were significantly (p < 
0.05) lower than the control whereas the activities in the liver in the 1/100thLC50 
group did not markedly (p > 0.05) differ from the control. The levels of MDA in 
the liver of the treated groups were significantly (p < 0.05) higher than the con-
trol throughout the period of exposure. 

3.5. Transaminase Enzymes Responses 

Figure 1 & Figure 2 display the levels of transaminase enzymes in the fish ex-
posed to sub-lethal concentrations of pharmaceutical effluent A. AST and ALT 
levels in the liver of the treated groups were significantly (p < 0.05) higher than 
the control after 14 and 28 days. AST levels in the liver of the fish ranged from 
76.27 ± 1.02 to 98.99 ± 1.00 IU/L on day 14 whereas on day 28 they ranged from 
74.08 ± 0.788 to 88.78 ± 1.22. ALT levels ranged from 26.78 ± 1.24 to 36.33 ± 
0.56 IU/L and 24.85 ± 0.87 to 34.32 ± 1.00 IU/L on day 14 and 28 respectively. 
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Figure 1. AST alterations in O. niloticus during chronic exposure to pharmaceutical ef-
fluent A. 
 

 
Figure 2. ALT alterations in O. niloticus during chronic exposure to pharmaceutical ef-
fluent A. 
 

Figure 3 & Figure 4 illustrate the levels of transaminase enzymes in the fish 
exposed to sub-lethal concentrations of pharmaceutical effluent B. AST and ALT 
levels in the liver of the effluent B treated groups were significantly (p < 0.05) 
higher than the control after 14 and 28 days. The observed levels of AST in the  
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Figure 3. AST alterations in O. niloticus during chronic exposure to pharmaceutical ef-
fluent B. 
 

 
Figure 4. ALT alterations in O. niloticus during chronic exposure to pharmaceutical ef-
fluent B. 
 
liver of the fish ranged from 67.16 ± 1.18 to 102.17 ± 2.06 IU/L on day 14. By day 
28, the levels of AST ranged from 66.57 ± 0.26 to 117.79 ± 1.68 IU/L. ALT levels 
ranged from 23.95 ± 0.90 to 38.07 ± 0.83 IU/L and 27.32 ± 0.53 to 38.08 ± 0.92 
IU/L on day 14 and 28 respectively. 
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4. Discussion 

The monitoring of pharmaceutical effluents before they are released into water 
bodies is pertinent to the protection of aquatic organisms that come in contact 
with their constituents. The physicochemical results of the effluents in the 
present study indicated that some of their parameters were not in accordance 
with NESREA limits. This agrees with a previous study [27] that said that the ef-
fluents were not treated properly before they were discharged into the nearby 
water bodies.  

Specifically, the levels of nitrates and phosphates were higher than the stipu-
lated limits. Nitrates and phosphates are important in aquatic ecosystems be-
cause they provide food for algae and plants which serve as food for fishes. Thus, 
an increase in nitrates and phosphates may lead to an increase in the fish popu-
lation. However, if the concentrations of nitrates and phosphates increase 
beyond safe limits this may lead to an exponential increase in algal and plant 
growth (eutrophication). This phenomenon is associated with decreased levels of 
dissolved oxygen, thus, impairing the life functions of fishes.  

The concentrations of cobalt in the effluents were also found to be higher than 
the limits. A previous report [28] observed that the chronic exposure of aquatic 
organisms to cobalt was a causal factor of growth reduction.  

In this study, the biochemical responses of Nile tilapia (O. niloticus) to 
sub-lethal concentrations of pharmaceutical effluents from two industries in the 
most industrialized city (Lagos) in Nigeria were also investigated. The oxidative 
stress biomarkers including superoxide dismutase (SOD), catalase (CAT), re-
duced glutathione (GSH) and malondialdehyde (MDA) as well as transaminase 
enzymes were monitored in Nile tilapia (O. niloticus) exposed to the pharma-
ceutical effluents.  

GSH is an endogenous antioxidant that is directly involved in the neutraliza-
tion of free radicals and reactive oxygen species [29]. Reduced glutathione do-
nates a reducing equivalent to ROS to neutralize them [30]. This reaction con-
verts GSH to glutathione disulfide [31]. The increase in the oxidized state of 
glutathione in relation to the reduced state indicates oxidative stress. This im-
plies that the depletion of GSH could sensitize the organism to the toxicity of 
xenobiotics that induce oxidative stress [32]. However, the elevation of GSH le-
vels could be an adaptive mechanism to moderate oxidative stress [33]. In the 
present study, depletion of GSH was observed in the gills and liver of O. niloti-
cus exposed to sub-lethal concentrations of pharmaceutical effluents. Heavy 
metals, one of the constituents of pharmaceutical effluents can substantially alter 
GSH levels in the tissues of fishes, either by causing depletion or elevation in its 
levels [34] [35] [36]. 

Catalase is an antioxidant enzyme that catalyzes the conversion of H2O2 into 
O2 and H2O [37]. Therefore, depletion of this enzyme may lead to an increase of 
ROS but an increase in the levels of the enzyme may be a counteractive or adap-
tive response to the production of ROS. CAT levels were generally lower in the 
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treated fish. Furthermore, the activities of SOD in the tissues of the test organ-
ism were inhibited by the pharmaceutical effluents. SOD works with CAT to 
break down H2O2 [11]. SOD also catalyzes the dismutation of superoxide, one of 
the major ROS in the cell, into O2 or H2O2 [38]. 

Ultimately, there was a general significant elevation of MDA in the tissues of 
the test fish exposed to the pharmaceutical effluents. MDA is normally used as a 
lipid peroxidation marker. Lipid peroxidation occurs when free radicals or ROS 
oxidatively degrades lipids in cell membranes thereby causing cellular damage 
[10]. The high levels of MDA in the tissues of the test fish are indicative of 
pharmaceutical effluent-induced peroxidative damage.  

Transaminase enzymes’ activities are sensitive measures of hepatotoxicity and 
histopathologic changes in the liver [39]. AST and ALT levels were elevated in 
the liver of the fish exposed to the pharmaceutical effluents. A study [40] has 
reported that increased ALT and AST levels suggest increased proteolysis, en-
hanced protein catabolism and hepatocellular damage in the organism. Another 
set of studies [41] observed a significant increase in the levels of AST and ALT in 
animals treated with lead and nickel respectively. Similarly, it was reported that 
praziquantel, a pharmaceutical drug, caused an elevation in the levels of AST 
and ALT in C. gariepinus [42]. This indicates that the synergistic or additive in-
teractions among the toxic components of the effluents may be the causal factor 
of the elevation in the levels of the transaminase enzymes. 

5. Conclusion 

The present findings have established that sub-lethal concentrations of pharma-
ceutical effluents induce biochemical effects in Nile tilapia, in terms of oxidative 
stress and hepatotoxicity. This raises concerns about the impact of pharmaceut-
ical effluents on the health of fishes that inhabit aquatic environments that re-
ceive these effluents. Therefore, there is a need for proper legislation that makes 
it mandatory for pharmaceutical industries to effectively treat their effluents be-
fore discharging them into the environment. Their effluents should be moni-
tored frequently in order to protect the rich biodiversity of the aquatic ecosys-
tems. This study has shown that oxidative stress and transaminase enzymes’ ac-
tivities can be effectively used to monitor the effects of treated pharmaceutical 
effluents in aquatic organisms. 
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