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Abstract 
Deep convolutional neural network (CNN) greatly promotes the automatic 
segmentation of medical images. However, due to the inherent properties of 
convolution operations, CNN usually cannot establish long-distance interde-
pendence, which limits the segmentation performance. Transformer has been 
successfully applied to various computer vision, using self-attention mechan-
ism to simulate long-distance interaction, so as to capture global information. 
However, self-attention lacks spatial location and high-performance compu-
ting. In order to solve the above problems, we develop a new medical trans-
former, which has a multi-scale context fusion function and can be used for 
medical image segmentation. The proposed model combines convolution op-
eration and attention mechanism to form a u-shaped framework, which can 
capture both local and global information. First, the traditional converter 
module is improved to an advanced converter module, which uses post-layer 
normalization to obtain mild activation values, and uses scaled cosine atten-
tion with a moving window to obtain accurate spatial information. Secondly, 
we also introduce a deep supervision strategy to guide the model to fuse mul-
ti-scale feature information. It further enables the proposed model to effec-
tively propagate feature information across layers, Thanks to this, it can 
achieve better segmentation performance while being more robust and effi-
cient. The proposed model is evaluated on multiple medical image segmenta-
tion datasets. Experimental results demonstrate that the proposed model 
achieves better performance on a challenging dataset (ETIS) compared to ex-
isting methods that rely only on convolutional neural networks, transformers, 
or a combination of both. The mDice and mIou indicators increased by 
2.74% and 3.3% respectively. 
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Attention Mechanism 

 

1. Introduction 

Medical image segmentation aims to identify objects of interest from surround-
ing tissues and structures. It is essential for reliable diagnosis and morphological 
analysis of specific lesions, and can provide a reliable basis for pathological re-
search and clinical diagnosis, so that doctors can make more accurate diagnosis. 
X-rays use the fact that bones decay faster than other soft tissues to obtain the 
state and density of bones [1]. Computed tomography (CT) is used to examine 
dense structures such as bones and implants [2]. Magnetic resonance imaging 
(MRI) can display high-resolution anatomical information of soft tissue [3]. Ul-
trasound can analyze the distribution of tissues because different tissues have 
different impedances to sound [4]. Accurate and robust medical image segmen-
tation results play a vital role in clinical diagnosis and treatment (such as com-
puter-aided diagnosis, preoperative evaluation and image-guided surgery), and 
are of great significance to the accuracy and efficiency of clinical diagnosis [5]. 

With the development of deep learning technology, some methods based on 
convolutional neural networks, such as U-Net [6], Attention U-Net [7], and 
nnU-Net [8], have dominated the field of medical image segmentation. Among 
them, in 2015, the classic U-shaped full convolutional neural network model 
based on codec structure was first proposed in literature [6], called UNet. The 
UNet increases the receptive field by constantly stacking convolution layers and 
downsampling. Through multi-layer convolution operations, the obtained hig-
hlevel feature map is helpful to identify the segmented target, and the jump 
connection method is used to add the low-level detail features of the Encoder 
stage to the upsampling part, which is conducive to the accurate positioning of 
the target. In addition, U-Net is widely used because of its simple and efficient 
features. Many researchers have proposed various improved models on the basis 
of it. For example, in 2018, reference [9] systematically evaluated the effects of 
different FCN variants on breast lesion segmentation for the first time, and 
achieved better segmentation results than traditional methods. In the literature 
[10], UNet + + obtains features of different depths and levels by nested and dense 
jump connections. In the literature [11], AttentionU-Net proposes to use the at-
tention gate model, which can hinder the model learning of task-independent 
features and strengthen the learning of task-related features. In the literature 
[12], Unet3 + proposes an all-round jump connection, which connects the 
low-level features of feature maps of different scales with high-level features, so 
that the segmentation accuracy is improved. In [13], UNeXt uses a convolutional 
multi-layer perceptron (MLP)-based segmentation network to focus on learning 
local dependencies. Although these methods have greatly improved in accuracy 
and generalization ability than traditional methods, there are still some short-
comings in these methods. For example, stacked convolution and skip connec-
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tion operations are used in UNet, but the resolution is reduced, resulting in the 
loss of many details such as edges and textures, which is detrimental to the ac-
curate segmentation of medical images. It will lead to the problem that it is dif-
ficult to accurately locate the organ and the contour of the segmented target is 
vague. Moreover, due to the lack of support of context information, the accuracy 
and precision of semantic segmentation are not improved, and it is also greatly 
affected by factors such as noise interference. UNet + + has many more inter-
mediate nodes than U-Net, but it increases the parameters of the model. 

Recently, the transformer developed in the field of natural language processing 
has been successfully applied to various computer vision [14]. Recent studies 
have also shown that Transformer can achieve great success in medical image 
segmentation. Transformer uses the attention mechanism to establish long- 
distance interactions in the image to learn global context information. It is worth 
noting that Transformer can aggregate global information at an early stage [15], 
so we need to consider how to effectively transfer low-level feature informa-
tion to high-level. Recent studies have shown that multi-scale connections in 
Transformer are more influential than multi-scale connections in CNN, which 
further enhances the feature similarity between low-level and high-level. [16] 
Therefore, making full use of multi-scale feature representation can improve the 
performance of the visual converter. In order to further improve performance, 
various U-Nets have tried to combine traditional architectures with attention 
mechanisms to construct attention-based U-Nets [17]. TransUNet combines 
U-Net and Transformer to capture local and global features for medical image 
segmentation, and achieves excellent segmentation performance [18]. To model 
local and global context, nn-Former [19] exploited the combination of inter-
leaved convolution and self-attention operations within the encoder and decoder 
for volumetric medical image segmentation. Furthermore, MISSFormer [20] 
embedded depth-wise convolution into the transformer block for capturing local 
and global dependencies. In order to solve the training requirements of a large 
number of data sets, MedT proposed a special medical image segmentation 
Transformer [21], which uses axial attention in the multi-head attention block 
[22]. In summary, Transformer has shown great potential in medical image seg-
mentation. 

Although deep learning models, especially convolutional neural networks 
(CNN), have made significant progress in medical image segmentation tasks, 
they still have limitations in handling long-distance dependencies and complex 
spatial relationships. Recently, the Transformer model has attracted widespread 
attention due to its success in natural language processing (NLP) and has begun 
to be applied to computer vision tasks. By introducing an advanced Transformer 
architecture, ATFF may provide a new solution for capturing complex spatial 
relationships and long-distance dependencies in medical images. By combining 
Transformer’s self-attention mechanism and multi-scale context fusion, ATFF 
may fill the gap in existing technology in enhancing the expressive ability of key 
features in medical images. Taking advantage of Transformer’s processing ad-
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vantages of long-distance dependencies and comprehensive utilization of mul-
ti-scale information, ATFF may be an important addition to the existing litera-
ture in improving the accuracy of specific and complex medical image segmen-
tation tasks. In summary, the ATFF model is expected to provide higher accura-
cy, flexibility, and robustness when dealing with complex medical image seg-
mentation tasks by combining an advanced Transformer architecture and a 
multi-scale context fusion strategy, thus opening up new research in the field of 
medical image analysis. 

2. The Whole Method 

Figure 1 shows the overall framework for medical image segmentation, which 
consists of an encoder, a decoder and a deep supervision to form a U-shaped 
network. Advanced Transformer Block aims to learn the long-distance context 
information in each feature map. In order to further enhance the spatial posi-
tioning capability, Advanced Transformer Block is combined with CNN-based 
Bottleneck block to construct an encoder. As shown in Figure 1, the Bottleneck 
Block is composed of some convolution operations with residual connections, 
which has been proved to be efficient. These convolution operations are de-
signed to extract local information in each feature map. Therefore, the encoder 
part can effectively capture local and global features. Moreover, in ATFF, the 
output of the previous encoder is the input of the next encoder. The decoder 
consists of a convolutional layer, an upsampling layer and a ReLU activation 
layer. There is also a jump connection between these encoders and decoders. In 
addition, we also introduce a deep supervision strategy to guide the model to 
fuse multi-scale feature information. This will help the proposed ATFF to effec-
tively propagate feature information across layers, thereby achieving better pix-
el-level segmentation accuracy. 

As shown in Figure 2, the traditional transformer block is redesigned and 
named as the advanced transformer block. Specifically, the three-layer normali-
zation in ReMix-FFN is simplified to two layers, called Advanced FFN. Subse-
quently, the exchange feedforward neural network (FFN) position and the nor-
malized back layer normalization are used to obtain the mild activation ampli-
tude, so as to achieve stable training. In addition, in order to obtain accurate 
spatial information, a scaled cosine attention with a moving window [23] is used 
to replace the space-reduced self-attention. The advanced transformer block is 
made of a multi-head self-attention module, residual connections, post-layer nor-
malization, and Advanced MixFFN with GELU nonlinear function. We replace 
scaled dot product attention with scaled cosine attention for the self-attention 
computation. As shown in Figure 1, the window-based multi-head self-attention 
(W-MSA) module and the shifted window-based multi-head self-attention (SW- 
MSA) module are applied to two consecutive advanced transformer blocks, re-
spectively. Based on this window division mechanism, two consecutive advanced 
transformer blocks can be expressed as: 
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Figure 1. The Architecture of the VTANet model. 
 

 
Figure 2. Two successive advanced transformer blocks. 
AMix-FFN stands for Advanced MixFFN. 
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where ˆ lZ  and lZ  are the outputs of the (S)W-MSA and Advanced MixFFN 
modules, respectively. 

In addition, a scaled cosine attention is proposed to solve the problem of nu-
merical instability and gradient disappearance. The attention formula is as fol-
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             (2) 

where 
2 2

, , M MQ K V R ×∈  are the query, Key, and value matrices. M2 indicates 
the number of patches in the window. 𝐵𝐵 denotes the relative position deviation 
matrix, and τ is a learnable scalar. The cosine function has a lower attention 
weight since its value is automatically adjusted to the interval [−1, 1]. 

2.1. Post-Layer Normalization  

Ze et al.’s research [24] shows that the pre-layer normalization used in tradition-
al transformers will bring difficulties to training, because the activation value 
output by each residual block will be directly incorporated into the main branch. 
The huge difference in the amplitude of the activation values of each layer causes 
training difficulties, and this difficulty is more serious in the residual block con-
taining the pre-layer normalized convolution. Therefore, we align the positions 
of the convolutional FFN and the layer-normalized MSA to obtain a gentle acti-
vation value amplitude, that is, post-layer normalization, thereby stabilizing the 
training. This seemingly simple but effective operation simplifies the normaliza-
tion of the three-layer recursive layer in the original ReMix-FFN into two layers. 

2.2. Advanced MixFFN  

The combination of FFN and post-layer normalization allows advanced hybrid 
FFN to use only two layers of recursive layer normalization to learn discrimina-
tive features. In addition, deep convolution continues to be used to combine key 
components of the local context. As shown in Figure 3, the advanced MixFFN 
consists of two fully connected layers, a deep convolution layer, a double norma-
lization layer and a GELU layer. A skip connection is added before the deep 
convolutional layer. Then, the result of the deep convolution is added to the skip 
connection as the input of the layer normalization. This process can be ex-
pressed as follows: 

( )( ) ( )( )1 3 3LN Conv FC FCin iny x x×= +                (3) 

( )( )2 1LN FC iny y x= +                       (4) 

( )( )2FC GELUoutx y=                       (5) 

where, inx  denotes self-attention output. 3 3Conv ×  denotes a deep convolution 
with a kernel size of 3 × 3. LN Presentation layer normalization. GELU represents 
the activation function. 

In this work, we further introduce a deep supervision strategy to train the 
model. As shown in Figure 1, deep supervision uses multi-scale feature repre-
sentation to train the model, and the fusion result of the obtained multi-scale 
features is regarded as the final segmentation map. The main loss function is de-
fined as 

https://doi.org/10.4236/jcc.2024.123015


X. P. Guo et al. 
 

 

DOI: 10.4236/jcc.2024.123015 244 Journal of Computer and Communications 
 

 
Figure 3. Advanced MixFFN structure diagram. 
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m side sideL L L  is the deep supervision related loss of each stage output mS , 

m = 1, 2, 3, 4, i.e., the deep supervision Sup 1, Sup 2, Sup 3 and Sup4. And fuseL  
is the deep supervision related loss of final fused segmentation output fuseS , i.e., 
the deep supervision Sup 0. mW  and fuseW  are the weights of each loss term, 
respectively, which are used to control the balance between these loss terms. In 
general, the larger the weight of a specific loss term, the more attention will be 
paid in the training. Here, referring to [25], we set 1mW =  and 1fuseW =  due 
to that each loss term is evenly allocated and they play equal roles in the training. 

Here, we use the standard bivariate cross entropy (CE) function to define the 
loss function, which can be expressed as 
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Here, W and H are the width and height of the image, respectively, and P(x, y) 
is the ground truth pixel value and is the prediction pixel value at location (x, y). 
Deep supervision enables the proposed model to learn more low-level details in 
the shallow layer and high-level semantics in the multi-scale layer. This will help 
the proposed ATFF to effectively propagate feature information across layers. 
Therefore, it can eliminate the attenuation of low-level information and retain 
more input spatial information. 

3. Experimental Results and Discussion  
3.1. The Experiment Setting  

Five challenging public datasets, including Kvasir-SEG [26], ClinicDB [27], Co-
lonDB [28], Endoscene [25] and ETIS [29], are used to evaluate the proposed 
method. Specifically, the ClinicDB and Kvasir-SEG datasets were used to eva-
luate the learning ability of the model. The ClinicDB contains 612 images that 
were extracted from colonoscopy videos. Kvasir-SEG included 1000 polyp im-
ages. In the experiment, the same 548 and 900 images in the ClinicDB and Kva-
sir-SEG datasets were used as training sets, and the remaining 64 and 100 images 
were used as corresponding test sets. 

The experiment is implemented using the pytorch framework. Considering 
the difference in the size of each polyp image, a multi-scale strategy is used in 
the training phase. In addition, the AdamW optimizer is used to update the 
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network parameters, which is widely used in transformer networks [22] [23]. 
The learning rate is set to 1e-4, and weight dacay is also adjusted to 1e-4. In ad-
dition, the size of the input image is adjusted to 352 × 352, and the minibatch 
size is 16 for 100 epochs. In the test section, only the image size is adjusted to 
352 × 352, and there is no post-processing optimization strategy. 

In the experiment, five widely used evaluation indexes are used, including 
Dice Coefficient (Dice), Hausdorff Distance (HD), Intersection over Union 
(IoU), Accuracy (ACC) and Recall (REC) are employed to evaluate the quantita-
tive results. Here, Dice and IoU mainly focus on the internal consistency of seg-
mentation results. ACC and REC are computed with pixel-by-pixel to assess the 
quantitative evaluation of segmentation performance. Dice, IoU, ACC and REC 
can be calculated by four parameters, i.e., True-Positive (TP), False-Positive 
(FP), True-Negative (TN) and False-Negative (FN). They are defined as: 

2 TPDice
2 TP FP FN

×
=

× + +
                     (8) 

TPIoU
TP FP FN

=
+ +

                       (9) 

TP TNACC
TP TN FP FN

+
=

+ + +
                   (10) 

TPREC
TP FN

=
+

                       (11) 

HD is used to evaluate the sensitivity of segmentation boundary. For the im-
age segmentation, HD is calculated between boundaries of the predicted result 
and ground truth. Let x and y represent pixels in the predication set X and 
ground truth set Y, respectively. HD is defined as: 

( ) ( )2 2HD , max maxmin ,maxminX Y x y x y= − −         (12) 

where HD (X, Y) is the longest distance of a point in one set to its closest point 
in the other set, where, x X∈ , y Y∈ . 

3.2. Experimental Results  

In order to verify the effectiveness and robustness of the proposed network, 
comparative experiments were conducted with other methods in qualitative and 
quantitative evaluation. Six classic network models were compared. These com-
parison methods include CNNs-based models such as ConvUNeXt [30] EU-Net 
[31], and the recently leading Transformer and attention-based models such as 
MedT [32], TGANet [33], Swin-Unet [34]. 

Firstly, the image segmentation comparison experiment is carried out on the 
Kvasir-SEG dataset. The quantitative comparison results of the evaluation indi-
cators are shown in Table 1. It is worth noting that in medical image segmenta-
tion, indicators such as Dice, HD and IoU are generally more worthy of atten-
tion. From Table 1, we can see the following points. The Dice value of ATFF is 
89.78%, the HD value is 3.22%, the IoU value is 84.2%, the ACC value is 97.62%, 
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and the REC value is 91.38%. The Dice value, HD value, IoU value, ACC value, 
and REC value are 0.42%, 0.22%, 1.2%, 0.41%, and 0.04% higher than the latest 
transformer-based model Swin-UNet, respectively. From Table 2, we can also 
see that the Dice value, HD value, IoU value, ACC value, and REC value are re-
spectively 0.24%, 1.07%, 2.42%, 1.09%, and 1.75% higher than the transfor-
mer-based TransUnet. Compared with other transformer-based popular models 
such as MedT and TransUNet, the proposed model ATFF has also been signifi-
cantly improved. The main advantages are the proposed Advanced Transforner 
Block and deep supervision, which enables ATFF to pay more attention to im-
portant information and effectively spread the underlying feature information to 
the high level. Therefore, it can reduce the attenuation of the underlying infor-
mation and retain more input spatial information. 

In order to verify the generalization ability of the proposed model, two polyp 
segmentation datasets are used as tests, including ETIS and ColonDB. There are 
196 images in ETIS and 380 images in ColonDB. As can be seen from Table 3 
and Table 4, the Dice score on the ColonDB dataset is 2.55% ahead of the U-Net 
model. The IoU score on the ETIS dataset is 2.74% ahead of the U-Net model. 
The results show that the proposed model has strong generalization ability. 

Figure 4 and Figure 5 show the visualization results of different segmentation 
methods in ETIS and ColonDB datasets. From left to right, the input images are 
MedT, ConvUNeXt, TransUNet, EU-Net, TGANet, Swin-UNet and the pro-
posed model ATFF segmentation results. The red curve is the boundary of the 
true value of the lesion ground.  

 
Table 1. The segmentation results of Kvasir-Seg dataset. 

 Dice HD IoU ACC REC 

MedT 89.02 4.55 83.23 97.21 90.92 

ConvUNeXt 89.30 4.46 83.45 97.34 90.34 

TransUNet 89.34 4.03 83.79 96.23 90.51 

EU-Net 89.39 3.97 83.88 96.45 90.69 

TGANet 89.47 3.95 83.91 97.46 91.02 

Swin-UNet 89.56 3.44 84.40 97.21 91.34 

ATFF 89.98 3.22 85.60 97.62 91.38 
 

Table 2. The segmentation results of ClinicDB dataset. 

 Dice HD IoU ACC REC 

MedT 87.13 5.57 81.23 96.21 89.45 

ConvUNeXt 87.35 5.46 81.17 96.54 89.38 

TransUNet 87.34 5.34 81.14 96.63 89.43 

EU-Net 87.35 5.23 81.25 96.75 89.82 

TGANet 87.46 4.67 81.34 97.66 89.31 

Swin-UNet 87.46 4.34 82.23 97.71 89.32 

ATFF 87.58 4.27 83.56 97.62 91.18 
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Table 3. The segmentation results of ColonDB dataset. 

 Dice HD IoU ACC REC 

MedT 87.12 4.76 80.23 97.21 88.12 

ConvUNeXt 87.32 4.62 80.17 97.34 88.23 

TransUNet 88.03 4.56 80.14 97.52 88.51 

EU-Net 88.19 4.31 80.25 98.23 88.62 

TGANet 88.20 3.53 80.34 97.15 88.54 

Swin-UNet 88.56 3.31 80.23 97.25 88.65 

ATFF 88.89 3.26 81.56 98.21 89.09 

 
Table 4. The segmentation results of ETIS dataset. 

 Dice HD IoU ACC REC 

MedT 87.13 5.57 82.23 98.07 86.03 

ConvUNeXt 87.35 5.46 82.31 98.03 86.27 

TransUNet 87.34 5.34 82.65 98.20 86.73 

EU-Net 87.35 5.23 82.93 98.33 87.03 

TGANet 87.46 4.67 83.75 98.34 87.14 

Swin-UNet 87.46 4.34 83.32 98.21 87.23 

ATFF 87.58 4.27 84.74 98.96 88.08 

 

 
MedT     ConvUNeXt    TransUNet      EU-Net       TGANet      SwinUNet      ATFF 

Figure 4. The visual comparison of the proposed model and the state-of-the-art methods on ETIS. 
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MedT      ConvUNeXt   TransUNet      EU-Net      TGANet      SwinUNet       ATFF 

Figure 5. The visual comparison of the proposed model and the state-of-the-art methods on ColonDB. 

3.3. Discussion of Experimental Results 

It can be seen from Figure 4 and Figure 5 that compared with other segmenta-
tion results, this method pays more attention to the lesion area than MedT and 
AMSUNet, suppresses the unimportant feature area, and the segmentation result 
is more accurate than EU-Net. In the case of little difference between the color 
pixels of the lesion area and the color pixels of the background area, the model 
can pay more attention to the small edges than Swin-UNet. In general, ATFF not 
only effectively alleviates the disturbance of tumor size, surrounding tissues and 
cascades, but also obtains segmentation results closer to the real ground mask. 
The comprehensive evaluation results and visual effects show that this method 
achieves better segmentation results with less missed detection and false detec-
tion in polyp lesion segmentation. 

4. Conclusion 

In short, this paper constructs a new model structure ATFF and proposes a 
medical image segmentation method based on this model. The convolution op-
eration is combined with the improved attention mechanism to form a U-shaped 
network to capture global and local feature information, with multi-scale global 
context fusion function. Furthermore, a deep supervision strategy is introduced 
to train the model. Eliminate the attenuation of low-level information and retain 
more input spatial information. In the future, we will draw more knowledge and 
inspiration from the new deep learning theory and continue to optimize the 
proposed model and segmentation method. For example, the influence of each 
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module on the performance of the model is deeply discussed and analyzed to fur-
ther improve the segmentation accuracy. 
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