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Abstract 
This paper focuses on ozone prediction in the atmosphere using a machine 
learning approach. We utilize air pollutant and meteorological variable data-
sets from the El Paso area to classify ozone levels as high or low. The LR and 
ANN algorithms are employed to train the datasets. The models demonstrate 
a remarkably high classification accuracy of 89.3% in predicting ozone levels 
on a given day. Evaluation metrics reveal that both the ANN and LR models 
exhibit accuracies of 89.3% and 88.4%, respectively. Additionally, the AUC 
values for both models are comparable, with the ANN achieving 95.4% and 
the LR obtaining 95.2%. The lower the cross-entropy loss (log loss), the high-
er the model’s accuracy or performance. Our ANN model yields a log loss of 
3.74, while the LR model shows a log loss of 6.03. The prediction time for the 
ANN model is approximately 0.00 seconds, whereas the LR model takes 0.02 
seconds. Our odds ratio analysis indicates that features such as “Solar radia-
tion”, “Std. Dev. Wind Direction”, “outdoor temperature”, “dew point tem-
perature”, and “PM10” contribute to high ozone levels in El Paso, Texas. 
Based on metrics such as accuracy, error rate, log loss, and prediction time, 
the ANN model proves to be faster and more suitable for ozone classification 
in the El Paso, Texas area. 
 

Keywords 
Machine Learning, Ozone Prediction, Pollutants Forecasting, Atmospheric 
Monitoring, Air Quality, Logistic Regression, Artificial Neural Network 

 

1. Introduction 
Ozone is created in the atmosphere from gases that are released through smoke-
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stacks, tailpipes, and a variety of other sources. These gases react when exposed 
to sunlight, thereby creating ozone pollution. Ozone is a key component of the 
Earth’s atmosphere; it plays a vital role in protecting life on our planet + by ab-
sorbing harmful ultraviolet radiation. However, excessive levels of ozone can 
have negative impacts on human health and the environment. Ozone prediction 
is an important task that helps us to better understand and manage the effects of 
ozone on our planet. Application of Machine learning serves as a powerful me-
chanism that helps to predict ozone levels in the atmosphere. This could be 
achieved by training a machine learning model on historical data, to make pre-
dictions about future ozone levels based on various factors such as temperature, 
wind speed, and emissions. These predictions can then be used to inform deci-
sion making and mitigate the negative effects of excessive ozone levels. Ozone 
starts off as an invisible pollution when not properly monitored it combines with 
other contaminants to cause lots of health challenges [1]. Ozone happens to be 
one of the most dangerous elements on earth. For the past several decades, re-
searchers have been examining how ozone affects human health. In El Paso, 
Texas, United States, ozone level has been recorded as the highest affected city 
across the United States. Three oxygen atoms make up the gas molecule known 
as ozone (O3). Ozone, also known as “smog”, is dangerous to breathe. By chem-
ically interacting with lung tissue, ozone actively damages it. 

2. Literature Review 

Three oxygen atoms make up the gas molecule known as O3 (see Figure 1). 
Another name for ozone (O3) is “smog”, which is very dangerous when inhaled. 
Ozone becomes very harmful when it chemically interacts with the lung tissue, 
thus causing severe damage. Figure 1 illustrates ozone molecules. 

2.1. Formation of Ozone (O3) 

The same processes that produce ozone also produce other dangerous pollutants 
when O3 is present. Although, we are protected from the majority of the sun’s 
UV radiation by the ozone layer, which is located high in the stratosphere (i.e., 
upper atmosphere). However, O3 air pollution poses major health risks when it 
is present at ground level where we may breathe it (i.e., within the troposphere). 
Nitrogen oxides (NOx) and volatile organic compounds (VOCs) are the two 
main raw materials that produce ozone. In addition, burning of fossil fuels like 
gasoline, oil, or coal or the evaporation of certain chemicals like solvents also 
contributes to ozone production. Power plants, automobiles, and other high-heat 
combustion sources all emit NOx whereas vehicles, chemical plants, refineries, 
factories, petrol stations, paint, and other sources all release VOCs [1]. Figure 2 
shows the reaction that leads to ozone formation pattern. 

2.2. Risk of Ozone Exposure 

Anyone who spends time outside in an area with high levels of ozone pollution  
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Figure 1. Showing ozone (O3) molecule. 

 

 
Figure 2. Showing ozone formation. 

 
could be in danger. The effects of inhaling ozone are particularly harmful to four 
types of people: 
o Children and teenagers [2]. 
o Everyone above the age of 65 [2]. 
o Those who already have lung conditions including asthma and chronic ob-

structive pulmonary disease (COPD), which also encompasses emphysema 
and chronic bronchitis [2]. 

o Those who work or exercise outside [2]. 
o People living with obesity [2]. 

2.3. Implications of Ozone Exposure 

People with allergies may respond more strongly to allergens after inhaling 
ozone. Children were more likely to experience hay fever and respiratory aller-
gies when ozone and PM2.5 levels were high, based on research study that was 
published in 2009 [3]. 

2.3.1. Premature Death 
When exposed to the ozone layer, one’s life may be shortened. From several re-
search carried out in cities across the U.S., Europe, and Asia, it is obvious that 
ozone has a devastating effect on people’s health and life span. Over time, re-
searchers have discovered that exposure to increasing ozone levels raised the 
chance of premature death [4]. Even when other pollutants are also present, 
ozone raises the chance of premature mortality, according to more recent re-
search [1]. 

2.3.2. Inhalation Problems 
In major counties across the United States (like: El Paso, Texas), ozone level in-
creases over the summer thus leading to increase in health challenges [5]. In ad-
dition to a higher risk of premature mortality, inhalation challenges like wheez-
ing, coughing, and shortness of breath; asthma episodes; increases the need for 

https://doi.org/10.4236/jdaip.2023.113012


C. Obunadike et al. 
 

 

DOI: 10.4236/jdaip.2023.113012 220 Journal of Data Analysis and Information Processing 
 

hospitalization and medical care for persons with lung disorders including 
asthma or chronic obstructive pulmonary disease (COPD), as well as higher risk 
of respiratory infections, susceptibility to pulmonary inflammation, and risk of 
respiratory infections [2]. 

2.3.3. Risk from Long-Term Exposure 
Recent research alerts us to the negative consequences of prolonged exposure to 
ozone. Scientists are discovering that prolonged exposure (i.e., radiation expo-
sure > 8 hours as well as days, months, or years) increases the chance of prema-
ture mortality. Researchers have discovered that high levels of ozone are linked 
to an increased risk of respiratory disease which leads to a high mortality rate 
[4]. Also, New York researchers examined hospital data for pediatric asthma pa-
tients and discovered that exposure to ozone over an extended period increased 
the probability of hospital admission for asthma patients. Recent studies show 
that kids from low-income households were more likely to be hospitalized due to 
high levels of ozone exposure as against kids from high-income households [6]. 

2.3.4. US Environmental Protection Agency (EPA) Findings 
In February 2013, EPA published a comprehensive review of their most recent 
findings on ozone pollution [7]. EPA had asked the “Clean Air Scientific Advi-
sory Committee”, a group of distinguished scientists, to assist them in evaluating 
the evidence that was gathered by EPA; in particular, they looked at research 
published between 2006 and 2012. The EPA and the committee’s experts con-
cluded that ozone pollution posed numerous, substantial health risks. Based on 
that evaluation in 2015, the EPA firmly supports the “National Ambient Air 
Quality Standard” (i.e., the official ozone acceptable limit). However, recent stu-
dies show that ozone can be dangerous even at much lower concentrations. In a 
scientific paper published in 2017, researchers presented additional proof that 
confirms that older adults face a higher risk of premature death even with low 
ozone levels beyond the national acceptable level [8]. 

2.4. Features or Variable Types 

According to [9], the predictor variables could otherwise be known as “PIE 
(predictor, independent or explanatory) variables” while the response variables 
could otherwise be termed “DORT (dependent, observatory, response or target) 
variables”. Features (variables) importance enables the ML algorithm to train 
faster as well as reduces cost and time required for training the dataset, therefore 
making it simpler to interpret. It also reduces the variance of the model and im-
proves the accuracy, provided the right subset is chosen [9]. 

Odds Ratio 
Generally, the intensity of the odds ratio is called the “strength of the associa-
tion”. The further away an odds ratio is from 1, the more likely it is that the rela-
tionship between the exposure and the disease is causal. For instance, an odds 
ratio of 1.25 is above 1, but is not a strong association while that of > 9.5 suggests 
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a stronger association [9]. 

2.5. Selection of Logistic Regression and Artificial Neural Network 
Model 

It’s important to note that the choice between LR and ANN models depends on 
the specific problem, dataset, and desired outcome. LR is suitable for simpler 
tasks and when interpretability is crucial, while ANN models excel in more 
complex problems where high accuracy is the priority. 

2.5.1. Advantages of LR and ANN 
The Logistic Regression model is straightforward and interpretable. It’s easy to 
understand and implement, making it a good choice for simple classification 
problems [10]. Training an LR model is computationally efficient compared to 
complex ANN models. It can handle large datasets with relative ease [11]. LR 
provides meaningful insights into the impact of each feature on the predicted 
outcome. It assigns weights to features, indicating their importance in the deci-
sion-making process [12]. 

Artificial Neural Networks (ANNs) can model complex and nonlinear rela-
tionships between features and the target (DORT) variable. They can learn in-
tricate patterns that may be difficult for LR models to capture. ANN models can 
automatically extract relevant features from raw data, reducing the need for 
manual feature engineering [13]. ANN models, especially deep learning models, 
have achieved state-of-the-art performance on various tasks, including image 
and speech recognition, natural language processing, and recommendation sys-
tems [14]. 

2.5.2. Disadvantages of LR and ANN 
The Logistic Regression model assumes a linear relationship between features 
and the target variable. It may struggle to capture complex patterns and nonli-
near relationships in the data [15]. Logistic Regression relies heavily on manual 
feature engineering. Thus, choosing relevant features and transforming them 
appropriately is crucial for its performance. LR performs well in certain scena-
rios, it may underperform when faced with highly complex datasets or problems 
that require high predictive accuracy [16]. 

Artificial Neural Network models, especially deep neural networks, require 
significant computational resources and can be time-consuming to train and 
they often require specialized hardware like GPUs [17]. ANN models can be 
challenging to interpret and understanding how the model arrives at its predic-
tions can be difficult, making it less transparent compared to LR models [18]. In 
addition, ANN models are prone to overfitting, especially when working with 
limited training data [19]. Regularization techniques and careful hyperparameter 
tuning are necessary to mitigate this risk [5]. 

2.6. Factors that Influence Accuracy of LR and ANN 

It’s important to consider these factors and carefully optimize them to achieve 
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the best classification accuracy for LR and ANN models. 
o Dataset quality and size: The quality and size of the dataset used for training 

and evaluation play a crucial role. A larger dataset with a diverse range of 
samples can help both LR and ANN models generalize better and achieve 
higher accuracy [18]. 

o Feature selection and engineering: The choice and preparation of input 
features can significantly affect model performance, proper feature selection 
and engineering can improve the discriminative power of the features and 
lead to better accuracy for both LR and ANN models [20]. 

o Model complexity: The complexity of the model can impact classification 
accuracy. LR assumes a linear relationship, while ANN models, especially 
deep neural networks, can capture complex nonlinear relationships [17]. In 
general, more complex models like ANNs have the potential to achieve high-
er accuracy, but they are also more prone to overfitting [19]. 

o Regularization techniques: Regularization methods, such as L1 or L2 regu-
larization, can help prevent overfitting in both LR and ANN models. Regula-
rization adds a penalty term to the model’s objective function, discouraging 
overly complex models and improving generalization [5]. 

o Hyperparameter tuning: Both LR and ANN models have various hyperpa-
rameters that need to be tuned for optimal performance. Examples include 
learning rate, regularization strength, number of hidden layers, and 
number of neurons. Proper hyperparameter tuning can significantly affect 
classification accuracy [18]. 

o Training duration and convergence: The duration and convergence of the 
training process can impact final accuracy. Training for too few iterations 
may result in underfitting, while training for too many iterations may lead 
to overfitting [19]. Finding the right balance and ensuring convergence is 
essential for achieving high accuracy. 

o Class imbalance: Class imbalance occurs when one class has significantly 
more or fewer samples than others. This can affect the model’s ability to ac-
curately predict the minority class. Techniques like oversampling, under 
sampling, or class weighting can help address class imbalance and improve 
accuracy [21]. 

o Preprocessing and normalization: Proper preprocessing steps, such as han-
dling missing values, scaling features, and handling outliers, can impact the 
accuracy of both LR and ANN models. Different preprocessing techniques 
may be more suitable for different models, and their proper application can 
enhance accuracy [22]. 

o Model evaluation and validation: The choice of appropriate evaluation me-
trics and validation techniques can affect the reported accuracy. Metrics such 
as accuracy, precision, recall, and F1 score provide different perspectives 
on model performance, and using appropriate validation methods like 
cross-validation can give a more reliable estimate of the model’s accuracy 
[23]. 
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o Computational resources: ANN models, especially deep learning models, 
can be computationally intensive and may require specialized hardware, such 
as GPUs, for efficient training. The availability of computational resources 
can impact the size and complexity of the ANN models used, which can, in 
turn, affect their accuracy [17]. 

3. Methodology 

The aim and objective of this research is to examine the prediction ability of Lo-
gistic Regression and Artificial Neural Network Models in correctly classifying 
ozone levels into high and low categories, considering other predictor variables. 
The dataset consists of 973 rows and 14 variables (features). Among these va-
riables, ozone was selected as the response (dependent) variable, with “low 
ozone” assigned as 0 and “high ozone” assigned as 1. Therefore, we are dealing 
with a binary classification problem. The dataset was analyzed using the R pro-
gramming language. The first step in the analysis involved checking the variable 
types, identifying missing values, outliers, and potentially incorrect records, and 
conducting exploratory data analysis (EDA), including frequency distribution of 
the target variables and the association between them. 

3.1. Descriptive Analysis of the Dataset 

The dataset contains 14 variables (features), ‘ozone’ is assigned to be the target 
variable otherwise known as DORT or Y (dependent, observatory, response, or 
target variables) while the remaining 13 variables represents PIE or X (Predictor, 
Independent or explanatory variables) (see Table 1). 

3.2. Data Pre-Processing 

The following steps were adopted during the data prr-processing to ensure the 
accuracy of our dataset. We performed exploratory data analysis on the dataset 
by cleaning the data and checking for missing values (refer to section 3.2.1). Ad-
ditionally, we applied a for-loop to iterate over the dataset and cross-check for 
other types of missing values, such as “na”, “NA”, or an empty string (refer to 
Figure 3). Based on the output or results, our dataset showed no missing values. 

3.2.1. Checking for Missing Values 
The anyNA () function was used to check for missing variables in our dataset. 
The outcome was “False”. Thus, it implies that we did not have any missing data. 
In addition, we went further to visualize if there was any sort of missing data 
using the naniar package. Figure 4 shows a bar plot depicting there are no 
missing variables in our dataset. 

3.2.2. Intensive Cross Checking of Other Missing Values 
To ensure that our analysis and model would be free from errors. It is very im-
portant to thoroughly loop through the whole dataset to check for other missing 
values that may occur in other forms apart from “NA”. 
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Table 1. Description of the variable’s data types. 

S/No Variables Data Type 

1 Nitric Oxide Numeric 

2 Nitrogen Dioxide Numeric 

3 Oxides of Nitrogen Numeric 

4 Wind Speed Numeric 

5 Resultant Wind Speed Numeric 

6 Resultant Wind Direction Integer 

7 Maximum Wind Gust Numeric 

8 Std. Dev. Wind Direction Integer 

9 Outdoor Temperature Numeric 

10 Dew Point Temperature Numeric 

11 Relative Humidity Numeric 

12 Solar Radiation Numeric 

13 PM10 Numeric 

14 Ozone Integer 

 

 
Figure 3. Showing the (for-loop) code iteration for missing values. 

 
Table 2 shows V.name or the variable names, Mode (data types), N. level 

(number of occurrences out of the total observations), Ncom (number of total 
observations), Nmiss (number of missing observations), and Miss. Prop (per-
centage of missing observations). 

3.2.3. Frequency Distribution of Target Variable (Ozone) 
Analyzing the ozone level, transformed the ozone level from binary-numerical to  
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Figure 4. Showing barplot of the dataset using vis_mis () function in naniar 
package. 

 
Table 2. Iteration through the dataset using for loop to check for other missing values. 

Col.num V. name Mode N.level ncom nmiss Miss.prop 

1 Nitric Oxide numeric 82 973 0 0 

2 Nitrogen Dioxide numeric 228 973 0 0 

3 Oxides of Nitrogen numeric 238 973 0 0 

4 Wind Speed numeric 146 973 0 0 

5 Resultant Wind Speed numeric 153 973 0 0 

6 Resultant Wind Direction numeric 270 973 0 0 

7 Maximum Wind Gust numeric 242 973 0 0 

8 Std. Dev. Wind Direction numeric 68 973 0 0 

9 Outdoor Temperature numeric 367 973 0 0 

10 Dew Point Temperature numeric 442 973 0 0 

11 Relative Humidity numeric 459 973 0 0 

12 Solar Radiation numeric 549 973 0 0 

13 PM10 numeric 451 973 0 0 

14 Ozone numeric 2 973 0 0 

 
binary-categorical such that values of 1 are given “high level” while values of 0 
are given “low level”. From the frequency distribution plot below, the days with 
low ozone levels occur more frequently than those of high ozone level. Compar-
ing the difference between both rates however, we can say the distribution is a 
bit balanced since the difference is not significantly large (see Figure 5). 

4. Results 

The first approach to building a model with high accuracy is to properly investigate  
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Figure 5. Frequency distribution of the target variable (ozone). 

 
data quality, coherence, association, and correlations between the DORT and 
PIE variables. This will thus enable us to correctly predict areas with high ozone 
and low ozone effectively. Analyzing the output, we observe that all the variable 
types are continuous (quantitative) except for target (ozone) variable which is 
binary (categorical). 

4.1. Data Exploration and Correlation 

It is important to understand the degree of correlation and association between 
the predictor variables with the target variable (ozone). The correlations were 
computed with the data, and it shows different degrees of correlations ranging 
from strong negative to strong positive correlation (see Figure 3). Out of the 13 
variables only “solar radiation”, “outdoor temperature” and “std. dev. wind di-
rection” show positive correlation with the target variable (ozone). Figure 6 illu-
strates predictor variables that are either positively or negatively correlated with 
the target variable (ozone). 

4.2. Box Plots Predictor Variables 

Figure 7 and Figure 8 show the boxplots of the predictor variables that are posi-
tively and negatively correlated with the target variable (ozone). In general, it 
could be seen that the negative correlated predictor variables have outliers. 

4.2.1. Box Plots of Ozone and Selected Predictor Variables 
The effect of selected predictor features (i.e., “Solar Radiation”, “Nitric Oxide”, 
“Nitrogen Dioxide” and “PM10”) differences used in determining the ozone lev-
el of a particular day (see Figures 9-12). The “high ozone” rate is nearly normal 
in most of the distributions as against the “low ozone level” with a negative 
skewness in distribution (see Figures 13-16). The histograms of “Solar Radia-
tion”, “Nitric Oxide”, “Nitrogen Dioxide” and “PM10” show right-skewed dis-
tribution (see Figures 13-16). This already suggests that the distribution of the 
“Solar Radiation”, “Nitric Oxide”, “Nitrogen Dioxide” and “PM10” is not normal. 
Aside from Solar radiation, the other selected variables show presence of outliers. 
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Figure 6. Correlation Coefficient between predictor variables and target 
(ozone) variable. 

 

 
Figure 7. Boxplots of +Corr. predictor variables. 

 

 
Figure 8. Boxplots of -Corr. predictor variables. 

 

 
Figure 9. Boxplots of solar radiation vs ozone. 
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Figure 10. Boxplots of nitric oxide vs ozone. 

 

 
Figure 11. Boxplots of nitrogen dioxide vs ozone. 

 

 
Figure 12. Boxplots of PM10 vs ozone level. 

 

 
Figure 13. Solar radiation histogram. 
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Figure 14. Nitric oxide histogram. 

 

 
Figure 15. Nitrogen dioxide histogram. 

 

 
Figure 16. Particulate matter 10 histogram. 

 
Since some of the box plots for the selected predictor variables have outliers and 
skewness, we would proceed to test for normality using the Anderson Darling 
and Shapiro-Wilk tests (see Table 3). 

4.2.2. Normality Test and Wilcoxon Test 
The normality test shows that the p-value of Anderson-Darling and Shapiro test 
are less than the significance level (0.05), which signifies that the distribution is 
not normal. Since the assumption of t-test is violated, we apply Wilcoxon rank 
sum test (non-parametric alternative test) to examine the association between 
Solar Radiation, Nitric Oxide, Nitrogen Dioxide and PM10 on ozone level (see 
Table 3). 
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Table 3. Association between target variable (ozone) and response variable (solar radiation). 

 
Solar Radiation 

Vs 
Ozone Level 

Nitric Oxide 
Vs 

Ozone Level 

Nitrogen Dioxide 
Vs 

Ozone Level 

PM10 
Vs 

Ozone Level 

Anderson-Darling 
normality test 

A = 54.466 
p-value < 2.2e−16 

A = 210.08 
p-value < 2.2e−16 

A = 76.434 
p-value < 2.2e−16 

A = 63.252 
p-value < 2.2e−16 

Shapiro-Wilk  
normality test 

W = 0.84817 
p-value < 2.2e−16 

W = 0.31033 
p-value < 2.2e−16 

W = 0.7364 
p-value < 2.2e−16 

W = 0.64781 
p-value < 2.2e−16 

Wilcoxon rank test 
W = 177795 

p-value < 2.2e−16 
W = 61823 

p-value < 2.2e−16 
W = 84314 

p-value = 9.622e−11 
W = 100056 

p-value = 0.005453 

Comments 
The p-value of the Wilcoxon rank sum test above is lower than the alpha value (0.05) indicating that 
there is significance relationship between ozone level and Solar Radiation/Nitric Oxide/Nitrogen  
Dioxide/PM10. 

data: Alternative hypothesis (HA): true location shift is not equal to 0 

4.3. Data Splitting 

The dataset was partitioned into two parts with a ratio of 2:1, where the training 
data (D1) has 67%, and the test data (D2) takes 33%. Logistic regression tech-
nique was applied to the train data to build a predictive model. Firstly, we 
adopted the lasso regularization (L1) with penalty to obtain the tuning parameter 
(λ) with cross validation. The logistic regression model was fitted with lasso re-
gularization method using our trained data, D1. The lasso method was applied 
because our aim is to build a parsimonious model which will properly explain 
our target (ozone) feature. 

4.3.1. MSE and Tuning Parameter 
The best lambda to regularize our model is evaluated using the MSE and 
miss-classification rate. The result of the first six rows of the Lambda’s, miss 
classification rate and mean square error is shown in Table 4. Using MSE (Mean 
Square Error) as the evaluation metric. Our Best Lambda (tuning parameter) is 
0.0026. 

4.3.2. Mean Square Error vs Lambda 
The plot below indicates that as the tuning parameter increases, the Mean 
Square Error increases as well. Therefore, it is important to keep Lambda very 
minimal to obtain low MSE. However, at 0.3 Lambda, the MSE becomes con-
stant (see Figure 17). 

4.4. Model Fitting and Odds Ratio of LR Model 

Having gotten the best lambda. We fit the final Lasso Logistic regression model 
with the Training and Validation data pooled together. The important features 
can be seen from Table 5. After fitting the model with the best lambda, both 
“Nitrogen Dioxide” and “Resultant Wind Speed” happen to be the unimportant 
variables in our LR model (see Table 5). 
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Table 4. Lambda’s, misclassification rate and MSE matrix. 

 [1] [2] [3] 

[1] 0.00010 0.355 0.2500 

[2] 0.00261 0.126 0.0891 

[3] 0.00512 0.135 0.0930 

[4] 0.00764 0.138 0.0982 

[5] 0.01015 0.145 0.1017 

[6] 0.01266 0.145 0.1041 

 

 
Figure 17. Showing plot of lambda vs MSE. 

 
Table 5. Coefficients of important predictors using LGR (l1) model. 

Variables Coefficients 

Nitric Oxide −1.98759 

Nitrogen Dioxide . 

Oxides of Nitrogen −0.00638 

Wind Speed −0.25833 

Resultant Wind Speed . 

Resultant Wind Direction −0.00391 

Maximum Wind Gust −0.01733 

Std. Dev. Wind Direction 0.06886 

Outdoor Temperature −0.00652 

Dew Point Temperature 0.04620 

Relative Humidity −0.13025 

Solar Radiation 1.23665 

PM10 0.01135 

 
The negative coefficients of “Nitric Oxide” indicates that a slight increase in 

“Nitric Oxide” multiplies the odd ratio by a number < 1 which effectively in-
creases the probability of the output being labeled as low ozone level (0). In ad-
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dition, the positive coefficients of “Solar Radiation” suggests that a unit increase 
in the variable “Solar Radiation” multiplies the odd ratio by a number greater 
than one which effectively increases the probability of the output being labeled 
as high ozone level (1). We will then use the best-fitted model on our test data. 
Table 6 below presents the odds ratio of important predictor variables based on 
the best fit model. 

4.4.1. Logistic Regression Model Evaluation 
From Table 7, the AUC of 0.952 indicates that our fitted model has 95% ability 
to correctly classify ozone level into high or low. The confidence interval also in-
dicates the true AUC falls within the interval (0.929, 0.975). Therefore, we are 
95% confident that our AUC is accurate. From Table 7, we obtained an MSE 
value of 0.0833 which generally indicates a good performance for our model. We 
further computed the miss-classification rate since this is a logistic regression 
model and MSE is not the best evaluating method. The miss-classification rate 
value is 0.116 which means that our model correctly predicts the ozone levels 
into high and low ozone at a rate of 88.4% which suggests that our model per-
forms well. The AUC of 0.952 implies that our best fitted model has 95.2% ac-
curacy to predict if the ozone level is either high or low for a particular day. The 
C.I also indicates the true AUC falls within the interval (0.929, 0.975). Therefore, 
we are 95% confident that our AUC falls within this interval.  

4.4.2. Receiver Operating Characteristic (ROC) Curve for LR Model 
The ROC curve stands for Receiver Operating Characteristic curve. It is a graphi-
cal representation used in evaluating the performance of binary classification 
models. It illustrates the relationship between the hit rate (also known as sensi-
tivity or true positive rate) and the false alarm rate (also known as the false posi-
tive rate). The hit rate refers to the proportion of correctly identified positive in-
stances (true positives) out of all actual positive instances. It represents the mod-
el’s ability to correctly classify positive cases. On the other hand, the false alarm 
rate represents the proportion of incorrectly identified negative instances (false 
positives) out of all actual negative instances. 

The ROC curve plots the hit rate on the y-axis and the false alarm rate on the 
x-axis. It shows how the trade-off between these two rates changes as the classi-
fication threshold of the model varies. The threshold determines the point at 
which the model classifies instances as positive or negative based on the pre-
dicted probabilities or scores. Ideally, a good classification model would achieve 
a high hit rate and a low false alarm rate, resulting in a curve that hugs the up-
per-left corner of the ROC space. The closer the curve is to this corner, the better 
the model’s performance. The diagonal line from (0, 0) to (1, 1) represents the 
performance of a random classifier. 

In addition to the ROC curve itself, the area under the curve (AUC) is often 
calculated to provide a single metric summarizing the model’s performance. The 
AUC represents the probability that the classifier will rank a randomly chosen 
positive instance higher than a randomly chosen negative instance. A higher  
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Table 6. Odds ratio of important predictor variables based on the best fit model. 

 
Odds 
Ratio 

Implications 

Target Variable 
(Ozone) 

Low (0) High (1) 

Nitric Oxide 0.16 Nitric Oxide might not be a protective factor for high ozone level ✓  

Oxides of Nitrogen 0.981 Oxides of Nitrogen might lead to high ozone level subsequently ✓  

Wind Speed 0.733 Wind speed might lead to high ozone level subsequently ✓  

Resultant Wind  
Direction 

0.997 
Resultant wind direction might lead to high ozone level  
subsequently 

✓  

Maximum Wind Gust 0.976 
Maximum wind gust might lead to high ozone level  
subsequently 

✓  

Std. Dev. Wind  
Direction 

1.06 Std. Dev. wind direction is a risk factor for high ozone level  ✓ 

Outdoor Temperature 1 Outdoor temperature is a risk factor for high ozone level  ✓ 

Dew Point Temperature 1.04 Dew point temperature is a risk factor for high ozone level  ✓ 

Relative Humidity 0.885 Relative humidity might lead to high ozone level subsequently ✓  

Solar Radiation 4.19 Solar radiation is certainly a major risk factor for high ozone level  ✓ 

PM10 1.01 Particulate matter 10 is a risk factor for high ozone level  ✓ 

 
Table 7. Results of the LR model evaluation. 

Miss-classification rate MSE cvAUC SE CI Confidence 

0.116 0.0833 0.952 0.0115 0.929, 0.975 0.95 

 
AUC value indicates better discrimination power of the model. Our model has a 
very high discriminatory power for correct prediction of high ozone and low 
ozone levels at any given day. Figure 18 shows the ROC curve (i.e., trade-off 
between sensitivity (or TPR) and False Positive Rate [1 – Specificity]). It further 
indicates that the model performs better against the benchmark (50%) with total 
area of 0.952 (95.2%). 

4.4.3. Performance of LR Model using Confusion Matrix 
Metrics such as accuracy, precision (positive prediction value), recall (sensi-
tivity) and f1 score provide different perspectives on model performance. The 
confusion matrix also helps in the interpretation of model performance. The 
Sensitivity or Recall (TP rate) of 0.8761 (87.6%) indicates that the model has a 
higher % of detecting high ozone level of a particular day. The Specificity (TN 
rate) of 0.8878 (88.8%) which is relatively high indicates that the model has a 
higher % of detecting low ozone level of a particular day. Therefore, our fitted 
Model has an accuracy of 88.4% with respect to performance and a precision of 
81.2% which implies that our Model has a low FP rate. Confusion matrix and 
other statistical prediction parameters for logistic regression model are shown in 
Table 8. 
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Figure 18. Showing the receiver operators curve of the hit rate vs false alarm. 

 
Table 8. Confusion matrix and other statistical prediction parameters for LR. 

Confusion Matrix and Statistics For LR 

Accuracy 0.884 

95% CI (0.843, 0.917) 

Sensitivity/Recall 0.876 

Specificity (True Negative Rate/TNR) 0.888 

Pos Pred Value/Precision 0.811 

F1 Score 0.843 

Prediction Time 0.02 secs 

Binary Cross Entropy 6.03 

 
4.5. Artificial Neural Network (ANN) Model 

To fit an Artificial Neural Network (ANN) model with our trained dataset D1, to 
find the desired model. It is necessary to scale our training data, thereby creating 
a data frame with the target variable. After scaling, we then build our ANN 
structure which has 4 hidden layers containing 9, 7, 5, and 3 neurons respective-
ly together with input and output layers. 

4.5.1. Scaling and MSE of ANN Model 
After scaling the test data D2, we proceeded to predict the target “ozone” variable 
using our ANN model. Computing the Mean Squared Error (MSE) of our mod-
el, we obtained a value of 0.0833 which indicates that the model performed well. 
However, MSE alone is not an optimal evaluation technique for our model, 
hence we need to further calculate the misclassification rate and the confusion 
matrix. 

4.5.2. Misclassification Rate of ANN Model 
The miss-classification rate value is 0.107 which means that our model correctly 
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predicts both high ozone and low ozone level at a rate of 89.3%. This suggests 
that our model performs well. Nevertheless, for better evaluation, we would fur-
ther calculate the AUC and the confusion matrix of our ANN model (see Table 
9). 

4.5.3. ANN Model Evaluation 
The AUC of 0.954 implies that our best fitted model has 95.4% accuracy to pre-
dict if the ozone level is either high or low for a particular day. The C.I also in-
dicates the true AUC falls within the interval (0.929, 0.979). Therefore, we are 
95% confident that our AUC falls within this interval. 

4.5.4. ROC Curve 
The AUC of 0.954 implies that our best fitted model has 95.4% accuracy to pre-
dict if the ozone level is either high or low for a particular day. The C.I also in-
dicates the true AUC falls within the interval (0.929, 0.979). Therefore, we are 
95% confident that our AUC falls within this interval (see Figure 19). 

4.5.5. Performance of ANN Model using Confusion Matrix 
The accuracy of our model is 0.893 (89.3%) which is relatively high indicating 
that our model performs well in predicting the ozone level for a day. The Sensi-
tivity or Recall (TP rate) of 0.802 (80.2%) indicates that the model has a high-
er % of detecting high ozone level of a particular day. The Specificity (TN rate) 
of 0.957 (95.7%) which is relatively high indicates that the model has a higher % 
of detecting low ozone level of a particular day. With the high accuracy and a 
precision of 92.9%, these results imply that our Model has a low False Positive 
(FP) rate. Confusion matrix and statistical prediction parameters for artificial 
neural network model are shown in Table 10. 
 
Table 9. Results of the ANN model. 

Miss-classification rate MSE cvAUC SE CI Confidence 

0.107 0.0833 0.954 0.0126 0.929, 0.979 0.95 

 
Table 10. Confusion matrix and other statistical prediction parameters for ANN. 

Confusion Matrix and Statistics 

Accuracy 0.893 

95%CI (0.854, 0.925) 

Sensitivity/Recall 0.802 

Specificity (True Negative Rate/TNR) 0.957 

Pos Pred Value/Precision 0.929 

F1 Score 0.861 

Prediction Time 0.00 secs 

Binary Cross Entropy/Log Loss 3.74 
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Figure 19. Showing the ROC of the hit rate vs false alarm. 

4.6. F1 Score 

The F1 score is a metric commonly used in classification tasks to evaluate the 
overall performance of a model. It combines both precision and recall into a sin-
gle value, providing a balanced measure of the model’s accuracy. 

( )
( )

2 precision recall
1 Score

precision recall
F

∗ ∗
=

+
 

F1 score considers both FP (false positive) and FN (false negatives), making it 
a useful metric when dealing with imbalanced datasets or when both precision 
and recall are equally important. When comparing different models or algo-
rithms, a higher F1 score indicates better performance in terms of both precision 
and recall. Based on our results, ANN performs better than LR with F1 score of 
0.861. 

5. Conclusion and Recommendations 

The accuracy of our model is 89.3% which is relatively high, thus it indicates that 
our model performs well in predicting the ozone level for a given day. Also, the 
Sensitivity or Recall (TP rate) of 80.2% indicates as well that our model has a 
higher chance of detecting the high ozone rate of a particular day. The Specifici-
ty (TN rate) of 95.7% indicates that the model has a higher chance of detecting 
the low ozone rate on a given day as well. With the high accuracy stated above 
and a precision of 92.9%, these results imply that our model has a low False Pos-
itive (FP) rate. 

In addition, from our evaluation metrics for both models, Our ANN model 
performs slightly better than the LR model with the ANN model having higher 
accuracy 89.3% compared to LR’s 88.4% and AUC 95.4% compared to LR’s 
95.2% while also having a lower miss-classification rate (10.7% compared to LR’s 
11.6%). 

Furthermore, when we consider the precision and recall of our models’ per-
formance, both models perform very well with very high precision and high re-
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call, meaning that our model has a high true positive (TP) rate and a low false 
positive (FP) rate. When the sensitivity is high, we also tend to have a lower false 
negative rate meaning that our model would most likely avoid a wrong predic-
tion of a negative (low ozone level) outcome any day. 

With regards to the prediction time, while both models show very small-time 
complexity for prediction execution, the ANN model has a lower prediction 
time. Also looking at the binary cross entropy, the ANN model has the lower 
binary cross entropy indicating that it performed better than the LR model in 
terms of classification. 

We recommend that subsequent research should consider the following 
points: 

Application of other types of supervised machine learning models, such as the 
Random Forest Model, Support Vector Machine, K-Nearest Neighbors, Decision 
Trees, and Naïve Bayes, for the classification of ozone. 

Other researchers could try to expand the scope of the paper by using differ-
ent datasets from regions affected by ozone pollution in various areas. 
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