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Abstract 
The application of deep learning to robotics over the past decade has led to a 
wave of research into deep artificial neural networks and to a very specific 
problems and questions that are not usually addressed by the computer vision 
and machine learning communities. Robots have always faced many unique 
challenges as the robotic platforms move from the lab to the real world. Mi-
nutely, the sheer amount of diversity we encounter in real-world environ-
ments is a huge challenge to deal with today’s robotic control algorithms and 
this necessitates the use of machine learning algorithms that are able to learn 
the controls of a given data. However, deep learning algorithms are general 
non-linear models capable of learning features directly from data making 
them an excellent choice for such robotic applications. Indeed, robotics and 
artificial intelligence (AI) are increasing and amplifying human potential, 
enhancing productivity and moving from simple thinking towards hu-
man-like cognitive abilities. In this paper, lots of learning, thinking and in-
carnation challenges of deep learning robots were discussed. The problem 
addressed was robotic grasping and tracking motion planning for robots 
which was the most fundamental and formidable challenge of designing au-
tonomous robots. This paper hope to provide the reader an overview of DL 
and robotic grasping, also the problem of tracking and motion planning. The 
system is tested on simulated data and real experiments with success. 
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1. Introduction 

Some researchers may debate a specific definition of robots, or argue whether 
the definition is relative or dependent on the context of the situation, such as the 
concept of privacy. This may be a better approach as more and more rules and 
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regulations are created around its use in various contexts. 
A robot is a machine especially programmable by a computer that is able to 

automatically perform a complex series of actions. Robots may be directed by an 
external control device or the control may be embedded within it. Robots can be 
created along the lines of a human being, but most robots are designed to per-
form a task without regard to their aesthetics [1]. Robots can be autonomous or 
semi-autonomous and range from humanoids. 

The field of technology that deals with the design, construction, operation and 
application of robots, as long as computer systems for their control, sensory 
feedback and information processing is robotics [2]. These technologies deal 
with automated machines that can take the place of humans in dangerous envi-
ronments or manufacturing processes, or resemble humans in appearance, be-
havior or cognition. For the time being, robots are inspired by nature contribut-
ing to the field of bio-inspired robotics. These robots have also created a newer 
branch of robotics named soft robotics. 

Actually, robotics has already moved from the lab to the real world. A robot 
perceives the world with its different sensors, builds a coherent model of the 
world and it updates that model over time. However, the robot eventually has to 
take decisions, plan actions and implement these actions to accomplish a useful 
task. 

Traditionally, the robot scientist or a team of robots design consoles for every 
task we want the robot to perform. Even for tasks, users can perform these con-
trols intuitively, like holding or cutting food (Domestic robot) [3]. They are dif-
ficult to design because we are unable to easily translate this natural intuition 
into the code (also called analytical approaches). It can also be very strenuous to 
scale these methods up to the sheer amount of diversity that our robots have to 
deal with in the real world, picking up everything in your home, chopping any 
food and so on. These control algorithms are designed based on expert human 
knowledge of the robot and its environment in the specific task. The result of 
this approach illustrates the kinematic relationship between the parameters of 
the robot and the structured environment around it. The kinematic model helps 
moreover improve control strategies. Nevertheless, direct planning of the results 
from the kinetic model to the control device of the robot joint is open-loop in 
nature and is set to cause task space distractions, this model suggested by Ju and 
Yang [4]. Although this hand-coded instruction is known for effective task per-
formance, such an approach has limitations; In particular, the program is limited 
to situations predicted by the programmer, but in cases that require frequent 
changes in the robot’s programming, due to the changes in the environment or 
other factors, this approach becomes impractical. Thus, an unorganized envi-
ronment stays a real challenge for intelligent robots that require complexity 
analytical approach to solution formation. For situations like this, Konidaris et 
al. [5] in their work consider experimental methods will provide augmentation 
of the cognitive and adaptive capacity of robots while reducing or eliminating 
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the need to manually design an automated solution. These early works explore 
the adaptive and cognitive ability of robots to learn tasks, but the repetition of 
tasks is limited to the described tasks. 

To overcome this problem, machine learning is used as it can deal with a wide 
range of situations. This paradigm is growing in popularity especially after suc-
cessful applications of deep learning. These early works [6] [7] show the re-
searchers’ progress in research methods in accommodating robots. These studies 
discuss early attempts to catch new things using experimental methods. 

The main drive behind the use of deep learning in robotics is that it is more 
general than any other learning algorithm. It has been proven deep networks are 
capable of thinking and abstraction at a high level. Therefore, it makes it an ideal 
choice for robots in an unregulated environment. In addition, thanks to ad-
vances in parallel processing and sophisticated, deep numerical libraries net-
works have become very effective. Time-critical robotics tasks need to be ad-
dressed high-frequency response unit for motion control. 

This paper reviews deep learning approaches for the detection of robotic 
grasping poses for a given object captured in an image or video in real time. The 
paper is organized as follows: Section 2 provides an overview about deep learn-
ing and neural network; Section 3 identifies several challenges which faced the 
deep learning in robotics; Section 4 introduces the perception and learning-based 
approaches for detecting robotic grasps; Section 5 handle the problem of track-
ing and motion planning in real time and finally a conclusion can be found in 
Section 6. 

2. Deep Learning 

The reality that deep learning is a type of machine learning is very important. 
Thus it must make sure about the type of relation between artificial intelligence, 
machine learning and deep learning. Actually, deep learning has been in the 
spotlight because it has adroitly solved some problems that face artificial intelli-
gence as real challenges. Its performance surely is exceptional in many branches. 
However, it faces limitations as well. 

The limitation of deep learning [8] stems from its fundamental concepts that 
have been inherited from its progenitor which is machine learning. Deep learn-
ing as a type of machine learning cannot avoid the primary problems that ma-
chine learning faces. That is why before going deeply into the concept of deep 
learning, you can review machine learning and its algorithms [9] [10] [11] [12]. 

The term deep learning is loosely related to a wide variety of neural networks 
architectures [13]. That is why deep learning models are often referred to as 
deep neural networks. The term “deep” generally refers to the number of hidden 
layers in a neural network, and traditional one have only two or three hidden 
layers, whereas deep learning networks have up to 150 layers. Deep learning 
models are trained using large sets of disaggregated (not rated) data and neural 
network architectures that learn features directly from the data without the need 
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to manually extract features. 
Neural Network is a series of algorithms that copyists the operations of the 

human brain to recognize relationships between large amounts of data. In this 
meaning, neural networks refer to systems of neurons, either organic or artificial 
in nature. Each neuron has a mathematical model for determining its outputs 
from its input. Neural networks can acclimate to changing input. So the network 
generates the best possible result without needing to redesign the output criteria. 
Figure 1 illustrates a simple example of a neural network with two hidden layers. 

A graph structure where each node generally referred to as neurons is con-
nected to either input signal or other nodes with weighted edges. The output of 
node is the linear combination of edge weights and the inputs and probably fol-
lowed by a non-linear function. 

An artificial neuron takes an input vector and outputs a scalar value. The pa-
rameters of the neuron are determined by a set of weights. Each weight is used as 
a multiple of a numerical entry. The neuron output is the result of applying the 
nonlinear activation function on the total weighted input. Thus, a neuron with 
weights w, input x, output y, and nonlinear activation function are represented 
as follows: 

0

n

i i
i

y W x
=

 
= ∅ ⋅ 
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∑  

with n the size of x, and W0 representing a bias for the neuron input if X0 is set to 1. 
The nonlinear activation functions ( )xϕ  are used to improve the expressive 

strength of the network. They are valid as long as they are continuous, limited, 
and monotonously increasing. Additional requirement for learning algorithms 
above ( )xϕ  is the differential. Hence, the activation function used often is the 
sigmoid logistic function: 
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DNN, and generally any ANN, is determined by both parameters and hyper- 
parameters. Hyper-parameters are related to network architecture (number of  

 

 
Figure 1. Simple example of a neural network. 
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layers, number of neurons per layer, activation function, neuron connection, etc) 
and to the parameters of the learning process. The network parameters corres-
pond to the set of weights of all neurons. The network can be trained to select 
the optimum weights (parameters) using numerical optimization methods. The 
optimum hyper-parameters cannot be learned directly from the data; so many 
network architectures must be trained and tested to select the best hyper-para- 
meters. Thus, to be able to adapt network parameters, select hyper-parameters, 
and characterize their performance, the available data must be divided into three 
non-overlapping datasets: training, validation, and testing. A training dataset is 
used to learn model parameters (weights) of the network. A validation dataset is 
used for selection Hyper-parameters by evaluating network performance under 
different hyper-parameter configurations. The test dataset is used to characterize 
the trained network by estimating the generalization error [14]. 

In Feed forward neural network (FFNN) more specifically called multi-layered 
perception (MLP); perceptions are coordinated into interconnected layers. The 
input layer combines the input patterns. The output layer contains ratings or 
output signals to which the input modes may be assigned. One of the most 
common types of deep neural network is called folding neural networks, called 
convolutional neural networks (CNN or ConvNet) [15]. Convolutional neural 
network (CNN) is remarkably a special type of FFNN, reduces the number of 
parameters in a deep neural network with many units without losing model 
quality. CNN has found apps in images and text treatment where they beat many 
pre-set criteria. Figure 2 shows its main algorithm. 

The hidden layer usually contains two distinct layers: the first stage is the re-
sult of local wrapping of the previous layer (the core contains trainable weights), 
and the second stage is the maximum assembly stage, in which the number of 
units is greatly reduced by keeping only the maximum response of several units 
of the stage First. After several hidden layers, the final layer is usually a fully 
joined layer. It contains a unit for every class the network expects, and each of 
those units receives inputs from all the units of the previous layer. 

Recurrent Neural Networks (RNNs) are used to label, classify or create se-
quences. A sequence is a matrix, each row of which is a feature vector and the  

 

 
Figure 2. Convolutional neural network algorithm. 
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order of rows is important. Naming a sequence is a class prediction for each 
feature vector in a sequence. To classify a sequence is the category prediction for 
an entire sequence. To generate a sequence is the output of another sequence, it 
is somewhat related to the input sequence [16]. RNNs are often used in word 
processing marks or character sequences [17]. For the same reason, repetitive 
neural networks are also used in speech processing [18]. 

3. Deep Learning in Robotics 

The success of deep learning in computer vision has inspired some applications 
in robotics. One of the main challenges is using robots in an unrestricted envi-
ronment. The lack of algorithms was strong and general. Deep learning methods 
demonstrated that accurate and robust performance can now be achieved in many 
applications. Especially, image classification and natural language processing have 
benefited greatly from this new technology. 

Deep learning models can be used as a preprocessing unit, often on local im-
ages and measurements, which converts raw sensor data into a feature space 
with fewer dimensions can be used to control. Automated constipation detection 
[19] uses raw images for detection grab point for various objects that can be used 
later to grab. DL can also used in a comprehensive manner where the network is 
responsible for processing the primary input along the way to generate the con-
trol signal for the robot’s transporters. 

Robotics presents many unique challenges for learning algorithms. First, ro-
bots must perform a wide range of tasks and it often takes a long or even not 
easy time coding entirely new learning algorithms and features for each task. 
Second, robots have to deal with a great deal of diversity in the real world, which 
is difficult for many learning algorithms to deal with it. Lastly, most of the time 
is a premium at most of robotic applications, so learning algorithms must be ra-
pidly inferred to be useful for robotic applications. 

Walking and running like a human, teaching through demonstration, mobile 
navigation in pedestrian environments and collaborative automation, automatic 
combat recovery, automatic container, automatic shelving picking, automation 
aircraft inspection and maintenance and automated disaster mitigation and re-
covery [20]. All these numerous targets and goals were set by the robotic com-
munity for the near future, but for reaching these targets, the reality faced sever-
al challenges which deep neural network technology (DNN) has high potential 
impact. 

The first challenge: Learn new complex high-dimensional dynamics: Analyti-
cal deriving complex dynamics requires anthropologists and is time consuming 
and subtractive a tract off between state dimensionality and tractability. Make 
strong models like this to uncertainty is difficult and complete case information 
is often unknown. Systems than can, there is a need for rapid and independent 
adaptation to the new dynamics to solve such problems, like grasping new things 
and traveling over surfaces with unknown or uncertain characteristics, manag-
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ing or adapting interactions between a new tool and or environment, degrada-
tion and or failure of robot subsystems [21] [22] [23]. 

The second challenge: Learn the politics of controlling dynamics environ-
ments: As with dynamics, control systems that accommodate high degrees of 
freedom for applications such as mobile manipulation with multiple arms, 
anthropomorphic hands and swarm robots need. Such systems will be called to 
operate reliably and safely environments with a high degree of uncertainty and 
limited state information [24] [25]. 

The third challenge: Advanced manipulation: In spite of the progress made 
over the last decades, active searches and robust, general solutions to tasks such 
as absorbing distortion and/or complex geometric shapes, using tools and oper-
ating systems in the environment. Remain out of reach especially in new situa-
tions. This challenge includes motor planning, locomotion and understanding 
inherent in tasks like this [26] [27] [28]. 

The fourth challenge: Advanced object recognition: Deep neural networks 
have already proven to be high adept at identifying and classifying objects. An 
advanced application examples include identifying distorted objects, estimating 
their condition and morphology understanding semantic task and route specifi-
cation and learn about properties of objects and surfaces such as wet/slippery 
floors or sharp objects which can be dangerous to human collaborators [29]. 

The fifth challenge: Interpreting and anticipation human action: This chal-
lenge is crucial, robots must work with or between people in applications such as 
collaborative robots to manufacture, care for the elderly and autonomous ve-
hicles that operate on public rounds or move around in pedestrian environ-
ments. It will enable teaching by demonstration, which in turn facilitate assign-
ment of tasks by individuals who have no experience with robots or program-
ming. This challenge may also extend to the awareness of human needs, antic-
ipate when an automated intervention will be appropriate [30] [31] [32]. 

The sixth challenge: Sensor fusion and dimensional reduction: Low cost 
spread sensing technologies have been a boon to robots as they offer a plethora 
of possibilities rich, high-dimensional and multi-media data. This challenge re-
fers to methods build meaningful and informative representations of the state 
from this data [28] [33] [34]. 

The seventh challenge: High-level task planning: Robots will need reliable 
high-level execution orders that merge the previous challenges to achieve a new 
level of utility, particularly if it will benefit all the general public [35]. 

4. Robotic Grasping 

In this part, we will focus on the perception and learning-based approaches for 
robotic grasping which is one of the main problems addressed in our work. It’s 
very important to note that most of researches define “grasp” as an end-effector 
configuration that is achieved partial or complete form or forced closure of a 
specific object. This is the challenging problem, because it depends on the place-
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ment and configuration of the automatic clutch. As well as the shape and physi-
cal properties of the object to be understood and typically requires research into 
a large number of possible gripper configuration [36] [37] [38]. 

In order for robots to gain a more general benefit, cognition is a necessary 
skill to master. These general purpose, robots may use their cognitive capabilities 
to visually recognize certain grasps for a given object. Figure 3 shows a real ex-
ample. The grasps describes how a robotic end-effector can be arranged to safely 
grasp an object successfully raised it without slipping. Conventionally, grasp de-
tection required specialized human knowledge to formulate the algorithm for 
the task analytically, but this is a laborious and time-consuming approach [39]. 

Things grasping is a difficult challenge because of a wide range of factors like 
the different shapes of objects and unlimited object poses. Successful robotic 
gripping systems must be able to defeat this challenge to achieve beneficial re-
sults. Counter to robots, humans can determine how to ingest a file specific ob-
ject. Robot grasping performance is much lower than the grasping standards for 
human things, but it is constantly improving due to the high demand. Actually it 
has some following sub-systems which presented as the following: a) Perception 
detection sub-system which is to discover gripping positions from images of ob-
jects in their image plane coordinates. b) Grasp planning sub-system, which is to 
map the detected image plane coordinates to the world coordinates. c) Control 
sub-system which is to define the reverse kinematic solution of the previous 
subsystem. 

A successful grasp describes how an automated responder can be pointed over 
an object to safely hold the object between its clutch and catch the thing which 
its the goal. As humans, we use our eyesight to visually recognize objects in our 
area around and know how to approach them to catch them. Likewise, optical 
perception sensors can be used on an automated system to produce information 
about the environment, it can be interpreted in a useful form. The mapping me-
thod is essential to classify each pixel scene on the basis of belonging or lack of  

 

 
Figure 3. Right hand robotics grasping a cup. 
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affiliation to a successful understanding. 
In most of the earlier works, the knobs were represented as points on real 

scenes or images from 3D network models based on simulations. Saxena et al. 
[40] have used the supervised learning approach, investigated the regression 
learning method for inferring the 3-Dimensioanl location of a point of assimila-
tion in cartesian coordinate system. They used a probabilistic model about po-
tential grip points while thinking uncertainty in camera placement. To expand 
their investigation, they estimated 3D workspace for finding the constipation 
point g, given by g = (x, y, z). Whereas Zhang et al. [41] by using the reinforce-
ment learning approach for grasp point detection have defined a grasp as a point 
in the plan 2D image. The main drawback of this specific point was the fists. 
However, it only determines where to grasp an object and doesn’t specify how 
wide the clutch had to be opened or the desired direction of the handle to suc-
cessfully grasp the object. 

Our problem belongs to many vision problems, for example; camera calibra-
tion, stereo matching, structure from motion, motion tracking and object recog-
nition. To solve our problem, a number of solutions have been proposed, in this 
work we suggested angles detectors which also were suggested, such as coun-
ter-based approach, counter-based approach, colour-based approach, mod-
el-based approach and machine learning-based approach. The result of our ap-
proach presented in Figure 4. 

Sunghu kim [42] has proposed corner detection system consists of a spatial 
filtering part and a detection part. Filter part perform direct bending estimation 
through an application flexural filter after directional filter. The corner detection 
part performs the local maximum on bending the final field and angles are ex-
tracted by the application from threshold. Density based angle detection strong 
when used in textured images, given its visuals filter system, but weak when used 
for detection angles with structural meaning, like obtuse angles, it has a low 
identification accuracy. In contrast, the contour based corner detection is po-
werful when used for detection structured objects, because an appreciation of 
their curvature strategic, but weak when used to detect fabric images, due to 
Canny’s fragile edge detection. Figure 5 describes the hysteresis thresholding  

 

 
Figure 4. Grasping detection using corner detection. The left image is the original image 
which is the data, and the right one shows the result of corner detection using python. 
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Figure 5. The left image: Hysteresis thresholding stage. The right image: The edge image. 

 
stage and last result. 

Due to the availability of inexpensive depth sensors, many robotic systems use 
RGB-D supported by open source software, does not require sophisticated 
hardware and availability unique sensing capabilities, for more reading [43]. 

5. Tracking and Motion Planning 

Modern robots have come a long way from their predecessors in the past, which 
are traditionally been in structured environment. Therefore the robot’s interac-
tions are limited and the behavior can be direct determined by human action. 
But with the era of the fourth industrial revolution, it is considerably known as 
Industry 4.0. 

Industrial robots movement that is part of the larger production process is 
usually programmed in an inflexible manner and requires precise control of 
conditions from the movement mission. For example, simple pick and place 
movement requires accurate knowledge of the situation from the object to be 
captured and about which container the object is placed in it. Small deviations 
for either the object or container may cause the operation to fail, such as motion 
inflexible programming is unable to handle it, small differences in the environ-
ment. This is a general problem, the question raises how can robots be enabled 
to act with these differences in the environment and independently adapt to 
them to plan their movement in a flexible way [44]. The real experiment result 
from a real video has shown in Figure 6. 

 

 
Figure 6. Experiment from video.mp4; status: movement. 
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6. Conclusion 

Deep learning has shown promise in sensing, perception, action problems and 
even the ability to typically combine these separate functions in one system. Deep 
neural networks can run on raw sensor data and extract key features from its data 
without human assistance, which could drastically reduce pre-engineering time. 
They are also adept at integrating multi-media and high-dimensional data. The 
improvement has been demonstrated with experience, making it easier to adapt 
the unstructured dynamics in which robots operate. An important aspect of ro-
bots is their ability to manipulate their environment which has proven difficult 
to learn these skills. But to perceive things, a robot doesn’t require knowing how 
to perform all the tasks of manipulation usefully as long as it can learn these 
skills easily when needed. However, robotic perception, robotic learning and 
robotic control tasks remain serious challenges on techniques usually applied. 
This work presented some of these current challenges which are relevant to deep 
learning in robotics. 
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