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Abstract 
In the existing Statistics and Econometrics literature, there does not exist a 
statistical test which may test for all kinds of roots of the characteristic poly-
nomial leading to an unstable dynamic response, i.e., positive and negative 
real unit roots, complex unit roots and the roots lying inside the unit circle. 
This paper develops a test which is sufficient to prove dynamic stability (in 
the context of roots of the characteristic polynomial) of a univariate as well as 
a multivariate time series without having a structural break. It covers all roots 
(positive and negative real unit roots, complex unit roots and the roots inside 
the unit circle whether single or multiple) which may lead to an unstable dy-
namic response. Furthermore, it also indicates the number of roots causing 
instability in the time series. The test is much simpler in its application as 
compared to the existing tests as the series is strictly stationary under the null 
(C01, C12). 
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1. Introduction 

A univariate time series that can be written in the form 

( )1 1 2 2 ,t t t t ty Lµ ε ψ ε ψ ε µ ψ ε− −= + + + + = +  

with 0 jj ψ∞

=
< ∞∑ , roots of ( ) 0ψ =  outside the unit circle, and { }tε  a 

white noise process with mean zero and variance 2σ  is a covariance stationary 
time series with 1) ( )tE y µ=  and 2) ( ),t t j jcov y y γ− = , for all t where j is an 
integer. A process is said to be strictly stationary if the joint distribution of 

( )1 2
, , , ,

nt t j t j t jY Y Y Y+ + +  depends only on the intervals separating the dates, i.e., 

1 2, , , nj j j  and not on the date itself, i.e., t. The most important feature of a 
stable dynamic response which distinguishes it from an unstable response is its 
convergence property, i.e., the future forecasts ( )| 1

ˆˆ | , ,t s t t s t ty E y y y+ + −≡   con-
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verge to the unconditional mean, i.e., 

|ˆlim .t s ts
y µ+→∞

=  

Thus if someone is trying to forecast a series farther into the future, it be-
comes very important to know whether the series is dynamically stable or not. 
The most common approach in time series literature is testing for a real positive 
unit root. A number of tests have been proposed, including [1]-[27] and [28]. 

The use of CUSUM for the stability (or stationarity) of regression equations 
was introduced by [29]. The CUSUM test which is based on the residuals from 
the recursive estimates is normally used to test the parameter change in time se-
ries model. A number of tests for testing the structural change are available in 
the existing literature, such as [30] [31] [32], etc. There has been some work re-
lated to complex unit roots as well, e.g., [33], etc. 

However, if the null hypothesis of a unit root is rejected, the time series can 
still be unstable due to presence of other kinds of roots leading to instability as 
unit root is not the sole root as a cause of concern regarding stability. If the null 
hypothesis of unit root is rejected, forecast/prediction of time series can still be 
seriously flawed unless there is a test available to guarantee that the series is dy-
namically stable. 

In the existing literature no test has been proposed which may test for all 
kinds of roots leading to an unstable response, i.e., real as well as complex unit 
roots along with the roots (of ( ) 0ψ = ) which lie inside the unit circle. 

This paper develops a test which is sufficient to prove the dynamic stability (in 
the context of roots of the characteristic polynomial) of a univariate as well as a 
multivariate time series without having a structural break. It covers all roots 
(positive and negative real unit roots, complex unit roots and roots inside the 
unit circle whether single or multiple) which may lead to an unstable dynamic 
response. Furthermore, it also indicates the number of roots causing instability 
in the time series. The test is much simpler in its application as compared to the 
existing tests as the series is strictly stationary under the null. 

The remainder of this paper is organized as follows: Section 2 provides the 
background of the test explaining the Routh’s stability criterion, formation of the 
Routh array, the theorems of the Routh test and the bilinear transformation. 
Section 3 discusses the hypothesis testing. Section 4 explains the methodology 
regarding the constrained minimization with inequality constraints. Section 5 
consists of the theorems regarding the distributions under the null for various 
kinds of stability tests. Section 6 provides the power and size performance of the 
test. Section 7 consists of a Monte Carlo study. Section 8 provides an empirical 
application of the test. Section 9 comprises of the conclusion and finally the 
proofs of the theorems and the derivation of the null hypothesis for a VAR is 
provided in the appendix. 

2. Background 

The main idea behind the test is to expolit the Routh-Hurwitz stability criterion 
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which is a mathematical test that provides a necessary and sufficient condition 
for the stability of a linear time invariant (LTI) control system. The Routh test 
was proposed by an English mathematician Edward John Routh in 1876 which is 
an efficient recursive algorithm to determine whether all the roots of the charac-
teristic polynomial of a linear system have negative real parts. 

German mathematician Adolf Hurwitz arranged the coefficients of the poly-
nomial into a square matrix in 1895, and showed that the polynomial is stable if 
and only if the sequence of determinants of its principal submatrices is all posi-
tive. These two procedures are exactly equivalent. Routh stability criterion pro-
vides a more efficient way to compute the Hurwitz determinants than compu-
ting them directly. 

For discrete systems, the corresponding stability test can be handled through 
the bilinear transformation, the Jury test or the Bistritz test which are all equiva-
lent, however the bilinear transformation is much simpler in its use. 

[34] compares graphically, using the Arnold Tongues, some sufficient criteria 
for the stability of periodic differential equations. 

For using these stability criteria, the parameters need to be estimated for which 
the procedure has been described in the later part. 

2.1. Routh’s Stability Criterion 

The Routh test is a purely algebraic method for determining how many roots of 
the characteristic equation have positive real parts; from this it can also be de-
termined whether the system is stable, for if there are no roots with positive real 
parts, the system is stable in continuous time framework. The algorithm for ap-
plying Routh’s stability criterion requires the order of the polynomial (the cha-
racteristic equation) to be finite and is as follows: 

Write the characteristic equation in the form 
1 2

0 1 2 0,n n n
na w a w a w a− −+ + + + =                  (1) 

where 0a  is positive (if 0a  is originally negative, both sides are multiplied by 
−1). In this form, it is necessary that all the coefficients 

0 1 2 1, , , , ,n na a a a a−  

be positive if all the roots are to lie in the left half plane. If any coefficient is neg-
ative, the system is definitely unstable, and the Routh test is not needed to an-
swer the question of stability. However, in this case, the Routh test will tell us the 
number of roots in the right half plane. If all the coefficients are positive, the sys-
tem may be stable or unstable. It is then necessary to apply the following proce-
dure to determine stability. 

2.1.1. Routh Array 
Arrange the coefficients of Equation (1) into the first two rows of the Routh ar-
ray (Table 1) as follows. 

The array has been filled in for 7n =  in order to simplify the discussion. For 
any other value of n, the array is prepared in the same manner. In general, there  
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Table 1. Routh array. 

Row      

1 a0 a2 a4 a6 ... 

2 a1 a3 a5 a7 ... 

3 b1 b2 b3 ...  

4 c1 c2 c3 ...  

5 d1 d2 ...   

6 e1 e2 ...   

7 f1 ...    

n + 1 g1 ...    

 
are ( )1n +  rows. For n even, the first row has one more element than the second 
row. The elements in the remaining rows are found from the formulas 

1 2 0 3 1 4 0 5 1 6 0 7
1 2 3

1 1 1

1 3 1 2 1 5 1 3 1 7 1 4
1 2 3

1 1 1

1 3 1 31 2 1 2
1 2

1 1

a a a a a a a a a a a a
b b b

a a a
b a a b b a a b b a a b

c c c
b b b

c b b cc b b cd d
c c

− − −
= = =

− − −
= = =

−−
= =





 

   

 

The elements for the other rows are found from formulas that correspond to 
those just given. The elements in any row are always derived from the elements 
of the two preceding rows. During the computation of the Routh array, any row 
can be divided by a positive constant without changing the results of the test. 
(The application of this rule often simplifies the arithmetic.) 

Having obtained the Routh array, the following theorems are applied to de-
termine stability. 

2.1.2. Theorems of the Routh Test 
Theorem 1 The necessary and sufficient condition for all the roots of the cha-

racteristic equation to have negative real parts (stable system) is that all elements 
of the first column of the Routh array be positive and non-zero. 

Theorem 2 If some of the elements in the first column are negative, the num-
ber of roots with a positive real part (in the right half plane) is equal to the num-
ber of sign changes in the first column. 

Theorem 3 If one pair of roots is on the imaginary axis, equidistant from 
the origin, and all other roots are in the left half plane, all the elements of the 
nth row will vanish and none of the elements of the preceding row will vanish. 
The location of the pair of imaginary roots can be found by solving the equa-
tion 

2 0,Cw D+ =                              (2) 

where the coefficients C and D are the elements of the array in the (n − 1)th row 
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as read from left to right, respectively. 
The algebraic method for determining stability is limited in its usefulness in 

that all we can learn from it is whether a system is stable. It does not give us any 
idea of the degree of stability or the roots of the characteristic equation. 

Example: Given the characteristic equation 
4 3 23 5 4 2 0,w w w w+ + + + =  

let’s determine the stability by the Routh criterion as follows: 
Since all the coefficients are positive, the system may be stable. To test this, 

form the following Routh array (Table 2). 
Since there is no change in sign in the first column, there are no roots having 

positive real parts, and the system is stable. 

2.2. Bilinear Transformation 

The Routh test which is often used to examine the roots of the characteristic eq-
uation of a continuous system may also be used to examine the roots of the cha-
racteristic equation of a discrete data system. The Routh test detects the presence 
of roots in the right half of w-plane. Since the criterion of stability of a discrete 
data system requires that all roots fall within the unit circle of the z-plane (or 
outside the unit circle of the 1L z−= =  plane), one must first apply a trans-
formation that will map the inside of the unit circle of the z-plane into the left 
half of the w-plane. One can then apply the Routh test to discover roots in the 
right half of the w-plane, and if none are found, we know that the roots of the 
characteristic equation fall within the unit circle and that the discrete data sys-
tem is stable. 

A transformation that will map the inside of the unit circle of the z-plane into 
the left half of the w-plane is 

1.
1

wz
w
+

=
−

                             (3) 

This transformation is called the bilinear-transformation. The regions involv-
ing the transformation are shown in Figure 1. 

3. Hypothesis Testing 

Let us consider the following AR(1) process: 

( )11 ,t tL y cφ− = +                          (4) 

where ( )[ ]0,1t N iid∼ . 
The characteristic polynomial of the above expression is as follows: 11 0Lφ− =  

which can be written in the z-plane as: 1
11 0zφ −− = , which implies that  

1 0.z φ− =  

Applying the bilinear transformation on the above expression gives: 

1
1 0.
1

w
w

φ+
− =

−
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Table 2. Example of routh array. 

Row    

1 1 5 2 

2 3 4  

3 11/3 6/3  

4 26/11 0  

5 2   

 

 
Figure 1. Bilinear transformation. 

 
After rearranging, we get: 

( ) ( )1 11 1 0.wφ φ− + + =                       (5) 

The Routh Array for the above expression is as follows: 
 

Row  

1 11 φ−  

2 11 φ+  

 
The null hypothesis of stability of above AR(1) process is as follows: 

1
0

1

1
: 0

1
H

φ
φ

− 
> + 

, or 0 1: 1 1H φ− < < . 

As another example, suppose there is an AR(2) process: 

( )2
1 21 ,t tL L y cφ φ− − = +                       (6) 

where ( )[ ]~ 0,1t N iid . 
The characteristic polynomial of the above expression is as follows:  

2
1 21 0L Lφ φ− − =  which can be written in the z-plane as: 1 2

1 21 0z zφ φ− −− − = , 
which implies that 

2
1 2 0.z zφ φ− − =  

Applying the bilinear transformation on the above expression gives: 
2

1 2
1 1 0.
1 1

w w
w w

φ φ+ +   − − =   − −   
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After rearranging, we get:  

( ) ( ) ( )2
1 2 2 1 21 2 2 1 0.w wφ φ φ φ φ− − + + + + − =              (7) 

The Routh Array for the above expression is as follows: 
 

Row   

1 1 21 φ φ− −  1 21 φ φ+ −  

2 22 2φ+   

3 1 21 φ φ+ −   

 
The null hypothesis of stability of above AR(2) process is as follows: 

1 2

0 2

1 2

1
: 2 2 0

1
H

φ φ
φ

φ φ

− − 
 + > 
 + − 

, or ( ) ( )2 1 2
0

2

1 1
:

1 1
H

φ φ φ
φ

− − < < − 
 − < < 

. 

Now to express the hypothesis testing in a general form, we can write a univa-
riate time series as follows:  

,t t ty ′= +x β                             (8) 

where ( )[ ]~ 0,1t N iid ; ty  is a scalar time series variable, tx  is a ( )1k ×  vec-
tor of regressors (each regressor represents some lagged value of ty ), β  is a 
( )1k ×  vector of parameters of interest, and t  represents the unexplained part. 
After estimating the above model, we are interested in knowing whether the 
roots of the characteristic equation associated with the above model satisfy the 
stability criterion or not. Our null hypothesis is as follows: 

0 : ,H R b< <a β  

against the alternative 

1 : , or ,H ≤ ≤b R R aβ β  

where the matrix of constraints R  is a ( )p k×  matrix of rank p, where p k≤ . 
a  and b  are known ( )1p×  vectors. 

4. Minimization Problem with Inequality Constraints 

The main challenge in the implementation of the above test is that in order to 
get the constrained estimates of β ’s, we need to do the following constrained 
minimization: 

( )2
1min T

t tt y
β =

′−∑ x β  

subject to < <a R bβ . 
There are various techniques in the current Mathematics literature that allow 

for constrained optimization with inequality constraints such as Linear program-
ming (for linear objective function) [35], Quadratic programming or characte-
rizing the problem in terms of the Karush-Kuhn-Tucker conditions (for non-linear 
objective function). However, these techniques require the inequality constraints 
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to have an equality sign as well. On account of relying on these techniques, the 
current Statistics and Econometrics literature only allows a null hypothesis with 
an inequality sign if the equality sign is also there. Furthermore, this type of in-
equality constraint is seldom found in hypothesis testing where the parameters 
are bounded by a lower as well as an upper limit. To avoid a strict inequality sign 
in the null hypothesis, usually the problem is reframed in such a way that the 
null hypothesis involves a less than or equal to, or greater than or equal to sign. 
However, in this situation, if we try to make the alternative hypothesis as the null, 
the series can be unstable for a variety of reasons making the distribution under 
the null nearly impossible to calculate. 

In general, a constraint with an upper and lower bound on parameters is more 
convenient and practical to test as compared to an equality constraint since the 
exact value of a parameter is hardly known. If =a 0 , and = ∞b , then the above 
constraint is equivalent to the positiveness constraint of parameters. As the dif-
ference between a  and b  gets small, the inequality constraint approaches the 
equality constraint. In this regard, the above constraint is a general version of 
other type of constraints, and a methodology to handle this could have implica-
tions for hypothesis testing in general in econometrics, and solving the optimi-
zation problems with inequality constraints in Mathematics. 

4.1. Methodology 
4.1.1. β  a Scalar 

The inequality constraint is a bβ< < . Let 

ln .ak
b
β

β
 −

=  − 
 

Taking the partial differential of the above expression, we get:  

[ ][ ]
,b ak

a b
δ δβ

β β
−

=
− −

                     (9) 

δβ  is calculated as follows: 

( ) ( )( )1

01 1 .t t t t tt
T

t
T yδβ β

−

= =
′ ′= −∑ ∑x x x x              (10) 

(See the detail of this step in the next section.) 
Plugging this in Equation (9), we get kδ  which we can use in the following 

expression: 

0 ,k k kδ= +                         (11) 

0k  is the initial value of k, i.e., 

0
0

0

ln .
a

k
b
β

β
 −

=  − 
 

From Equation (11), we have 

0

0

ln ln ,
aa k

b b
ββ δ

β β
 − −

− =  − −   
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( )( )
( )( )

0

0

ln ,
a b

k
b a
β β

δ
β β

 − −
⇒ = 

− −  
 

( )( )
( )( ) ( )0

0

exp ,
a b

k
b a
β β

δ
β β

 − −
⇒ = 

− −  
 

( )( ) ( )( ) ( )0 0 exp ,a b b a kβ β β β δ⇒ − − = − −  

( ) ( ) ( ) ( ) ( ) ( )0 0 0 0exp exp ,b a k a b b a kβ β β δ β β δ ⇒ − + − = − + −   

( ) ( ) ( )
( ) ( ) ( )

0 0

0 0

exp
exp

.updated a b b a k
b a k

β β δ
β β δ

β
−

− +
⇒ =

+ −

−
 

Now treat the updated β  as 0β  in Equation (10) and repeat the whole pro-
cedure until the estimate converges. 

4.1.2. β  a Vector 

Let 

( )

1

2

0 0
0 0

0 0 p
p p

a
a

a
×

 
 
 ≡
 
 
  

A





   



; 

( )

1

2

0 0
0 0

0 0 p
p p

b
b

b
×

 
 
 ≡
 
 
  

B





   



;  

( )
( )

( )
( )

1

2

0 0

0 0

0 0
p

p p×

 
 
 

≡  
 
 
 

R

R
D

R





   



ß
ß

ß

; 

( )1

1
1

1

p

p×

 
 
 ≡
 
 
 

e


; 

( )

1

2

1

p

p
p

a
a

a
×

 
 
 = =
 
 
  

a Ae


; 

( )

1

2

1

p

p
p

b
b

b
×

 
 
 = =
 
 
  

b Be


; 

and 

( )
( )

( )
( )

1

2

1

p

p
p×

 
 
 

= =  
 
 
 

R

R
R De

R


ß

ß
ß

ß

. 

The inequality constraint < <a R bß  implies that ( )1 11a b< <Rß ,  
( )2 22a b< <Rß ,  , ( )p ppa b< <Rß . 

Let 
( )

( )
( )

( )
( )

( )
1 21 2

1 2
1 21 2

ln , ln , , ln
pp

p
p p

aa a
k k k

b b b

 −   − −
 = = =   

− − −         

RR R
R R R



ßß ß
ß ß ß

, 

( )

( )
( )

( )
( )

( )
( )

( )

11

1 1

1
22

2
2 2

ln 0 0

0 0
0 ln 00 0

0 0

0 0 ln

p
p p pp

p p
p p

a
b

k a
k

b

k
a

b

×

×

  −
  

−   
    −       −≡ =               −
  
 −   

R
R

R
RK

R

R








   

   





ß
ß

ß
ß

ß
ß
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or 

[ ] [ ]1ln ,d − = − − K B D D A                  (12) 

where [ ]ln .d ≡  log of diagonal of the matrix 
(Note: This is just a defining expression. It does not say that we can take the 

log of only the diagonal of a matrix.) 

( )

( )
( )

( )
( )

( )
( )

( )

[ ] [ ]

11

1 1

1
22

12
2 2

1

1

ß
ln

ß

ß
ln

ß ln

ß
ln

ß

p p

p
p pp

p p
p

a
b

k a
k

b d

k
a

b

−

×

×

  −
  

−   
    −        −= = = = − −      
  
   
  −
  

−    

R
R

R
Rk Ke B D D A e

R

R





, 

[ ]

( )

( )

( )

1

1 1

1

1 2 2

1

0 0

0 0

0 0 p p

b

b

b

−

−

−

−

  −  
 

 −  − =  
 
 

  −  

R

R
B D

R





   



ß

ß

ß

; and 

[ ]

( )
( )

( )

11

22

0 0

0 0

0 0 pp

a

a

a

  −  
  −  − =  
 
  −   

R

R
D A

R





   



ß

ß

ß

. 

Taking the partial differential of the expression for 1k , we get: 

( ) ( )
( )1 1

1 1
1 11 1

ß .
ß ß

b ak
a b

δ δ
−

=
   − −   

R
R R

 

Similarly 

( ) ( )
( )2 2

2 2
2 22 2

ß ,
ß ß

b ak
a b

δ δ
−

=
   − −   

R
R R

 

  

( ) ( )
( )ß .

ß ß
p p

p p
p pp p

b a
k

a b
δ δ

−
=
   − −   

R
R R

 

1kδ  and ( )1δ Rß  have the same sign as the multiplier of ( )1δ Rß  is positive. 
In matrix notation, we can write: 

( )
[ ]

( )
[ ]

( )
[ ]

( )
( )
( )

1 1

1 1
ß

p pp p p p p p
δ δ− −

× ×× × ×

= − − −k D A B D B A R , or 
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( )

( ) ( )
( )

( ) ( )
( )

( ) ( )
( )

1 1
1

1 11 1

1
2 2

22
2 22 2

1

ß
ß ß

ß
ß ß ,

ß
ß ß

p

p
p p

p
p pp p

b a
a b

k b a
k a b

k
b a

a b

δ

δ
δδ

δ

δ
δ

×

− 
    − −    

   −   
     − − = =       
   
    −

 
    − −    

R
R R

R
R Rk

R
R R





        (13) 

[ ]

( )

( )

( )

1

11

1
1 22

1

0 0

0 0

0 0 pp

a

a

a

−

−

−

−

  −  
 

 −  − =  
 
  −   

R

R
D A

R





   



ß

ß

ß

; and  

( )

( )
( )

( )

1

2

ß
ß

ß p

δ

δ

δ
δ
 
 
 =  
 
  

R
R

R

R


ß . 

( )δ δ= ⋅R Rß ß  

Similarly 

( )

1

2

0 0
0 0

0 0 p
p p

k
k

k

δ
δ

δ

δ
×

 
 
 =
 
 
  

K





   



, or 

( ) ( )
( ) ( )

( ) ( )
( ) ( )

( ) ( )
( ) ( )

( )

1 1 1

1 11 1

2 2 2

22 2

ß
0 0

ß ß

ß
0 0

ß ß

ß
0 0

ß ß

p

p p p

p pp p
p p

b a
a b

b a

a b

b a

a b

δ

δ

δ

δ

×

 − ⋅ 
 
   − −    
 − ⋅ 
   − −=     
 
 
 − ⋅
 

    − −    

R
R R

R

R RK

R

R R





   



(14) 

δß  is calculated as follows: 
Let ( ), ;t tf yx ß ( )2

1 ßt tt
T y
=

′= −∑ x , which we want to minimize with respect 
to ß, i.e., we want to find 

0,
ß
f∂
=

∂
 

( )
( )

( )
( ) ( )

2

1 1
1 1 1

1

2 ; and 2 .
ß ß ßt

T T
t t tt tt

k
k k k

f fy
= =

× ×
× ×

∂ ∂′ ′= − − =
′∂ ∂ ∂∑ ∑x xx xß  
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4.1.3. Newton-Raphson Method 
The equation of the tangent line to the curve 

,
ß
fZ ∂

=
∂

 

at point ß0 is 

( ) ( )
00

2

0
ß ßß ß

ß ß ß .
ß ß ß

f fZ
==

∂ ∂
= − +

′∂ ∂ ∂
                (15) 

Setting ( ) 0Z =ß , and 1=ß ß  gives: 

( )
00

2

1 0
ß ßß ß

0 ,
ß ß ß

f f

==

∂ ∂
= − +

′∂ ∂ ∂
ß ß  

00

1
2

1 0
ß ßß ß

ß ß ,
ß ß ß

f f
−

==

   ∂ ∂ ⇒ = −    ′∂ ∂ ∂  
 

( ) ( )( )1

1 0 01 1ß ß ß .T T
t t tt tt ty

−

= =
⇒ = + −′ ′∑ ∑x x xx  

The above equation can also be written as  

( ) ( )( )1

01 1ß ß .T T
t t tt tt tyδ

−

= =
= ′ ′−∑ ∑x xx x              (16) 

Putting this in Equation (14), we get δ K  which we can use in the following 
expression: 

0 ,δ= +K K K                         (17) 

where 0K  is the initial value of K , i.e., 

( )
( )

( )
( )

( )
( )

( )

0 11

1 0 1

0 22

2 00 2

0

0

ß
ln 0 0

ß

ß
0 ln 0

ß .

ß
0 0 ln

ß
pp

p p
p p

a
b

a
b

a

b
×

  −
  

−   
 

 − 
  −=    

 
 
  −
  

−    

R
R

R
RK

R

R





   



 

Putting Equation (12) into Equation (17), we get: 

[ ] [ ] [ ] [ ]11
0 0ln ln ,d d δ−−   − − − − − =   B D D A B D D A K  

[ ] [ ][ ] [ ]1 1
0 0ln ,d δ− − ⇒ − − − − = D A B D B D D A K  

[ ] [ ][ ] [ ] ( )1 1
0 0 exp ,d δ− −⇒ − − − − =D A B D B D D A K  

where ( )exp .d ≡  exponential of the diagonal of the matrix 
(Note: This is just a defining expression. It does not say that we can take the 

exponential of only the diagonal of a matrix.) 

[ ] [ ][ ] [ ] ( )1
0 0 exp ,d δ−⇒ − = − − −D A B D B D D A K  
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[ ][ ] [ ] ( )1
0 0 exp ,d δ−⇒ = + − − −D A B D B D D A K  

[ ] [ ] ( ){ } [ ] [ ] ( )1 1
0 0 0 0exp exp ,d dδ δ− −⇒ + − − = + − −D I B D D A K A B B D D A K

 

[ ] [ ] ( ){ } [ ] [ ] ( )0 0 0 0exp exp ,d dδ δ⇒ − + − = − + −D B D D A K B D A B D A K  

[ ] [ ]( )1 1
0 0as ,− −− = −B B D B D B  

[ ] [ ] ( ){ } [ ] [ ] ( ){ }1
0 0 0 0exp exp ,d dδ δ

−
⇒ = − + − − + −D B D D A K B D A B D A K  

[ ] [ ] ( ){ } [ ] [ ] ( ){ }1
0 0 0 0exp exp ,p pd dδ δ

−
⇒ = − + − − + − ⋅De B D D A K B D A D A K B e  

[ ] ( ) [ ] ( )( )0 0as exp exp .d dδ δ− = − ⋅B D A K D A K B  

This implies that 

[ ] [ ] ( ){ } [ ] [ ] ( ){ }1
0 0 0 0ß exp exp .updated d dδ δ

−
= − + − − + − ⋅R B D D A K B D a D A K b (18) 

In expanded form, the above expression can be written as follows: 

( )
( )

( )
( )

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

( )

1 1 0 1 0 1 11 1

1 0 0 1 11 1

1
2 2 0 2 0 2 22 2

2
2 0 0 2 22 2

01

ß ß exp

ß ß exp
ß

ß ß exp
ß

ß ß expß

ß
ß

updated

updated
updated

updated

p
p p pp

a b b a k

b a k

a b b a k

b a k

a b

δ

δ

δ

δ

×

   − + −   
   − + −    

     − + −    
     − + −= =     
 
     − + 

R R

R R
R

R R
R

R RR

R
R





( ) ( )
( ) ( ) ( )

( )

0

0 0

1

.

ß exp

ß ß exp

p p pp

p p pp p
p

b a k

b a k

δ

δ
×

 
 
 
 
 
 
 
 
 
  −  
    − + −     

R

R R

(19) 

We need to keep the restricted estimate as far from the boundaries as if the 
unrestricted estimate was equal to a boundary value, i.e., either a  or b , we 
were able to reject the null. Therefore, we can allow the restricted estimate to 
take a value at the most at that point, e.g., if ß is a scalar, and the restricted esti-
mate is converging toward a value close to b, we need a t-statistic (at 95% confi-
dence level and 100 degrees of free1dom) as follows:  

( )
1.984.

ˆ
bt
se

β

β

−
=



  

This implies that 

( )ˆ1.984 .b seβ β≤ − ∗  

This leads to the intended performance of the test, i.e., if the unrestricted es-
timate is less than b, we shall be able “not to reject” the null, whereas if the un-
restricted estimate is greater than or equal to b, we will be able to reject the 
null. 

4.1.4. Summary 
Now let us summarize the step-wise methodology as follows: 

https://doi.org/10.4236/jdaip.2023.112009


M. A. Ahmed, N. Nawaz 
 

 

DOI: 10.4236/jdaip.2023.112009 157 Journal of Data Analysis and Information Processing 
 

1) Assume some initial values of ß, i.e., ß0 in the interval < <a R bß . 
2) Calculate δß  from Equation (16) using the assumed initial values ß0. 
3) Plug this value of δß  along with the initial values ß0 in Equation (14) to 

get δ K . 
4) Plug the value of δ K  in Equation (18) to get updated ß. 
5) Now treat the updated ß as ß0 and repeat steps 2 to 5. 
6) Stop the algorithm (if necessary) at the point discussed above. 

5. Stability Test 
Consider an ARMA model of the form 

1 1 2 2 1 1 2 2 ,t t t p t p t t t q t qY c Y Y Yφ φ φ θ θ θ− − − − − −= + + + + + + + + +      

with t  as white noise:  

( ) 0,tE =  

( )
2 for ,

0 otherwise.t
t

E τ
σ τ =

= 


   

Let ( )2
1 1, , , , , , ,p qc φ φ θ θ σ ′≡  β  denote the 1k ×  vector of population pa-

rameters. 
Theorem 4 Suppose that 1 2, , , Ty y y  have the joint probability density  

( )
1 1, , , 1 1, , , ; ,

T TY Y Y T Tf y y y
− −

 β  

∈Θβ , and ( )
1 1, , , 1 1, , , ;

T TY Y Y T Tf y y y
− −

 β  satisfies the following assumptions: 
Assumption 1: Identifiability; 1 2≠β β  implies that 

( ) ( )
1 1 1 1, , , 1 1 1 , , , 1 1 2, , , ; , , , ; .

T T T TY Y Y T T Y Y Y T TF y y y F y y y
− −− −≠
 

 β β  

Assumption 2: For each ∈β Θ , ( )
1 1, , , 1 1, , , ;

T TY Y Y T TF y y y
− −

 β  has the same 
support not depending on β . 

Assumption 3: For each ∈β Θ , the first three partial derivatives of 

( )( )1 1, , , 1 1log , , , ; ,
T TY Y Y T Tf y y y

− −

 β  

with respect to β  exist for 1 1, , ,T Ty y y−   in the support of 
( )

1 1, , , 1 1, , , ; .
T TY Y Y T TF y y y

− −

 β  

Assumption 4: For each ∈β Θ , there exists a function ( )1 1, , ,T Tg y y y−   
(possibly depending on β ), such that in a neighborhood of the given β  and 
for all { }, , 1, ,l m n k∈  , 

( ) ( )
1 1

3

, , , 1 1 1 1log , , , ; , , , ,
T TY Y Y T T T T

l m n

f y y y g y y y
β β β − − −

∂
≤

∂ ∂ ∂ 

 β  

where ( ) ( )
1 11 1 , , , 1 1, , , d , , , ;

T TT T Y Y Y T Tg y y y F y y y
−− − < ∞∫ 

  β . 

Assumption 5: For each ∈β Θ , ( )1 1log , , , ; 0T TE f y y y−∂ ∂ =   β β , 

( ) ( ) ( )

( )

1 1 1 1

2

1 1

log , , , ; log , , , ;

log , , , ; ,

T T T T

T T

E f y y y f y y y

E f y y y

− −

−

 ∂ ∂
=  ∂ ∂ 

 ∂
= − ∂ ∂

′

′ 

I  



β β β
β β

β
β β
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and ( )I β  is nonsingular. 
β̂  satisfies ( ) ( ) ˆ

ˆ 0S L β β
=

= ∂ ∂ =
β β

β  where 

( ) ( )
1 1, , , 1 1log , , , ; ,

T TY Y Y T TL f y y y
− −=


β β  

and ˆ
p
β→β  as T →∞ . 

Theorem 5 Suppose that 1 2, , , Ty y y  have the joint probability density 

( )
1 1, , , 1 1, , , ; ,

T TY Y Y T Tf y y y
− −

 β  

∈Θβ , and all the assumptions of theorem 4 hold, then under the null 

0 : ,H = β β  

where β  is the restricted estimator, 

( ) ( )( ) ( ) ( )( ) ( )2
0

ˆ ˆ2 log 2 log log under ,
d

pLR L L L L Hχ= − = − → β β β β  

where ( )L β  and ( )ˆL β  denote the values of the log likelihood function at the 
restricted ( β ) and the unrestricted ( β̂ ) estimates respectively. 

Theorem 6 If all the assumptions of theorem 4 hold, then under the null hy-
pothesis that the restrictions are true 

( ) ( ) ( ) ( )
11 2

0under .
d

pLM T Hχ
−− ′= →S I S  β β β  

Theorem 7 If all the assumptions of theorem 4 hold and the null hypothesis is 
true, then 

( ) ( ) ( ) ( )
11 2

0
ˆ ˆ und .ˆ er

d

pWald T Hχ
−− = − − →  

′ I β β β β β  

For Equation (8), and the null hypothesis of the form =R R β β , the above 
Wald statistic can be written as follows: 

( ) ( ) ( )
( )

11
2 1

1

2
0

ˆ

un

ˆ

d

ˆ

er ,

T
t

p

tt

d

W T T T

H

σ

χ

−−
−

=
 ′= − −  

→

′ ′∑R R R xx R R R β β β β
 

where β̂  and β  are the unrestricted and the restricted estimators respective-
ly. 

Theorem 8 If an ARMA (p, q) process is misspecified and there is some serial 
correlation in the noise term, we need to use the robust inference given in [36]. 

Theorem 9 Let us consider a VAR of the form 

1 1 2 2 ,t t t p t p t− − −= +Φ +Φ + +Φ +Y c Y Y Y   

where tY  denote an ( )1n×  vector containing the values that n variables take 
at date t. 

( )~ . . . , .t i i d 0 Ω  

Let 1 2 p′  Π = Φ Φ Φ c   which is ( )1n np× +  matrix. Vec≡ Πβ  
denote the ( )( )2 1n p n+ ×  vector of population parameters. Suppose that we have 
observed each of n variables for ( )T p+  time periods and 1 2, , , Ty y y  have the 
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conditional joint probability density 

( )1 1 0 1 1, , , | , , , 1 1 0 1 1, , , | , , , ; ,
T T p T T pf

− − − + − − − +Y Y Y Y Y Y y y y y y y
 

  β  

∈Θβ , and the above conditional joint density satisfies the following assump-
tions: 

Assumption 6: Identifiability; 1 2≠β β  implies that 

( )
( )

1 1 0 1 1

1 1 0 1 1

, , , | , , , 1 1 0 1 1

, , , | , , , 1 1 1

1

20 1

, , , | , , , ;

, , , | , , , ; .
T T p

T T p

T T p

T T p

F

F
− − − +

− − − +

− − − +

− − − +≠

Y Y Y Y Y Y

Y Y Y Y Y Y

y y y y y y

y y y y y y

 

 

 

 

β

β
 

Assumption 7: For each ∈β Θ , 

( )1 1 0 1 1, , , | , , , 1 1 0 1 1, , , | , , , ;
T T p T T pF

− − − + − − − +Y Y Y Y Y Y y y y y y y
 

  β  

has the same support not depending on β . 
Assumption 8: For each ∈β Θ , the first three partial derivatives of 

( )1 1 0 1 1, , , | , , , 1 1 0 1 1log , , , | , , , ; ,
T T p T T pf

− − − + − − − +Y Y Y Y Y Y y y y y y y
 

  β  

with respect to β  exist for 1 1, , ,T Ty y y−   in the support of 

( )1 1 0 1 1, , , | , , , 1 1 0 1 1, , , | , , , ; .
T T p T T pF

− − − + − − − +Y Y Y Y Y Y y y y y y y
 

  β  

Assumption 9: For each ∈β Θ , there exists a function ( )1 1, , ,T Tg −y y y  
(possibly depending on β ), such that in a neighborhood of the given β  and 

for all ( ){ }2, , 1, ,l m n n p n∈ + , 

( ) ( )
3

1 1 0 1 1 1 1log , , , | , , , ; , , , ,T T p T T
l m n

f g
β β β − − − + −

∂
≤

∂ ∂ ∂
y y y y y y y y y  β  

where 

( ) ( )1 1 1 1 0 1 1, , , d , , , | , , , ; .T T T T pg F− − − − + < ∞∫ y y y y y y y y y   β  

Assumption 10: For each ∈β Θ , 

( )1 1 0 1 1log , , , | , , , ; 0,T T pE f − − − +
 ∂ ∂ = y y y y y y  β β  

( ) ( )

( )

( )

1 1 0 1 1

1 1 0 1 1

2

1 1 0 1 1

log , , , | , , , ;

, , , | , , , ;

log , , , | , , , ; ,

T T p

T T p

T T p

E f

f

E f

− − − +

− − − +

− − − +

 ∂
= ∂

∂
⋅ ∂ ′

 ∂
= − ∂ ∂ ′ 

I y y y y y y

y y y y y y

y y y y y y

 

 

 

β β
β

β
β

β
β β

 

and ( )I β  is nonsingular. 
β̂  satisfies ( ) ( ) ˆ

ˆ 0S L
=

= ∂ ∂ =
β β

β β β  where 

( ) ( )1 1 0 1 1, , , | , , , 1 1 0 1 1log , , , | , , , ; ,
T T p T T pL f

− − − + − − − += Y Y Y Y Y Y y y y y y y
 

 β β  

and ˆ
p
→β β  as T →∞ . 

Theorem 10 Suppose that 1 2, , , Ty y y  have the conditional joint probabil-
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ity density  

( )1 1 0 1 1, , , | , , , 1 1 0 1 1, , , | , , ,
T T p T T pf

− − − + − − − +Y Y Y Y Y Y y y y y y y
 

   

β ∈Θ , and all the assumptions of theorem 9 hold, then under the null 

0 : ,H = β β  

where β  is the restricted estimator 

( ) ( )( ) ( ) ( )( ) ( )2
0

ˆ ˆ2 log 2 log log under ,
d

pLR L L L L Hχ= − = − → β β β β  

where ( )L β  and ( )ˆL β  denote the values of the log likelihood function at the 
restricted ( β ) and the unrestricted ( β̂ ) estimates respectively. 

Theorem 11 If all the assumptions of theorem 9 hold, then under the null 
hypothesis that the restrictions are true 

( ) ( ) ( ) ( )
11 2

0under .
d

pLM T Hχ
−− ′= →S I S  β β β  

Theorem 12 If all the conditions of theorem 9 hold and the null hypothesis is 
true, then 

( ) ( ) ( ) ( )
11 2

0
ˆ ˆ und .ˆ er

d

pWald T Hχ
−− = − − →  

′ I β β β β β  

If each equation of the VAR mentioned in theorem 6 is expressed in the form 
of Equation (8), and the null hypothesis is of the form =R R β β , the above 
Wald statistic can be written as follows: 

( ) ( ) ( )

( )

11
1

1

2
0

ˆ

und

ˆ

,

ˆ

er

T
T t tt

d

p

W T T T

Hχ

−−
−

=

′   ′ ′= − Ω ⊗ −    

→

∑R R R x x R R R β β β β
 

where β̂  and β  are the unrestricted and the restricted estimators respective-
ly. 

6. Power and Size of the Test 

Since the distribution under the alternative is unknown, therefore the power of 
ST has been estimated through Monte Carlo simulations as follows: 

 ( )1

1 ,N
i iPow I ST c

N α=
= >∑  

where iST  is the test statistic for the ith Monte Carlo sample, cα  is a given 
critical value, and I is the indicator function having value 1 if iST cα>  and 0 
otherwise. The following data generating process has been used: 

1 1 ,t t ty yµ φ −= + +   

0,µ =  

( )~ 0,1 .t N  

The values of parameters have been estimated through least squares with the 
help of methodology described earlier. A power plot for a range of alternatives 

https://doi.org/10.4236/jdaip.2023.112009


M. A. Ahmed, N. Nawaz 
 

 

DOI: 10.4236/jdaip.2023.112009 161 Journal of Data Analysis and Information Processing 
 

starting from a unit root, i.e., 1 1φ = , to 1 1.08φ =  for 1000N =  and 100T =  
is shown in Figure 2. The Sufficient test has the minimum power for a unit root. 
The power increases as we move farther from a unit root. The null rejection 
probabilities are reported in Table 3. For the true values satisfying the null hy-
pothesis, the test has the correct size. 

7. Monte Carlo Simulations 

Some specific examples are listed below in order to highlight the performance of 
the test in a variety of situations, i.e., real, complex, single and multiple roots. 
The examples also illustrate how the test identifies the number of roots causing 
instability in the dynamic response. A comparison with the Augmented Dickey 
Fuller and ADF-GLS test is also provided for the unit root cases. 

7.1. AR(1) 

Suppose that the model is correctly specified, i.e., we are estimating an AR(1) 
process. The null hypothesis for stability of an AR(1) process is as follows: 

1
0

1

1
: 0

1
H

φ
φ

− 
> + 

, or 

0 1: 1 1H φ− < < . 

Under the null hypothesis, the dynamic response is stable and the t-statistic 
follows an asymptotic normal distribution. The Sufficient test statistic is defined 
as follows: 

( )
( ) 1

2 1
1

.
ˆ

ˆ

T
tt t

T
ST

Tσ

β β
−

−
=

−
=

′∑ x x



 

The following data generating process has been used for generating data: 

1 1 ,t t ty yµ φ −= + +   

( )~ 0,1 .t N  

7.1.1. Case (a) 

10, 1.2µ φ= =  

For 1000 replications ( 100T = ), the number of rejections has been recorded, 
and the result is as follows: 
 

 Reject Not reject 
ST 1000  

 
The null hypothesis is rejected for all runs in the simulation, and the esti-

mated response is dynamically unstable. 

7.1.2. Case (b) 

10, 1µ φ= =  
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Figure 2. Power plot for the sufficient test for an AR(1) process. 

 
Table 3. Empirical null rejection probabilities 5% level. 

T = 100, rep = 1000, Two-Tailed Test of 0 1: 1 1H φ− < <  

DGP: ( )1 1 , ~ 0,1t t t ty y Nµ φ −= + +    

S. No. 1φ  Null Rejection Probability 

1 0.60 0.045 

2 0.70 0.043 

3 0.80 0.057 

4 0.90 0.052 

5 0.91 0.050 

6 0.92 0.053 

7 0.93 0.061 

8 0.94 0.058 

9 0.95 0.060 

10 0.96 0.059 
11 0.97 0.066 
12 0.98 0.063 
13 0.99 0.059 

 
For 1000 replications ( 100T = ), the number of rejections by the ST and the 

number of “No rejections” by the ADF test have been recorded, and the result is 
as follows: 

 
 Reject Not reject 

ST 1000  

7.1.3. Case (c) 

10, 0.99µ φ= =  
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For 1000 replications ( 100T = ), the number of “No rejections” by the ST and 
the number of rejections by the ADF test (which is optimal in the absence of an 
intercept and time trend in terms of power) have been recorded, and the result is 
as follows: 
 

 Reject Not reject 

ST  962 

ADF 47  

 
Although we cannot directly compare the power of ST with that of the ADF 

test as the null hypotheses are different, however, cases (c) and (d) somehow 
give a reflection of the power of ST as compared to that of the Augmented 
Dickey Fuller test. The ST has the minimum power in case (c) (a unit root case), 
i.e., 0.089. As the roots move farther from a value of one, the power of ST in-
creases. In contrast, in case (d), the ADF test has only a power of 0.047. 

7.2. AR (2) 

Suppose the model is correctly specified, i.e., we are estimating an AR(2) process. 
The null hypothesis for stability of an AR(2) process is as follows:  

1 2

0 2

1 2

1
: 2 2 0

1
H

φ φ
φ

φ φ

− − 
 + > 
 + − 

, or 

( ) ( )2 1 2
0

2

1 1
:

1 1
H

φ φ φ
φ

− − < < − 
 − < < 

. 

Under the null hypothesis, the dynamic response is stable and the Wald statis-
tic follows a Chi squared distribution with two degress of freedom. The Suffi-
cient test statistic is defined as follows: 

( ) ( ) ( )
( )

11
2 1

1

2
2 0

ˆ

under .

ˆ ˆT
tt

d

tST T T T

H

σ

χ

−−
−

=

′  ′= −  

→

′ −∑R R R x R Rx R β β β β
 

The following data generating process has been used for generating data: 

1 1 2 2 ,t t t ty y yµ φ φ− −= + + +   

( )~ 0,1 .t N  

7.2.1. Case (a) 

1 20, 0.85, 0.3.µ φ φ= = =  

For 1000 replications ( 100T = ), the number of rejections has been recorded, 
and the result is as follows: 

 
 Reject Not reject 

ST 1000  
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The null hypothesis is rejected for all runs in the simulation, and the esti-
mated response is dynamically unstable. In order to see how many roots are ca-
suing instability, a t-test is performed for all the three elements of the null hypo-
thesis vector as follows:  

1 2

0 2

1 2

1
: 2 2 0,

1
H

φ φ
φ

φ φ

− − 
 + > 
 + − 

 

01 1 2:1 0,H φ φ− − >  

02 2: 2 2 0,H φ+ >  

03 1 2:1 0.H φ φ+ − >  

For 1000 replications ( 100T = ), the number of rejections has been recorded, 
and the result is as follows: 

 
 Reject 

t(H01) 981 
t(H02) 0 
t(H03) 25 

 
The t-statistic for mainly the first element of null hypothesis vector is rejected 

(which is equivalent to one sign change in the first column of the Routh array), 
which implies that only one root is causing instability in the AR(2) process. As 
the two roots are 1.118271 and −0.268271, therefore the test correctly determines 
the number of roots causing instability in the response. 

7.2.2. Case (b) 

1 20, 1.4, 0.4.µ φ φ= = = −  

For 1000 replications ( 100T = ), the number of rejections by the ST and the 
number of “No rejections” by the Augmented Dickey Fuller test have been rec-
orded, and the result is as follows: 

 
 Reject Not reject 

ST 310  
ADF  952 

7.2.3. Case (c) 

1 20, 1.2, 0.21.µ φ φ= = = −  

For 1000 replications ( 100T = ), the number of “No rejections” by the ST and 
the number of rejections by the Augmented Dickey Fuller test have been rec-
orded, and the result is as follows: 

 
 Reject Not reject 

ST  929 
ADF 48  
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Again the cases (c) and (d) provide an indirect comparison of the ST and the 
ADF test. The ST does not perform as badly for a unit root as the ADF test does 
for a root close to one. 

7.2.4. Case (d) 

1 21, 0.8, 1.2.µ φ φ= = = −  

This is a case of complex roots causing instability. For 1000 replications 
( 100T = ), the number of rejections has been recorded, and the result is as 
follows: 

 
 Reject Not reject 

ST 1000  

 
The null hypothesis is rejected for all runs in the simulation, and the esti-

mated response is dynamically unstable. In order to see how many roots are ca-
suing instability, a t-test is performed for all the three elements of the null hypo-
thesis vector as follows: 

1 2

0 2

1 2

1
: 2 2 0,

1
H

φ φ
φ

φ φ

− − 
 + > 
 + − 

 

01 1 2:1 0,H φ φ− − >  

02 2: 2 2 0,H φ+ >  

03 1 2:1 0.H φ φ+ − >  

For 1000 replications ( 100T = ), the number of rejections has been recorded, 
and the result is as follows: 

 
 Reject 

t(H01) 0 

t(H02) 1000 

t(H03) 0 

 
The t-statistic for the second element of null hypothesis vector is rejected 

(which is equivalent to two sign changes in the first column of the Routh array), 
which implies that two roots are causing instability in the AR(2) process. As the 
two roots are 0.4 1.019804i+  and 0.4 1.019804i− , therefore the test correctly 
determines the number of roots causing instability in the response. 

7.2.5. Case (e) 

1 21, 0.8, 1.02.µ φ φ= = = −  

This is a case of complex unit roots causing instability. For 1000 replications 
( 100T = ), the number of rejections has been recorded, and the result is as fol-
lows: 

https://doi.org/10.4236/jdaip.2023.112009


M. A. Ahmed, N. Nawaz 
 

 

DOI: 10.4236/jdaip.2023.112009 166 Journal of Data Analysis and Information Processing 
 

 Reject Not reject 

ST 647  

 
The null hypothesis is rejected for 64.7 percent of the times, and the estimated 

response is dynamically unstable. In order to see how many roots are casuing in-
stability, a t-test is performed for all the three elements of the null hypothesis 
vector as follows: 

1 2

0 2

1 2

1
: 2 2 0,

1
H

φ φ
φ

φ φ

− − 
 + > 
 + − 

 

01 1 2:1 0,H φ φ− − >  

02 2: 2 2 0,H φ+ >  

03 1 2:1 0.H φ φ+ − >  

For 1000 replications ( 100T = ), the number of rejections has been recorded, 
and the result is as follows: 

 
 Reject 

t(H01) 0 

t(H02) 1000 

t(H03) 0 

 
The t-statistic for the second element of null hypothesis vector is rejected. For 

a pair of unit roots in an AR(2) process, the third theorem of the Routh test is 
applicable, which implies that there are two roots which are causing instability in 
the AR(2) process. As the two roots are 0.4 0.927362i+  and 0.4 0.927362i− , 
therefore the test correctly determines the number of roots causing instability in 
the response. 

7.2.6. Case (f) 

1 21, 2, 1.µ φ φ= = = −  

This is a case of multiple unit roots. For 1000 replications ( 100T = ), the 
number of rejections by the ST and the number of “No rejections” by ADF test 
have been recorded, and the result is as follows: 
 

 Reject Not reject 

ST 1000  

ADF  982 

 
It is evident from the above table that ST has a higher power in case of mul-

tiple unit roots. In order to see how many roots are casuing instability, a t-test is 
performed for all the three elements of the null hypothesis vector as follows:  
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1 2

0 2

1 2

1
: 2 2 0,

1
H

φ φ
φ

φ φ

− − 
 + > 
 + − 

 

01 1 2:1 0,H φ φ− − >  

02 2: 2 2 0,H φ+ >  

03 1 2:1 0.H φ φ+ − >  

For 1000 replications ( 100T = ), the number of rejections has been recorded, 
and the result is as follows: 

 
 Reject 

t(H01) 1000 
t(H02) 448 
t(H03) 0 

 
The t-statistic for the first two elements of the null hypothesis vector is re-

jected, which implies that there are two roots which are causing instability in the 
AR(2) process. As both the roots are equal to 1, therefore the test correctly de-
termines the number of roots causing instability in the response. 

7.3. VAR 

Suppose we want to test the stability of the following VAR:  

1 1 11 1, 1 12 2, 1 13 3, 1 1 ,t t t t ty y y yµ φ φ φ− − −= + + + +   

2 2 21 1, 1 22 2, 1 23 3, 1 2 ,t t t t ty y y yµ φ φ φ− − −= + + + +   

3 3 31 1, 1 32 2, 1 33 3, 1 3 ,t t t t ty y y yµ φ φ φ− − −= + + + +   

( )1 2 3, and ~ 0,1 .t t t Nε ε ε  

The null hypothesis for stability of the above VAR process is as follows (see 
appendix for detailed derivation of the null hypothesis): 

0 1 2

0 1 2
0 2

1 0 0 2

0 1 2

1
3 3

: 0
1
1

A A A
A A A

H
A A A A
A A A

+ + − 
 − − −  >
 − − −
 
− + + 

; r 

11 11 11

12 12 12

13 13 13

21 21 21

0 22 22 22

23 23 23

31 31 31

32 32 32

33 33 33

: ,

a b
a b
a b
a b

H a b
a b
a b
a b
a b

φ
φ
φ
φ
φ
φ
φ
φ
φ

< < 
 < < 
 < <
 

< < 
 < <
 

< < 
 < < 

< < 
 < < 

 

or ( )T
0 :H vec< Φ <a b ; where 
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11 11

12 12

13 13

21 21

22 22

23 23

31 31

32 32

33 33

; and .

a b
a b
a b
a b
a b
a b
a b
a b
a b

   
   
   
   
   
   
   = =
   
   
   
   
   
   
   

a b  

Under the null hypothesis, the dynamic response is stable and the Wald statis-
tic follows a Chi squared distribution with nine degress of freedom. The Suffi-
cient test statistic is defined as follows: 

( ) ( ) ( )

( )

11
1

1

2
9 0

ˆ

under ,

ˆ ˆT
T tt t

d

ST T T T

Hχ

−−
−

=

′    ′= − Ω ⊗ −  

→

′
 

∑R R R x Rx R R β β β β
 

1
1

ˆ ˆ ˆ ,T
T t ttT −

=
′Ω = ∑    

[ ]1 2 3ˆ ˆ ˆ ˆ .t t t t′ =     

7.3.1. Case (a) 

11 12 13 21

22 23 31 32 33

1, 0.5, 0.4, 0.3, 0.3,
0.4, 0.2, 0.1, 0.1, 0.99.

µ φ φ φ φ
φ φ φ φ φ
= = = = =

= = = = =
 

For 1000 replications ( 100T = ), the number of rejections by ST has been rec-
orded, and the result is as follows: 

 
 Reject Not reject 

ST 1000  

 
The null hypothesis is rejected for all 1000 runs in the simulation, and the es-

timated response is dynamically unstable. In order to see how many roots are 
casuing instability, a Wald test is performed for all the four elements of the null 
hypothesis vector as follows: 

0 1 2

0 1 2
0 2

1 0 0 2

0 1 2

1
3 3

: 0,
1
1

A A A
A A A

H
A A A A
A A A

+ + − 
 − − −  >
 − − −
 
− + + 

 

01 0 1 2:1 0,H A A A+ + − >  

02 0 1 2: 3 3 0,H A A A− − − >  
2

03 1 0 0 2:1 0,H A A A A− − − >  

04 0 1 2:1 0.H A A A− + + >  

For 1000 replications ( 100T = ), the number of rejections has been recorded, 
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and the result is as follows: 
 

 Reject 
Wald(H01) 1000 
Wald(H02) 0 
Wald(H03) 0 
Wald(H04) 0 

 
The Wald statistic for only the first element of null hypothesis vector is re-

jected (which is equivalent to one sign change in the first column of the Routh 
array), which implies that only one root is causing instability in the VAR. As the 
three roots are 1.137951, 0.652049 and 0.1, therefore the test correctly deter-
mines the number of roots causing instability in the response. 

7.3.2. Case (b) 

11 12 13 21

22 23 31 32 33

1, 0.1, 0.1, 0.1, 0.1,
0.1, 0.1, 0.1, 0.1, 0.98.

µ φ φ φ φ
φ φ φ φ φ
= = = = =

= = = = =
 

This is a case of a real unit root. For 1000 replications ( 100T = ), the number 
of rejections by ST has been recorded, and the result is as follows: 

 
 Reject Not reject 

ST 702  

 
The null hypothesis is rejected for 702 runs in the simulation, and the esti-

mated response is dynamically unstable. In order to see how many roots are ca-
suing instability, a Wald test is performed for all the four elements of the null 
hypothesis vector as follows: 

0 1 2

0 1 2
0 2

1 0 0 2

0 1 2

1
3 3

: 0,
1
1

A A A
A A A

H
A A A A
A A A

+ + − 
 − − −  >
 − − −
 
− + + 

 

01 0 1 2:1 0,H A A A+ + − >  

02 0 1 2: 3 3 0,H A A A− − − >  
2

03 1 0 0 2:1 0,H A A A A− − − >  

04 0 1 2:1 0.H A A A− + + >  

For 1000 replications ( 100T = ), the number of rejections has been recorded, 
and the result is as follows: 

 
 Reject 

Wald(H01) 995 

Wald(H02) 0 

Wald(H03) 0 

Wald(H04) 0 
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The Wald statistic for only the first element of null hypothesis vector is re-
jected (which is equivalent to one sign change in the first column of the Routh 
array), which implies that only one root is causing instability in the VAR. As the 
three roots are 10.175 and 0, therefore the test correctly determines the number 
of roots causing instability in the response. 

7.3.3. Case (c) 

11 12 13 21

22 23 31 32 33

1, 0.7, 0.5, 0.6, 0.4,
0.1, 0.2, 0.7, 0.8, 0.35.

µ φ φ φ φ
φ φ φ φ φ
= = = − = − =

= = − = = =
 

This is a case of complex unit roots. For 1000 replications ( 100T = ), the 
number of rejections by ST has been recorded, and the result is as follows: 

 
 Reject Not reject 

ST 622  

 
The null hypothesis is rejected for 622 runs in the simulation, and the esti-

mated response is dynamically unstable. In order to see how many roots are ca-
suing instability, a Wald test is performed for all the four elements of the null 
hypothesis vector as follows: 

0 1 2

0 1 2
0 2

1 0 0 2

0 1 2

1
3 3

: 0,
1
1

A A A
A A A

H
A A A A
A A A

+ + − 
 − − −  >
 − − −
 
− + + 

 

01 0 1 2:1 0,H A A A+ + − >  

02 0 1 2: 3 3 0,H A A A− − − >  

2
03 1 0 0 2:1 0,H A A A A− − − >  

04 0 1 2:1 0.H A A A− + + >  

For 1000 replications ( 100T = ), the number of rejections has been recorded, 
and the result is as follows: 

 
 Reject 

Wald(H01) 0 

Wald(H02) 0 

Wald(H03) 643 

Wald(H04) 0 

 
The Wald statistic for only the third element of null hypothesis vector is re-

jected and the third theorem of the Routh test is applicable, which implies that 
there are two roots which are causing instability in the VAR. As the three roots 
are 0.126425,0.511788 0.859458i+  and 0.511788 0.859458i− , therefore the 
test correctly determines the number of roots causing instability in the response. 
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8. Empirical Application 

This empirical application is quite similar to the one in Marco Del Negro, and 
Frank Schorfheide (2004). The three variables used in the trivariate VAR (with a 
lag length of one quarter) are the US interest rates (effective federal funds rate 
for the first month of the quarter) and the quarterly data of percentage changes 
in real output growth and inflation for the period 1955:I to 2013:II. The data for 
real output growth come from the Bureau of Economic Analysis; the data for in-
flation come from the Bureau of Labor Statistics and the EFFR data source (not 
seasonally adjusted) is Board of Governors of the Federal Reserve System. 

 
 %∇P_1 EFFR_1 %∇GDP_1 

%∇P (UNRES) −0.074 −0.001 −0.004 

%∇P (RES) −0.074 −0.001 −0.004 

 (0.065) (0.028) (0.027) 

EFFR (UNRES) −0.029* 0.95 0.026 

EFFR (RES) −0.029* 0.95 0.026 

 (0.049) (0.021) (0.02) 

%∇GDP (UNRES) −0.008 −0.106 −0.003 

%∇GDP (RES) −0.008 −0.106 −0.003 

 (0.157) (0.069) (0.064) 

Wald 5.90528e−20   

*significant at 5% level 

 
The null hypothesis is not rejected and the response of the VAR is dynamical-

ly stable. 

9. Conclusions 

In this paper, a sufficient test for dynamic stability (in the context of the roots of 
the characteristic polynomial) of a univariate as well as a multivariate time series 
has been proposed, which may test for all kinds of roots (positive and negative 
real unit roots, complex unit roots and roots inside the unit circle whether single 
or multiple) causing instability in the dynamic response. The test is much simp-
ler in its application as the response is dynamically stable under the null. The test 
also indicates the number of roots causing instability in the dynamic response. 
In order to formulate the null hypothesis, Routh Hurwitz stability criterion (a 
mathematical test) is exploited which provides a necessary and sufficient condi-
tion for the stability of a dynamic response. To use the Routh stability test in the 
discrete data framework, bilinear transformation has been used which maps the 
inside of the unit circle of the z-plane into the left half of the w-plane. In order to 
find the restricted estimators which satisfy the Routh Hurwitz stability criterion 
(given the data), an algorithm for minimization of the regression objective func-
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tion subject to the inequality constraints has been devised. 
For the sufficient test, a, t, LR, LM and a Wald statistic are used. The t statistic 

follows an asymptotic normal distribution and LR, LM and Wald follow an 
asymptotic chi squared distribution under the null with degrees of freedom equal 
to the number of restrictions, when the model is correctly specified. In case of 
serial correlation, robust test in Nawaz (2020) has been proposed 
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