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Abstract

In this paper, a new distribution called Marshall-Olkin Exponentiated Fréchet
distribution (MOEFr) is proposed. The goal is to increase the flexibility of the
existing Exponentiated Fréchet distribution by including an extra shape pa-
rameter, resulting into a more flexible distribution that can provide a better
fit to various data sets than the baseline distribution. A generator method in-
troduced by Marshall and Olkin is used to develop the new distribution.
Some properties of the new distribution such as hazard rate function, survival
function, reversed hazard rate function, cumulative hazard function, odds func-
tion, quantile function, moments and order statistics are derived. The maxi-
mum likelihood estimation is used to estimate the model parameters. Monte
Carlo simulation is used to evaluate the behavior of the estimators through
the average bias and root mean squared error. The new distribution is fitted
and compared with some existing distributions such as the Exponentiated
Fréchet (EFr), Marshall-Olkin Fréchet (MOFr), Beta Exponential Fréchet
(BEFr), Beta Fréchet (BFr) and Fréchet (Fr) distributions, on three data sets,
namely Bladder cancer, Carbone and Wheaton River data sets. Based on the
goodness-of-fit statistics and information criteria values, it is demonstrated
that the new distribution provides a better fit for the three data sets than the
other distributions considered in the study.

Keywords

Exponentiated Fréchet Distribution, Maximum Likelihood Estimation,
Marshall-Olkin Family

1. Introduction

The Fréchet distribution is a type 2 extreme value distribution of the generalized
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extreme value distribution (GEV), which includes the Gumbel distribution (type
1) and the Weibull distribution (type 3) [1]. Extreme value distributions are useful
in the analysis of data from extreme phenomena and have applications in a va-
riety of fields.

They are frequently used to model extreme phenomena such as extreme floods,
wind speeds, earthquakes, horse racing, large insurance losses, sea currents, and
other sources [2]. Over the years, several authors have introduced new distribu-
tions using various methods in search of more flexible distributions in terms of
hazard rate shapes than those that already exist.

All commonly used methods for adding a parameter have the property of sta-
bility, which means that if the method is applied twice, nothing new is obtained
the second time [3]. Many researchers have studied the flexibility of various dis-
tributions over time by introducing an additional parameter using the method
introduced in [3]. Among these distributions are the generalized exponential
Marshall-Olkin distribution presented in [4], Marshall-Olkin Generalized Pareto
distribution proposed in [5], the extension of the alpha power transform class
called Marshall-Olkin alpha power family of distributions [6], Inverse Weibull
Marshall-Olkin distribution [7], Extended Exponentiated Weibull distribution
[8], the Marshall-Olkin exponential Weibull distribution [9], Marshall-Olkin
extended Burr type XII distribution [10], the Marshall-Olkin Fréchet distribu-
tion [11], Marshall-Olkin extended uniform distribution [12] and Marshall-Olkin
extended Pareto distribution [13]. These authors investigated some of the prop-
erties of these distributions, such as moments, moment-generating functions,
and order statistics. In all cases, maximum likelihood estimation was used to es-
timate the parameters, and in a few cases, maximum likelihood and Bayesian es-
timation methods were both used as methods of estimation. Simulations were
done for some of the above distributions to assess their performances, and their
applications to various data sets.

The Exponentiated Fréchet distribution, a generalization of the classical
Fréchet distribution, was studied in [14] in the same way that the Exponentiated
exponential distribution, a generalization of the traditional exponential distribu-
tion, was introduced in [15].

The cdf and pdf of the Exponentiated Fréchet distribution are given in [14],

F(X;a,/l,é'):1—|:1—exp{—(§JlHa (1.1)
f(xa,1,8)=als" [1—exp {_( gjﬁ Hl X 4% exp {{%T} (1.2)

where >0 and A>0 are the shape parameters and & >0 is the scale pa-

respectively:

And

rameter.
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As seen from the literature above, one of the main concerns for researchers is
the search for new distributions that are more flexible than others, allowing
these distributions to be applied in modeling different data sets from various
fields. One approach for making distributions more flexible is to add an extra
parameter. This typically adds flexibility to a class of distribution functions,
which can be very useful for data analysis. Certain distributions exhibit solely
decreasing or inverted-bathtub shapes, while others exclusively display decreas-
ing and inverted-bathtub shapes. Consequently, this limitation poses challenges
for datasets from diverse fields that demonstrate an increasing hazard rate. Thus,
this paper proposes a new distribution based on Marshall-Olkin method, that is
more flexible than the Exponentiated Fréchet distribution, which can capture
monotonic (increasing and decreasing) shapes that the traditional exponentiated
Fréchet distribution cannot handle. As a result, the MOEFr incorporates both
unimodal, increasing and decreasing shapes. Therefore, the newly introduced
distribution, derived from the Fréchet distribution, possesses the capability to
effectively accommodate data exhibiting increasing and decreasing failure rates,
characteristics that were previously unattainable with the Exponentiated Fréchet
distribution. Some fundamental mathematical and statistical properties of the
new distribution like the hazard rate function, reversed hazard rate function,
survival function, cumulative hazard function, odds function, quantile function,
moments and order statistics were derived.

The structure of the article is as follows: In Section 2, the Marshall-Olkin Ge-
nerator Method and Exponentiated Fréchet distribution are presented. The
proposed distribution and some of the mathematical and statistical properties
are derived in Section 3. The estimation of the parameters of the Marshall-Olkin
Exponentiated Fréchet (MOEFr) distribution is presented in Section 4. In Sec-
tion 5, the performance of the proposed distribution is assessed using Monte
Carlo simulation. The goodness-of-fit of the model is illustrated via three appli-
cations to real data sets in Section 6. Finally, Section 7 gives the concluding re-

marks of the article.

2. Marshall-Olkin Generator Method and Baseline
Distribution

2.1. Marshall-Olkin Generator Method Theory

A method for establishing more flexible new families of distributions that
represent different types of behavior than the baseline distributions was pro-
posed in [3]. Considering F as a survival function, they introduced this new
distribution family by introducing an additional parameter £ >0 with the fol-

lowing survival function:

<0\ BF (%)
G(X,ﬂ)=T (2,1)
1- BF(x)
where f=1-4, XeR and f>0.
Then
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G(xp)=1- AF () (22)

A)F()
It is obvious that, if S =1, wehave G=F .

The cumulative distribution function is given by:
F(x F(x
G(x;p)=1- ’B_£ ) = _(_)
1-BF(x) 1-BF(x)
And the probability density function is given by:

g BT
PO FR o

The hazard rate function is given by:

(2.3)

(2.4)

h(x:4) :% (2.5)

f
with XxeR, >0 and I’(X)= (X)

2.2. Exponentiated Fréchet Distribution

The Exponentiated Fréchet (EFr) distribution as a generalization of the classical
Fréchet distribution was introduced in [14]. The pdf and the cdf of the distribu-

tion are respectively given by:

f(x;a,2,8)=als’ {1—exp{—[%)l Hl x ) exp {-(%f} (2.6)
And
F(x;a,/l,é):l—{l—exp{—(ngHa (2.7)

The Exponentiated Fréchet distribution has some appealing physical inter-
pretations and shares many applications in extreme value theory such as super-
market queues, wind speeds, accelerated life testing, sea currents, earthquakes,
horse racing, floods, track race records, and rainfall, among others [16].

Other functions associated with the given distribution are:

F(xa 4d)= {1‘9""{_@1}}01

Hazard rate function [14]:

Survival function:

f(xa,1,6
(x4, 8) = 050 A0)
F(xa,4,6)
i
A5 X ) exp{—((s) }
X
= —
X
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Cumulative hazard function:

H(Xa,4,6)=-logF (X, 1,6)

el

Reversed hazard rate function:

soleenf (9] {9
oot 1]
e

el (]
Rl

3. Marshall-Olkin Exponentiated Fréchet Distribution and
Its Properties

A typical statistical distribution theory practice is adding a new parameter to an
existing family of distribution functions. Adding an extra shape parameter often
adds flexibility to a class of distribution functions, which can be highly beneficial

for data analysis. Let us consider the Exponentiated Fréchet with the following
sY|T

survival function: If(x;a,/l,é):{l—exp{—(—j H , where x>0, a>0,
X

A>0 and 0>0.
Therefore, substituting the survival function in Equations (2.3) and (2.4), the

cdf and pdf are given respectively by:

et
oo 1]

G(x;a,1,6,0)=

and
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ps [renf ()] <+ eel (0]
sl ()

where f>0,0>0,>0,4>0 and x>0.
From Equation (2.5), the hazard rate function of the MOEFr distribution is:

el (1]
v fronl T Jroef ]

Figure 1 and Figure 2 show some possible shapes of the MOEFr pdf and hrf

(3.2)

9(xa,4,6,p)=

h(x;a,4,6,8)= (3.3)

for various parameter values. The MOEFr pdf can be asymmetrical, a J shape, or
reversed-J shape, and the MOEFr hazard rate function can have an increasing,
inverted-bathtub, or decreasing shape.

3.1. Some Useful Functions

Other functions associated with the MOEFr distribution such as the survival
function that gives the probability that an item will survive after a certain period
of time, the cumulative hazard function, the reversed hazard rate defined as the
ratio of pdf to cdf and the odds function defined as the ratio of the cdf to the

survival function are given:
) a
ool (]
X

el ]

The cumulative hazard function:
ﬂ. o
ﬂ{l— exp {— [ij H
(3.5)

asfrenl 2]

The reversed hazard rate function:

_9(xa,4,6,B)
- G(xa,4,6,8)

pes e Q)] <-reel (] oo
sl (0] oot 0]

Survival function:

S(x;a,4,6,B8) = (3.4)

H(x;a,4,8,B8)=—log

r(x;a,1,6,p)
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— a=1,A=1,8=1,p=1 ]
Qe | ~—— a=03,A=055=04,p=05
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Figure 1. Pdf of the MOEFr for various values of «,4,6,and .

1.0

0.4 0.6 0.8

Hazard rate function
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|
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Figure 2. Plot of possible shapes of hrf for the MOEFr for vari-
ous values of a,4,6 and f.

Odds function:
01,6, )= S5@:h0.5)
S(x;a,4,8,8)
2 o
1-|1-exp —(ij (3.7)

5 A
pll-exp —(Xj
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3.2. Quantile Function

The role of quantile function is essential for simulating random samples from a
given distribution. It can also be used to describe some distribution characteris-
tics like the median, skewness and, kurtosis.

Theorem 1 Let Z be the random variable where Z ~ MOEFF((Z,/%,&ﬂ) s

then the quantile function is given by:

ya\ Y
xq:G-l(q):—{log[l—[%J H (3.8)

where G () represents the inverse distribution function and 0<q<1,
Proof Using the cdf of the MOEFr defined in Equation (3.1), the quantile
function is obtained by solving for x the equation:

oo (G
1<1ﬁ>[1exp{(§)ﬂ a
R

(3.9)

it )

ya\ TV
X, =G (0,2, 4,6,8)=-6 |09[l_(1—;(_—1q—/;’)] J

The lower quartile, the median and the upper quartile are obtained by replac-
ing g by the values 1/4, 1/2, and 3/4 in the quantile function, respectively.
Hence, the lower quartile is:
ya\ TV

1
p+1

xq1:—5 log| 1- (3.10)

[N

3
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The median is:

B 1 Yo Ya
Xq, =6 Iog(l—{ﬁJrJ J (3.11)
And the upper quartile is:
— Ya -2
Xq, =—0| log (1—(3; J J (3.12)
+

3.3. Skewness and Kurtosis

The mathematical forms of the Galton skewness (also known as Bowley’s skew-
ness) and Moors Kurtosis of the MOEFr distribution are given by:
| Q(3/4)+Q(1/4)-2Q(2/4)
“ Q(3/4)-Q(1/4)
K, = Q(7/8)+Q(3/8)-Q(5/8)-Q(1/8)
Q(6/8)-Q(2/8)

where (.) gives the value of the quartile and octile.

(3.13)

The quantiles for various values of the parameters are given in Table 1.

3.4. Moments

Moments are extremely important since they can be used to calculate many im-
portant characteristics and properties of a probability distribution, such as mean,
variance, kurtosis, and skewness.

Theorem 2 Let Z be the random variable where Z ~ MOEFT(Ol,ﬁ,é‘,ﬂ), s0

the r'" moment is given by.

E(Xr)=ﬂa5fii<—1)2*k‘““““[“(“.")”j(uk)(l—ﬂ)‘Z*k)

k=0i=0 |

(3.14)
r
N F(l—ij
A
Table 1. Quantiles of the MOEFr distribution for various parameter values.
(e A, 6P
Quantiles  (1.5,0.5,0.5,0.5) (5,1.5,1.5,1) (4,4,2.5,2) (3,2,3,1.5) (5,3,2,1)
0.1 0.04479535 0.6084941 1.896843 1.733795 1.273839
0.2 0.07492294 0.7007796 2.021483 1.980083 1.367016
0.3 0.11246914 0.7782510 2.117692 2.187671 1.440618
0.4 0.16408734 0.8530292 2.203800 2.387863 1.508222
0.5 0.24102671 0.9311899 2.287584 2.596587 1.575819
0.6 0.36731577 1.0185766 2.374897 2.829372 1.648091
0.7 0.60461672 1.1239305 2.472900 3.109754 1.731231
0.8 1.16412138 1.2656784 2.595157 3.488062 1.837157
0.9 3.33766622 1.5031537 2.782189 4.129479 2.002115
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Proof We have the r* moment of the MOEFr given by:

i :E(X'):j:xrg(x;a,ﬂ,é,ﬂ)dx

pais 1ol (2| <] (2]

2

1—(1—ﬂ){1—exp{‘(ima} (3.15)

= Bais’ jO“’ x| L

el ]

Using the binomial expansion, we get:

E(X ’): ﬂagrii(_l)ukw (T +ii —1j(1+ k)(l—ﬂ)7(2+k)

(3.16)

Replacing T =1+ (Z(1+ k) in Equation (3.16), we have:

E(X")= 'Ba5rii(_l)z+k(1+a)+a [a(1+-k)+ ij(1+ ) (1= B) @

x(-i —_a(_1+ k));_lr(l—%)

From Table 2, we see that the MOEFr distribution is versatile in terms of

mean and variance. The values of the coefficient of skewness (CS) show that it

can be skewed to the right, to the left and, nearly symmetrical. Based on the

Table 2. First five moments, Skewness and Kurtosis of the MOEFr distribution for vari-
ous parameter values.

(e A, 6, P
Moments (1.5, 1.5,1.5,0.5) (1.5,2.5,0.6,1) (1.5, 1.5, 1.3,2.3) (1.5, 1.5, 1.5, 0.94)
,U«l' 0.3725993 0.5227138 0.13100183 0.18815210
,UZ' 0.2898484 0.3343146 0.10488806 0.15234158
,U:,: 0.2328854 0.2287168 0.08666461 0.12675603
,UA; 0.1922499 0.1659283 0.07342767 0.10784863
,U_..—: 0.1623278 0.1264603 0.06347883 0.09346039
SD 0.3886106 0.2471536 0.29618674 0.34196544
Ccv 1.0429719 0.4728279 2.26093597 1.81749463
CS 0.2104291 —0.6553371 1.92196932 1.35254018
CK 1.2617023 3.1675153 4.92875140 3.00179544
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9in (X) = (i—1)(n—i)! T

coefficient of kurtosis(CK) values, the MOEFr distribution can be mesokurtic,
leptokurtic, or platykurtic. These characteristics demonstrate the MOEFr distri-
bution’s flexibility, which is appealing for modeling purposes.

3.5. Order Statistics

Assume we have a finite random sample X,,---, X, from a probability density
function. Based on this sample, we define X, < X, <-:-< X,.,; where X, is
the sample /" order statistic.

The expression of the pdf of the #" order statistic with 1<i<n is given by:

gi:n(x)=W(!n_i)!g(x)G“l(x)(l—G(x))ni (3.17)
Hence, the pdf of the /" order statistic of the MOEFr is given by:
AT e et 2
o T e @) T () e
n! fais’ (3.18)

1-(1-8) 1—e7@l

The minimum order statistic for the MOEFr is obtained when 7= 1 and is
given by:
ST 2\« !
npais’| B 1—e_(;j 1—e_[x]
O1n (X) = - il
SV
1-(1-8) 1—e7[;]

e (5

(3.19)

and the maximum order statistic for the MOEFr is obtained when 7= n and is
given by:
a | 2 a-1

wpaist| 1|1 | | (1ol | eong S

Unn (X) = — (3.20)

o

1-(1-8) 1—6@1

4. Maximum Likelihood Estimation (MLE)

The estimation of the MOEFr parameters is presented in this section. The para-
meters were estimated using the maximum likelihood method. Consider the
random sample X,;,---, X, of size n drawn from the MOEFr distribution. The li-

kelihood function of the sample is given by:
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n

ng f(%,,4,3,p)
el G et (]
N 1-(1- /3)[1— exp {—(fjﬂ |

The corresponding log-likelihood function is expressed as:

L(%,@ 4,68, 8)=

logL=nlog g +nloga +nlogA+nilogs

+(a—1)Zn:Iog[l—exp{—(xéjl”—(brﬂ)zn:log pe (4.2)

i=1 i i=1

_g{xéijl_zgmg 1-(1- ﬂ)[l—exp{_( éJﬂH

The nonlinear equations obtained by differentiating the log-likelihood func-

tion with respectto «,4,6 and [ are:

%(log L) =£+§Iog {l_exp{_(xé‘TH

i“””%*“'owﬂal)i(ij oo o

oA i1
1-exp {—(5
X;

ESERD

i=1 i i

[ a2 f-oa (2] ool

+2a(1-5)3,

1_(1—ﬂ)[1—exp{_[ima

(4.4)
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+2a§(1—,3)2nj - (4.5)
i=1 5
1—(1—/3)[1—exp{—(x] H
=0
and
[1—exp {—(f]l H
0 logL = Zzn: : =0 (4.6)

B T & 1_(1—/3)[1‘9’("{_(2]1}]!

These nonlinear equations cannot be solved directly, so an iterative qua-

si-Newton approach, BFGS algorithm, is used to solve them.

5. Simulation Study

In this section, the Monte Carlo simulation was carried out in order to investi-
gate the average biases(ABs) and root mean squared errors (RMSEs) for maxi-
mum likelihood estimators (MLEs) of the model parameters (a, 4,5, and f).
The inverse of the cdf given in Equation (3.8) was used to generate random
samples from the MOEFr.

We conducted the simulation process using various samples and different pa-
rameter values. The samples utilized in the simulation were generated from the
inverse cumulative distribution function (cdf) of the MOEFr distribution. To
ensure accurate sample generation and obtain precise estimates, we performed
1000 iterations with sample sizes of n=50,100,150, 250, 375,500, 725,1000 . Two
sets of parameter scenarios were employed: Set I with =04, 1=06,
6=10, and F=0.1, and Set II with =04, 1=08, 6=0.7, and
p£=03.

The following are the steps for executing the developed model:

1) Set the initial values for the distribution parameters

2) Utilize the inverse cdf to generate samples

3) Utilize the various estimates to evaluate the estimation values

4) Analyze the inferential properties of the estimates, taking into account Av-
erage biases and Root mean squared errors

The following formulas were used to compute AB and RMSE:
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N
- N
RMSE,, = ii(ﬁ —7)
() NSV
where y isthe parameter in question.

Due to the inability to solve these nonlinear equations directly, the BFGS al-
gorithm, which is an iterative method, was employed for their solution.

Numerical computations were implemented via R-function nlminb () with the
argument method = “BFGS”.

The table below shows the MLE, AB, and RMSE values of the parameters
a,A,6 ,and f for various sample sizes.

Based on the results in Table 3, we see that MLEs tend to the true parameter
values as sample size n increases as can also be seen in decreasing ABs. It is also
observed that RMSEs decrease as the sample size increases. Figures 3-6 show the
graphs of the Monte Carlo simulation results. In general, the values of ABs and
RMSEs decrease as the sample size n increases. Hence, the MLEs are consistent

and asymptotically unbiased for estimating the parameters.

6. Applications

In this section, the MOEFr distribution was fitted to three real data sets. Its
goodness-of-fit was compared with existing distributions such as Fréchet (Fr),
Exponentiated Fréchet (EFr), Marshall-Olkin Fréchet (MOFr), Beta Fréchet (BFr)
and Beta Exponential Fréchet (BEFr) distributions using some measures such as
the Kolmogorov-Smirnov (K-S) test, the Cramér-von Mises test, and the An-
derson-Darling (AD) test. Information criteria such as Akaike Information Cri-
terion (AIC), Consistent AIC (CAIC), Bayesian (Schwarz) Information Criterion
(BIC), and Hannan-Quinn Information Criterion (HQIC) were also used to se-
lect the best fitting model.

The AIC is given by:
AIC =2k -2In(L) (6.1)
The BIC is given by:
BIC =klIn(n)-2In(L) (6.2)
The CAIC is given by:
2nk ~
CAIC = _k_l—ZIn(L) (6.3)
The HQIC is given by:
HQIC = 2kIn(In(n))-2In(L) (6.4)

where k is the number of estimated parameters in the model, L is the maxi-
mum value of the likelihood function for the model and n is the number of ob-

servations. The Kolmogorov-Smirnov (K-S) test statistic is computed by:
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Table 3. Simulation results for the MOEFr distribution: MLEs, ABs and RMSEs.

I 1II
Parameters n MLE AB RMSE MLE AB RMSE
50 0.5369599 0.136959938 0.97939845 0.4634895 0.06348948 0.50840613
100 0.4424774 0.042477434 0.29630721 0.4172714 0.01727141 0.22222776
150 0.4300339 0.030033892 0.2145722 0.4075859 0.007585908 0.15343115
2 250 0.4277169 0.027716938 0.15224911 0.4009786 0.0009786 0.1119498
375 0.4148014 0.014801442 0.11429126 0.4001488 0.0001488 0.09249187
500 0.4130702 0.013070154 0.0970649 0.3983493 —-0.001650721 0.0795803
725 0.4110824 0.011082377 0.08109365 0.3981321 —-0.00186786 0.06503845
1000 0.4071585 0.007158499 0.06491401 0.3976464 —-0.002353579  0.06455696
50 0.8333443 0.23334434 0.50979985 0.9486493 0.14864929 0.5136906
100 0.7746873 0.17468726 0.38851589 0.9392731 0.13927306 0.4188314
150 0.7110045 0.11100449 0.28557635 0.8976617 0.09766173 0.345517
250 0.6679305 0.06793055 0.20066631 0.8762642 0.07626416 0.2680626
g 375 0.654578 0.05457803 0.17859121 0.8591747 0.0591747 0.2281289
500 0.6439454 0.04394545 0.14351383 0.8522177 0.05221767 0.1950269
725 0.6308368 0.03083678 0.11767176 0.8429398 0.0429398 0.1673164
1000 0.624732 0.024732 0.11367898 0.8370076 0.0370076 0.1630688
50 10.477015 9.47701548 80.9023532 9.7923026 9.09230263 62.1385562
100 3.898129 2.89812924 29.8903306 3.0787074 2.3787074 20.0970333
150 2.210308 1.21030812 7.867055 1.7650563 1.06505628 12.0183999
250 1.590111 0.59011068 4.3268235 0.9505581 0.2505581 1.1121435
° 375 1.246992 0.24699238 1.3327485 0.8535921 0.15359212 0.6533691
500 1.153368 0.15336764 1.0972586 0.7873315 0.08733147 0.4738825
725 1.054652 0.05465215 0.5759438 0.7670344 0.06703439 0.3801934
1000 1.053377 0.05337673 0.4791679 0.7307385 0.03073846 0.2971895
50 0.3148381 0.21483811 0.54447969 0.492775 0.192775 0.7091277
100 0.2780686 0.17806857 0.51052307 0.4778862 0.17788619 0.5194436
150 0.2068539 0.10685392 0.28439297 0.4125062 0.11250618 0.369349
250 0.1596583 0.0596583 0.15588693 0.3819465 0.0819465 0.2620695
4 375 0.1418705 0.04187047 0.1158354 0.3548435 0.05484346 0.2033222
500 0.1316579 0.03165793 0.08408925 0.3489058 0.0489058 0.1767756
725 0.1215402 0.02154023 0.06178496 0.3269161 0.02691611 0.1290197
1000 0.1151467 0.01514673 0.05546545 0.3259198 0.02591982 0.1121822

DOI: 10.4236/jdaip.2023.113014 276 Journal of Data Analysis and Information Processing


https://doi.org/10.4236/jdaip.2023.113014

. Niyoyunguruza et al.

Bias

RMSE

80

60

40

20

Bias

Plot of Bias vs n

—_— a=0.4
————— A=0.6
5=1
——————— $=0.1
k‘&::t-& Y —— B —a—t
T T T T
10 20 30 40
Sample size
Figure 3. Plot of Average Biases of the MOEFr model parameter estimates for set L.
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Figure 4. Plot of RMSEs of the MOEFr model parameter estimates for set L.
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Figure 5. Plot of Average Biases of the MOEFr model parameter estimates for set II.

DOI: 10.4236/jdaip.2023.113014

Journal of Data Analysis and Information Processing


https://doi.org/10.4236/jdaip.2023.113014

A. Niyoyunguruza et al.

Plot of RMSE vs n

o a=0.4
® . e A=0.8
5=07
S p=0.3
o)
Z 8
o
o Goompp - o oo
T T T T
10 20 30 40
Sample size
Figure 6. Plot of RMSEs of the MOEFr model parameter estimates for set II.
D =sup|F, (X) - Fyga (X)) (6.5)
X

where F; (X) is the cdf of the hypothesized distribution, Fy, (X) the empiri-
cal distribution function of the observed data. The Cramér-von Mises(W ") test

statistic is computed using:

. 2
« 1 2i-1
W =—+) —-F(Y, 6.6
o Z{ o F )} (6.6)
where Y, is the /" observation in the sample, n is the number of observations ,F

is the specified cumulative distribution function.

The Anderson-Darling ( A") test statistic is given by:
A —n _%Z(Zi ~)[INF(X,)+In(1-F (X,1.0))] (6.7)
i=1

where 1 is the sample size, F (X) is the CDF for the specified distribution, and
iis the / sample, calculated when the data is sorted in ascending order.

The model with the lowest values of A*, W, and K-S tests statistics, along
with AIC, CAIC, BIC, and HQIC, is the best. Furthermore, the best model has
the highest value of the log-likelihood function and the highest p-value for the
K-S statistic.

The distributions to which the MOEFr was compared in this section are: the
Fréchet, Exponentiated Fréchet [14], Marshall-Olkin Fréchet [11], Beta Fréchet
(BFr) [17] and Beta Exponential Fréchet [18] with the respective pdfs:

ol

Fr: f(xa,4)=ai*x “Ye \x (6.8)
sy 1 sy

EFr: f(Xa,4,8)=als’ 1—e7(;] x*“*‘)e{;j (6.9)
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MOFr: f(Xa,4,6)= > (6.10)

a INEA N
BFr: f (x;a,/lla,b): BO((;’ b) x~(@g (x) l1—e (x) (6.11)
f(xa,4,a,b,6)
BEFr: 5,4 . ,[i)“ ,{1]“ o ,[i]“ i (6.12)
= X eV |1-e M 1-{1-e \*
B(a,b)

6.1. Data set I: Bladder Cancer Data Set

The first data set considered in this study is the remission times (in months) of a
sample of 128 bladder cancer patients given in Table 4. This data can be found
in [19].

The Total Time on Test, also known as the TTT-transform, was used to gen-
erate a graph that reveals the shape of the hazard rate function. The Total Time
on Test (TTT) plot depicts the shape of the failure rate curve. When applying a
model to any data, knowing the shape of the failure rate function is critical. The

expression of the TTT plot is given by:

G(sz Zizlxiiﬂ T(n_r)xi:” , =121,
n Zi:lxiin

where X, represent the order statistics.

(6.13)

Table 5 provides the descriptive statistics for data set I. The data are right
skewed (coefficient of skewness = 3.325333) and heavily tailed (coefficient of
kurtosis = 16.15128).

The TTT, histogram, violin, and box plots for the data set I are shown in Fig-
ure 7 and Figure 8. The TTT plot for the data set shows that the hazard rate
function has an inverted bathtub shape.

The histogram shows that the data are right skewed, and the box plot indicates
that there are some outliers. The violin demonstrates that most values are highly
concentrated around the median.

Figure 9 illustrates the estimated PDF and CDF of the MOEFr distribution for
the bladder cancer data set, and Figure 10 depicts the Kaplan-Meier and PP
plots. The Kaplan-Meier curve demonstrates that the model fits the data because
it is not different from the survival function of the model; additionally, the PP
plot shows that the 2 distributions are very close. Furthermore, Figure 11 shows
plot of fitted pdfs of the distributions considered in this study with histogram of
the observed data.
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Table 4. The remission times of a sample of 128 bladder cancer patients.

3.88
2.69
2.83
4.34
6.97
7.26
5.32
3.25
12.07

5.32
4.23
4.33
5.71
9.02
9.47
7.32
4.50
21.73

7.39
5.41
5.49
7.93
13.29
14.24
10.06
6.25
2.00

10.34
7.62
7.66
0.08
0.40
25.82
14.77
8.37
3.36

14.83  34.26 0.90 2.69 4.18 5.34 7.59 10.66 1596 36.66 1.05
10.75 16.62 43.01 1.19 2.75 4.26 5.41 7.63 17.12  46.12  1.26
11.25 17.14  79.05 1.35 2.87 5.62 7.87 11.64 17.36 1.40 3.02
2.09 3.48 4.87 6.94 8.66 13.11 23.63 0.20 2.23 3.5 4.98
2.26 3.57 5.06 7.09 9.22  13.80 25.74  0.50 2.46 3.64 5.09
0.51 2.54 3.70 5.17 7.28 9.74 1476  26.31 0.81 2.62 3.82
32.15 2.64 11.79 18.10 1.46 4.40 5.85 8.26 11.98 19.13 1.76
12.02 2.02 3.31 4.51 6.54 8.53 12.03  20.28 2.02 3.36 6.76
6.93 8.65 12.63  22.69

Table 5. Descriptive statistics of the bladder cancer data set.

Minimum

Maximum

Mean Median Mode Variance Skewness Kurtosis

0.08

79.05

9.364922 6.395 5.32 110.4349 3.325333 16.15128

0.6 0.8 1.0

T(i/n)

0.4

0.2

0.0

survival times of bladder cancer data set
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(a) TTT plot of data set I
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(b) Histogram of data set I

Figure 7. TTT and histogram plots of bladder cancer data set.

The AIC, CAIC, BIC, and HQIC values, as well as the A", W”, and K-S tests
statistics, are shown in Table 6 and Table 7. As a result, the MOEFr is the best
model because it has the lowest AIC, CAIC, BIC, HQIC, A , W™ and K-S values
as well as the highest log-likelihood function value and p-value for the K-S statistic.

6.2. Data Set II: Carbone Data

The data set “carbone” which is available in the R package Adequacy Model, was
used to demonstrate the applicability of the MOEFr. It is uncensored data on
breaking stress of carbon fibres (in Gba) studied in [20]. Figure 12 and Figure 13
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Figure 9. Estimated PDF and CDF of the MOEFr distribution for bladder cancer data set.
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Figure 10. Kaplan-Meier and PP plots of the MOEFr distribution for bladder cancer data set.

give the plots of TTT, histogram, violin and box plot for the data set. The TTT
plot of the data set indicates that the hazard rate function is increasing shape.

The histogram clearly shows that the data are nearly symmetrical, and the vi-
olin illustrates that values are concentrated around the median. Outliers are re-
vealed by the box plot.
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Figure 11. Estimated fitted densities of bladder cancer data set for
various distributions.

Table 6. Maximum likelihood estimates of the model parameters, the log-likelihood, and
goodness-of-fit statistics for the bladder cancer data set.

Distributions Estimates (SEs) Y w”* A K-S (p-value)
a=10.710 (6.043)
1=0.333 (0.089)

5=16.784 (23.961)

B =20.723 (17.938)
a=1.553 (0.099)

MOEFr (a, 4, 6, p) —409.57 0.017 0.115 0.0353 (0.997)

MOFr (a, A, &  1=154915 (72.293) —414.063 0.080 0.565  0.053 (0.863)
5=0.226 (0.053)
a=15.199 (5.040)

EFr (a A, ) 120345 (0.030) 41504 0.115 0779  0.066 (0.629)
5=152.261 (85.574)
a=59.647 (36.724)
1=0.094 (0.021)

BFr (a, A, a, b) A —416.289 0.149 0.997  0.076 (0.451)
a=45.337 (22.740)

b=112.236 (50.903)
a=188.782 (309.397)

1.=190.754 (329.970)
BEFr (a2 b,0) 4=1843 (2327) -415858 0.326 2.450 0.991 (0)
b=0.049 (0.036)
5=108.309 (563.180)

=0.752 (0.042) 0.236
—443.97 1.108 6.574

a
Fr (a1 R
rled A=3.262 (0.408) (0.000001312)
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Table 7. Values of information criteria for various distributions for the bladder cancer

data set.

Distributions AIC BIC CAIC HQIC
MOEFr 827.147 838.556 827.473 831.783
MOFr 834.126 842.682 834.319 837.602

EFr 836.075 844.631 836.268 839.551

BFr 840.888 852.297 841.214 845.524

BEFr 841.715 855.975 842.207 847.509
Fr 891.943 897.647 892.039 894.2606
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Figure 12. TTT and histogram plots of carbone data set.
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Figure 13. Violin and box plots of carbone data set.
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The plots of the estimated PDF and CDF of the MOEFr distribution for the car-
bone data set is given in Figure 14 and the Kaplan-Meier and PP plots are shown in
Figure 15. The Kaplan-Meier curve closely approximates the survival function of
the model, and the two distributions also exhibit close proximity in the PP plot.

Moreover, Figure 16 shows plot of fitted pdfs with histogram of the observed
data.

The descriptive statistics of the carbone data are given in Table 8. The data
are nearly symmetrical with a skewness coefficient of 0.3737844 and platykurtic
with a kurtosis coefficient of 0.1728682.

The values of the AIC, CAIC, BIC, and HQIC, as well as A*, W", and K-S
tests statistics are given respectively in Table 9 and Table 10. Thereby, the
MOEFr is the best model since it has the lowest AIC, CAIC, BIC, HQIC, A",
W" and K-S values together with the highest value of the log-likelihood func-
tion and highest p-value for K-S statistic.

6.3. Data set III: Wheaton River Data

The data displayed in Table 11 show the exceedances of flood peaks (in m?/s) of
the Wheaton River near Carcross in Yukon Territory, Canada, for the years 1958
to 1984. This data set is available in [21].

Figure 17 and Figure 18 give the TTT, histogram, violin and box plots for the
Wheaton River data set. The TTT plot of the data set indicates that the hazard
rate function is reversed bathtub shape.

The histogram shows that the data is skewed to the right, while the violin and
box plot show that values are concentrated around the median and the presence
of outliers, respectively.

Figure 19 depicts the estimated PDF and CDF of the MOEFr distribution for
the Wheaton River data set, and Figure 20 depicts the Kaplan-Meier and PP plots
for the MOEFr distribution. Figure 21 depicts the fitted pdfs of the observed data.

The descriptive statistics of the exceedances of flood peaks (in m?/s) of the
Wheaton River data are given in Table 12. The data are highly skewed with the
Coefficient of Skewness equal to 1.49711 and nearly mesokurtic with the Coeffi-
cient of Kurtosis equal to 3.121607.
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Figure 14. Estimated PDF and CDF of the MOEFr distribution for carbone data set.
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Figure 15. Kaplan-Meier and PP plots of the MOEFr distribution for carbone data set.
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Figure 16. Estimated fitted densities of carbone data
set for various distributions.

Table 8. Descriptive statistics of the carbone data set.

Minimum Maximum Mean Median Mode Variance Skewness Kurtosis

0.39 5.56 2.6214 2.7 2.17  1.027964 0.3737844 0.1728682

Table 9. Maximum likelihood estimates of the model parameters, the log-likelihood, and
goodness-of-fit statistics for the carbone data set.

Distributions Estimates (SEs) ¢ w” A" K-S (p-value)

a=42.890 (24.833)
MOEFr (e, A, 6, .. —141.532 0.081 0.426 0.071 (0.692)
A=0.531 (0.090)
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Continued

5=18.740 (12.604)

MOEFr (4,4, 8, . ~141.532 0.081 0.426 0.071 (0.692)
[£=10.914 (10.285)
a=21.995 (9.056)
2=0.790 (0.171)

BFr (@, A, 4, b) ~143.975 0.146 0.767  0.098 (0.290)

a=0.467 (0.231)
b=56.853 (32.577)

a=53.995 (32.228)
EFr (4, 4, 0) 2=0.606 (0.090) —145.046
5=27.885 (15.955)
a=14.675 (4.234)
4=0352 (0.078)
BEFr (e, A, 4, 5,8) 4=7.291 (0.099) —143.246

b=0.828 (0.043)
5=25.363 (0.049)

0.189 0.985

0.081 0.508

0.10129 (0.2565)

0.446 (0)

a=3.633 (0.256)

MOFr(a, 4, 8)  1=181.881 (92.597) —148.549
5=0.582 (0.066)
a=1769 (0.112)

Fr (a, 1) . -173.144
A=1.891 (0.114)

0.264 1.400

0.518 2.910

0.105 (0.222)

0.510 (2.2e-16)

Table 10. Values of information criteria for various distributions for the carbone data set.

Distributions AIC BIC
MOEFr 291.064 301.485
BFr 295.951 306.372
EFr 296.093 303.908
BEFr 296.493 309.518
MOFr 303.097 310.913
Fr 350.288 355.498

CAIC
291.485
296.372
296.343
297.131
303.347

350.412

HQIC
295.282
300.168
299.256
301.764
306.260

352.397

Table 11. The exceedances of flood peaks (in m?/s) of the Wheaton River.

1.7 22 144 11 04 206 53 07 14

1.1 06 22 390 03 150 11.0 7.3 229

18.7 85 255

09 17 7.0

141 99 56 308 133 42 255 34 119 215 15 25

202 168 53 19 104 13.0 10.7 12.0 30.0

1.7 2.7 376 640 17 9.7 0.1 275 1.1

9.3 36 25

25 06 27.0

11.6 14.1 22.1
201 04 28
274 1.0 27.1

27.6 14.4 36.4
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Figure 17. TTT and histogram plots of Wheaton River data set.
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Figure 18. Violin and box plots of Wheaton River data set.

The values of the AIC, CAIC, BIC, and HQIC are given in Table 13. The
MOEFr distribution has the lowest AIC, CAIC, BIC, and HQIC; hence, it is
chosen to be better than the other distributions considered. In addition, Table 14
shows that the MOEFr is better than the models studied here since it has the
lowest A , W, and K-S tests statistics plus the highest value of the
log-likelihood function and highest p-value for K-S statistic.

7. Conclusions

This study aimed to introduce the MOEFr distribution to increase the flexibility
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Figure 19. Estimated PDF and CDF of the MOEFr distribution for Wheaton River data set.
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Figure 20. Kaplan-Meier and PP plots of the MOEFr distribution for Wheaton River data set.

of the EFr using Marshall-Olkin method. The mathematical and statistical prop-
erties of the MOEFr, including the hazard rate function, survival function, re-
versed hazard rate function, cumulative hazard function, odds function, quantile
function and its associated results, moments, and order statistics were derived.
The MLE was used to estimate the model’s parameters, and Monte Carlo si-
mulation was used to evaluate the estimators’ behavior. It was seen that the

MLEs perform well in estimating the model parameters, since MLEs tend to the
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Figure 21. Estimated fitted densities of Wheaton River data set
for various distributions.

Table 12. Descriptive statistics of the Wheaton River data.

Minimum Maximum Mean  Median Mode  Variance Skewness Kurtosis

0.1 64 12.09167 9.5 5.32 152.8639 1.49711 3.121607

Table 13. Values of information criteria for various distributions for the Wheaton River

data set.
Distributions AIC BIC CAIC HQIC
MOEFr 515.165 524.272 515.762 518.7903

EFr 517.606 524.436 517.959 520.325

BFr 518.578 527.684 519.175 522.203

MFr 519.211 526.041 519.563 521.930

BEFr 520.444 531.827 521.353 524.976

Fr 533.709 538.262 533.883 535.522

Table 14. Maximum likelihood estimates of the model parameters, the log-likelihood,
and goodness-of-fit statistics for the Wheaton River data set.

Distributions Estimates (SEs) ¢ w” A K-S (p-value)

a=8.573 (4.468)
1=0.300 (0.068)
A -253.583 0.233 1.298 0.105 (0.409)
0=31.915 (46.232)

B =6.203 (5.436)

MOEEFr (a, A, & f)

DOI: 10.4236/jdaip.2023.113014 289 Journal of Data Analysis and Information Processing


https://doi.org/10.4236/jdaip.2023.113014

A. Niyoyunguruza et al.

Continued
a=8.304 (3.327)
EFr (a, A, 6) 1=0311 (0.0372) -255.803 0.280 1579  0.158 (0.055)
5=108.408 (88.229)
a=45.746 (341.878)

4=0.065 (0.054)
BFr (a, A, a, b) —255.289 0.273 1.531  0.144 (0.099)

a=60.049 (125.159)

b=128.091 (203.367)
a=1.142 (0.119)

MOFr (a, 4, 9) 1=51314 (61.082) ~—256.605 0.296 1.658 0.121 (0.244)

5=0.201 (0.170)
a=98.103 (223.801)
4=101.554 (232.855)
BEFr(a, A, 2 b,6)  4=1.803 (3.231) -255222 0270 1516  0.976 (0)
b=0.0514 (0.050)
5=53.642 (356.848)
a=0.654 (0.054) 0.337

Fr (a, 1) . -264.854 0.523 3.111
A=2.775 (0.532) (1.64e—07)

true values of parameters as sample size increases, as evidenced by decreasing
ABs. RMSEs are also observed to decrease as the sample size increases. The new
distribution was also applied to three real data sets, Bladder cancer, Carbone and
Wheaton River data sets. Based on goodness-of-fit statistics, log-likelihood func-
tion, and information criteria values, it was demonstrated that it provides a bet-
ter fit than the other distributions, that is EFr, MOFr, BEFr, BFr and Fr consi-
dered in this study. Given that the MOEFr distribution demonstrated better fit-
ting performance when compared to other distributions, it indicates that the
MOEFr distribution represents better the datasets than any of the other distribu-
tions. Therefore, it is recommended to utilize the MOEFr distribution for ana-
lyzing the datasets.

Based on its performance, this new distribution is recommended for use in
practice, particularly in survival analysis. It can be used for data from various
fields including engineering sciences, medical sciences, extreme events among
others.

It is suggested that future research investigate the performance of the MOEFr
distribution using the Bayesian estimation method and applying the model to
censored data.
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