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Abstract 
In recent years, numerous theoretical tandem mass spectrometry prediction 
methods have been proposed, yet a systematic study and evaluation of their 
theoretical accuracy limits have not been conducted. If the accuracy of cur-
rent methods approaches this limit, further exploration of new prediction 
techniques may become redundant. Conversely, a need for more precise pre-
diction methods or models may be indicated. In this study, we have experi-
mentally analyzed the limits of accuracy at different numbers of ions and pa-
rameters using repeated spectral pairs and integrating various similarity met-
rics. Results show significant achievements in accuracy for backbone ion 
methods with room for improvement. In contrast, full-spectrum prediction 
methods exhibit greater potential relative to the theoretical accuracy limit. 
Additionally, findings highlight the significant impact of normalized collision 
energy and instrument type on prediction accuracy, underscoring the impor-
tance of considering these factors in future theoretical tandem mass spec-
trometry predictions. 
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1. Introduction 

In the field of proteomics research, tandem mass spectrometry has emerged as a 
key tool for protein identification and structural analysis, attributed to its high 
resolution and sensitivity. Through the process of ionization, large molecular 
proteins are subjected to multiple stages of mass spectrometry within the mass 
spectrometer, resulting in complex and informative experimental spectra, known 
as tandem mass spectra. These spectra contain fragmented products of proteins, 
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namely fragment ions, whose characteristics are instrumental in deducing the 
amino acid sequences, structures, and modifications of proteins. 

Interpreting tandem mass spectra to acquire accurate peptide information is a 
complex task. Each peptide molecule undergoes multiple collisions and frag-
mentations upon ionization, resulting in intricate fragment ion spectra. Spectra 
contain two dimensions of information: mass-to-charge ratio (m/z) and inten-
sity. The m/z indicates the ratio of mass to charge of the fragment ions, while the 
intensity indicates the abundance of ions at a particular m/z. Accurate prediction 
of theoretical tandem mass spectra is crucial for the correct identification of 
peptides, posing the challenge of precisely describing the peptide fragmentation 
patterns and the intensity of the resulting fragment ions. Theoretical tandem 
mass spectrometry predictions are widely applied in proteomics and biomolecu-
lar mass spectrometry for identifying proteins and peptides, analyzing modifica-
tions, distinguishing subtypes, and detecting mutations through the simulation 
of ionization and fragmentation processes. 

To date, existing spectrum prediction methods predominantly fall into two 
categories: those based on statistical physics models and those based on machine 
learning models. Early statistical physics approaches often utilized the mobile 
proton model, incorporating assumptions about fragmentation patterns, which 
led to methods like MS-Simulator [1] [2] and MassAnalyzer [3] [4]. With the 
growth of data volumes and computational resources, machine learning-based 
prediction methods have emerged more recently. Among these, PeptideART [5] 
[6] relies on a two-layer feedforward neural network, while MS2PBPI [7] utilizes 
gradient boosting regression trees. In contrast, the pDeep [8] [9] [10] series and 
PredFull [11] employ deep learning network models, with pDeep utilizing bidi-
rectional long short-term memory networks (BiLSTM) for sequence modeling, 
and PredFull applying convolutional neural networks (CNN). These approaches 
have explored various techniques and model designs in the realm of theoretical 
spectrum prediction, significantly contributing to the advancement of the field. 

Existing spectrum prediction methods have achieved high accuracy within 
their respective ion type prediction ranges. For instance, pDeep and Prosit [12] 
[13] have realized a median Pearson Correlation Coefficient (PCC) greater than 
0.980 for b and y backbone ion predictions, while PredFull has achieved a me-
dian PCC greater than 0.800 for full spectrum prediction methods. However, a 
clear standard for defining the upper limit of spectrum prediction accuracy and 
its potential for improvement remains absent. If current methods are nearing 
this limit, further research into spectrum prediction may not be necessary. Con-
versely, this indicates a need for more precise methods and models. Given the 
close relationship between peptide fragmentation, spectrum detection, mass 
spectrometry parameters, and instrument types, this study investigates the upper 
limits of prediction by analyzing backbone and full spectrum ions, taking into 
account the impact of normalized collisional energy (NCE) and instrument 
types, thereby unveiling the potential for improvement and key influencing fac-
tors in spectrum prediction. 
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2. Workflow and Method 
2.1. Data Preprocessing 

This article conducted experiments using publicly available datasets that are 
widely recognized and employed by existing spectral prediction methods. The 
instrument setup, mass spectrometry experimental conditions and experimental 
design in the publicly available data were performed under standardized proce-
dures, and no new mass spectrometry experiments were required to obtain data 
in order to ensure comparability with existing methods. This article employs five 
datasets originating from the Kuster, Mann, and Pandey laboratories, each data-
set derived from different biological species using various instrument types and 
analyzed under different NCE settings. Considering that over 80% of tandem 
mass spectrometry prediction methods target spectra under the High-energy 
Collisional Dissociation (HCD) [20] fragmentation pattern, this study utilizes 
spectra data from this specific mode for experimentation. Table 1 provides de-
tailed information about the datasets, all of which are sourced from the Pro-
teome Xchange mass spectrometry data archive website  
(https://proteomecentral.proteomexchange.org/). 

The original raw format files corresponding to the datasets mentioned are 
downloaded from Proteome Xchange, and the pParse [21] software is employed 
to extract fragment ion information for each experimental spectrum. During this 
process, only fragment ion information of each spectrum is retrieved, leaving the 
peptide identities unknown. To identify peptides, the raw files are searched us-
ing a protein search engine. To expedite the search process, identification results 
provided with the datasets are used for peptide-spectrum matching. For datasets 
without provided identification results, an open search is conducted using the 
pFind [22] search engine, with search parameters detailed in the following Table 
2. 

Upon completing peptide-spectrum matching, Xcalibur software is utilized to 
extract NCE and instrument type information for each spectrum, retaining only 
those spectra acquired in HCD mode. With the necessary annotation informa-
tion for the experimental spectra obtained, peptides are used to simulate frag-
mentation, generating theoretical spectra for the annotation of fragment ion in-
tensities. 

 
Table 1. Dataset information. 

Data set Species Labs NCE instruments 

PXD004732 [14] synthetics Kuster 20/23/25/28/30/35 Lumos 

PXD021013 [15] HLA Kuster 25 Lumos 

PXD000269 [16] Yeast Mann 25 QE 

PXD001250 [17] Mouse Mann 25/27 QE/QE-HF 

PXD000561 [18] [19] Human Pandey 27 Elite 
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Table 2. pFind open search parameter setting. 

Parameters Setting 

Precursor tolerance ±20 ppm 

Fragment tolerance ±20 ppm 

Fixed modification Carbamidomethyl on C 

Variable modification Oxidation on M 

FDR 0.01 

Max cleave sites 3 

2.2. Ion Statistics and Labelling 

This study conducted an analysis of the proportion of backbone ions in the 
processed experimental spectra, specifically examining the prevalence of a, b, c, 
x, y, and z ions. According to the findings illustrated in Figure 1, y ions were the 
most prevalent, constituting about half of the total, followed by b ions, which 
accounted for more than a quarter of the total. Together, these two ion types 
comprised three-quarters of the total, indicating that b and y ions are the domi-
nant fragment ion types in HCD fragmentation mode. Notably, the proportion 
of a ions was slightly less than that of b and y ions but was higher than the com-
bined proportions of c, x, and z ions, suggesting that a ions also have a signifi-
cant abundance in this fragmentation mode. 

In addition to the ion types previously mentioned, spectra often contain nu-
merous neutral loss ions, which are typically formed when peptides lose specific 
groups during fragmentation in mass spectrometers, commonly water (H2O) or 
ammonia (NH3) molecules. These dehydration and deammoniation ions are 
relatively stable, making them among the most frequent neutral loss ions in 
spectra. Given their prevalence alongside high-abundance ions, the probability 
of encountering dehydrated or deammoniated ions is also higher, especially for 
singly charged ions compared to doubly charged ones. Consequently, the study 
annotated a total of 18 ion types, including a+, a++, a-H2O+, a-H2O++, 
a-NH3+, a-NH3++, b+, b++, b-H2O+, b-H2O++, b-NH3+, b-NH3++, y+, y++, 
y-H2O+, y-H2O++, y-NH3+ and y-NH3++. 

2.3. Evaluation Metrics 

The evaluation of theoretical tandem mass spectrometry prediction results heav-
ily relies on similarity metrics, which assess the reliability of predictions by 
comparing the predicted theoretical spectrum ion intensities with those of the 
experimental spectrum. The PCC is widely recognized for this purpose. In addi-
tion to PCC, some methods also use Cosine Similarity (COS), Spearman’s Rank 
Correlation Coefficient (SPC), and other custom criteria to evaluate predictions. 
Metrics like the mean PCC, median PCC, and the proportions of PCC > 0.75 
and PCC > 0.80 are commonly employed to present evaluation results. The for-
mulas for PCC, COS and SPC are listed below. 
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Figure 1. Percentage of 6 backbone ions. 
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Here, n represents the number of predicted ions, i.e., the length of the vector. 
Reali  and Predi  denote the actual and predicted intensities of the ith ion, re-
spectively. Real  and Pred  represent the mean intensities of the actual and 
predicted ion intensity vectors, respectively. di is the rank difference between 
Reali  and Predi  in their respective sequences. These metrics serve as the 
standard measures utilized in this article for analyzing the upper limits.  

PCC measures the linear correlation between two variables, giving a value 
between −1 and 1. Its advantage is in detecting linear relationships, but it might 
not capture non-linear relationships well. COS measures the cosine of the angle 
between two vectors, useful in high-dimensional spaces. It’s beneficial for com-
paring orientation but not magnitude, making it suitable for text analysis but less 
effective when magnitude is important. SPC assesses how well the relationship 
between two variables can be described using a monotonic function. It’s advan-
tageous for non-linear relationships and is not influenced by outliers, unlike 
PCC. However, it might not be as sensitive as PCC in detecting linear relation-
ships. Moreover, SPC imposes a stricter ranking on longer vectors, resulting in 
lower scores compared to PCC and COS. 

2.4. Precision Analysis Method 

In this study, three intensity vector approaches were employed for analyzing the 
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upper limit of accuracy. The first method focused solely on b and y backbone 
ions, which are the most abundant ion types in spectra and are fundamental for 
all theoretical tandem mass spectrometry prediction methods. Although Zhou et 
al. [8] analyzed the accuracy upper limit of b and y ions, they only considered 
the PCC metric and suggested there was room for improvement in accuracy. 
The second approach analyzed using the aforementioned 18 ion types, indicat-
ing that b and y ions alone are insufficient for representing the entire spectrum, 
as they account for only half of the total spectral intensity. The final method 
adopted the preprocessing technique used by PredFull, scaling the m/z ratio by a 
factor of 10, rounding it, and representing the entire spectrum in a 20,000 di-
mensional vector. This approach, not relying on specific ion types, incorporates 
all ion types into the vector, with each index representing m/z and scalar values 
indicating intensity at those positions. 

For the first two methods, ions specified for each spectrum are extracted and 
represented in an intensity vector in the order of b, y, or a, b, y ions, with ion in-
tensities defaulting to 0.0 for absent peaks. The third approach directly utilizes 
the vector processed by PredFull’s preprocessing method as the intensity vector. 
Typically, a peptide corresponds to multiple experimental spectra. Assuming a 
peptide fragments into K spectra, the total number of repeated spectrum pairs is 
calculated as shown in formula (4). Similarity analysis of these spectrum pairs’ 
vectors is then performed to determine the theoretical upper limit of prediction 
accuracy for repeated spectra. 

1
1

K
iS i−

=
= ∑                             (4) 

3. Analysis and Results 
3.1. Upper Limit of Ionisation of the Backbone 

The study employed two approaches for analyzing the upper limit of backbone 
ions. The first focused on the accuracy limit for b and y backbone ions, and the 
second involved the 18 types of backbone ions previously annotated. Experi-
ments were conducted using the PXD004732 dataset to ensure consistency 
across other parameters, with nearly 1.5 million spectrum pairs collected from 
data at NCE 25 for analysis. The evaluation utilized multiple metrics, including 
PCC, COS, and SPC, to assess performance. 

As shown in Figure 2, box plot a represents the results of the experimental 
analysis using only the intensity of b and y ions, and the median values of the 
three metrics are 0.996, 0.997, and 0.964, respectively. whereas box plot b repre-
sents the results of the experimental analysis of the 18 ions, and the median val-
ues of the three metrics in the results are 0.996, 0.996, and 0.893, respectively. 
the analysis reveals that the distribution of box plots of the PCC and COS is 
more centralised, which indicates that the similarity value is higher under this 
indicator, while in SPC the distribution is discrete and the accuracy of the 18 
ions decreases compared to the b and y ions. As shown in Figure 3, by analysing 
the proportion of each indicator above the critical value, it can be seen that for 
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PCC and COS there is almost no great difference, in these two indicators more 
than 99% of the spectrogram pairs can reach a similarity of more than 0.900, 
with the increase in the number of ions the vector length increases the SPC in-
dicators have a greater impact, but in general, almost all the spectrograms of the 
pairs of similarity is more than 0.70. 

This study conducted a comparative analysis between two classical theoretical 
mass spectrometry prediction methods, pDeep and Prosit, which are both lim-
ited to predicting b and y ions. Predictions were made using both methods on 
the same dataset, with relevant metrics presented in Table 3. The analysis re-
vealed that Prosit generally outperformed pDeep, although Prosit was slightly 
inferior to pDeep in terms of the SPC metric. Despite achieving high prediction 
accuracy, both methods still have considerable room for improvement compared 
to the accuracy upper limit analysis presented in this paper, especially in metrics 
above 0.90. 

 

 

Figure 2. Distribution of similarity indicators. 
 

 

Figure 3. Percentage of each similarity indicator. 
 

Table 3. Upper limit of prediction accuracy for different methods. 

Methods PCC median COS median SPC median PCC > 0.90 COS > 0.90 SPC > 0.90 

pDeep 0.984 0.987 0.933 82.20 88.02 68.94 

Prosit 0.989 0.991 0.928 96.63 97.54 67.27 

Our Method 0.996 0.997 0.964 99.91 99.95 96.37 
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3.2. Full Spectrum Upper Limit Analysis 

Spectra encompass not only backbone ions but also numerous non-backbone 
ions, precursor ions, and noise ions. Noise ions generate peaks that significantly 
interfere with spectral analysis. For the PredFull prediction method, the presence 
of numerous noise ions can disrupt results, reducing prediction accuracy. In an 
experiment analyzing the upper limit of full spectrum accuracy using the same 
dataset as the backbone ion accuracy limit experiment, 1.2 million spectrum 
pairs were examined. The medians of the three metrics were 0.930, 0.930, and 
0.656, respectively (as shown in Figure 4). The decrease in accuracy compared 
to the backbone ion accuracy limit is primarily due to the increased number of 
ions, including more noise ions, which significantly impacts accuracy. An analy-
sis of the critical values of these metrics showed a consistent trend, with a 0% 
proportion of SPC > 0.90, indicating that the SPC metric, which has stricter rank 
correlation for longer vectors, loses accuracy with an increased number of ions. 

This paper compares the PredFull method as shown in Table 4 below. In each 
median index, PredFull is about 0.1 - 0.2 lower, and at the same time, it performs 
poorly in each index of >0.90, which is only about 1/6 of the upper limit value. 
This shows that the PredFull method for predicting the full spectrum still has a 
very large room for improvement in accuracy, and there is still room for further 
exploration for full spectrum prediction. 

3.3. NCE Analysis 

NCE is a crucial parameter in mass spectrometry that directly influences the de-
gree of peptide fragmentation. Typically, as NCE increases, peptides fragment 
more thoroughly, resulting in spectra with higher peak signal intensities. This is 
because higher NCE levels cause more peptide bonds to break, generating more 
fragment ions. Conversely, at lower NCE levels, insufficient energy may not in-
duce peptide bond breakage, leading to lower coverage of fragment ions in the 
spectra. Therefore, to assess the impact of NCE on spectral prediction, this study 
conducted an upper limit accuracy analysis experiment on repeated spectra un-
der different NCE settings. 

The experiments utilized the PXD004732 dataset, which fragments peptides at 
six NCEs: 20, 23, 25, 28, 30, and 35. Repeated spectrum pairs were identified 
between two NCE settings, resulting in fifteen different NCE combinations, with 
an average of 300,000 spectrum pairs per combination. The analysis focused on 
b and y ions, and the results are displayed in Figure 5 through three heatmaps 
representing the median distributions for PCC, COS, and SPC, with the lower 
diagonal indicating the upper limit of accuracy at identical NCEs. The findings 
reveal a direct correlation between the proximity of NCE values and spectral 
similarity: closer NCE values yield higher similarity. Specifically, a 2 unit differ-
ence in NCE maintains similarity; however, a 5 unit difference reduces median 
similarity by approximately 0.05, and a 10 unit difference decreases it by about 
0.25, underscoring the significant impact of NCE variation, especially larger dif-
ferences, on peptide fragmentation. 
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Figure 4. Distribution of similarity indicators. 
 

Table 4. Comparison of PredFull prediction accuracy upper limits. 

Methods PCC median COS median SPC median PCC > 0.90 COS > 0.90 SPC > 0.90 

PredFull 0.812 0.813 0.462 12.81 12.97 0.00 

this paper 0.930 0.930 0.656 75.54 75.91 0.00 

 

 

Figure 5. Differences in b/y ion similarity at different energies. 

3.4. Instrument Type Analysis 

While existing methods incorporate instrument type, a deeper analysis of its 
specific effects is necessary. The PredFull method, when training the HCD 
model, did not differentiate between instrument types, observing that spectra 
from different instruments were highly similar. This study investigates the im-
pact of instrument type on peptide fragmentation by analyzing repeated spectra 
of the same peptide across different instruments. To minimize confounding 
variables, datasets with the same NCE and closely related species, including Lu-
mos, QE, QE-HF, and Elite, were collected for analysis at NCEs 25 and 27. Simi-
larity was calculated using intensity vectors composed of 18 ion types across dif-
ferent instruments at the same NCE.  

The designed comparative experiments included: 1) a comparison between 
the PXD001250 dataset generated by QE-HF and the PXD000561 dataset gener-
ated by Elite (NCE = 27); 2) a comparison between the PXD001250 dataset gen-
erated by QE and the PXD004732 dataset generated by Lumos (NCE = 25); and 
3 & 4) comparisons within the same instrument type to demonstrate the internal 
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Table 5. PCC index of repeated spectra with different instruments. 

Methods 
PCC  

median 
PCC  
mean 

PCC > 0.75 PCC > 0.80 PCC > 0.85 PCC > 0.90 

Experiment 1 0.919 0.873 87.95 83.13 75.90 61.45 

Experiment 2 0.908 0.881 89.96 83.17 71.66 54.16 

Experiment 3 0.984 0.957 96.22 95.44 94.25 91.84 

Experiment 4 0.988 0.982 100.00 99.74 99.48 98.70 

 
consistency of QE and Lumos instruments. Results indicated significant differ-
ences in PCC values across different instruments (as seen in Table 5), with 
higher similarity observed within the same instrument type, suggesting that the 
fragmentation patterns of the same peptide vary across different instruments. 

4. Discussion 

The existing theoretical tandem mass spectrometry spectrum prediction meth-
ods have achieved a certain level of accuracy, and the prediction of b and y 
backbone ions is approaching the theoretical limit. However, for other ion types, 
not only a lack of prediction methods, but there is also a significant gap between 
the prediction accuracy and the similarity limit analyzed in this study. Especially 
concerning the problem of full spectrum prediction, there is still considerable 
room for improvement in prediction accuracy. Additionally, regarding the NCE 
and instrument type, our analysis reveals that NCE has a significant impact on 
experimental spectra, with increasing NCE differences leading to a gradual de-
crease in similarity. While the impact of instrument type on peptide fragmenta-
tion may not be as significant as NCE, it is still noteworthy, especially as predic-
tion accuracy approaches the theoretical limit. Therefore, in the process of de-
veloping new theoretical tandem mass spectrometry prediction methods in the 
future, it is essential not only to further enhance prediction accuracy but also to 
comprehensively consider various characteristics (NCE and Instruments), 
thereby providing more accurate prediction methods for the analysis of mass 
spectrometry data. 
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