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Abstract 
Convolutional neural networks (CNNs) are widely used in image classifica-
tion tasks, but their increasing model size and computation make them chal-
lenging to implement on embedded systems with constrained hardware re-
sources. To address this issue, the MobileNetV1 network was developed, which 
employs depthwise convolution to reduce network complexity. MobileNetV1 
employs a stride of 2 in several convolutional layers to decrease the spatial 
resolution of feature maps, thereby lowering computational costs. However, 
this stride setting can lead to a loss of spatial information, particularly affect-
ing the detection and representation of smaller objects or finer details in im-
ages. To maintain the trade-off between complexity and model performance, 
a lightweight convolutional neural network with hierarchical multi-scale fea-
ture fusion based on the MobileNetV1 network is proposed. The network con-
sists of two main subnetworks. The first subnetwork uses a depthwise dilated 
separable convolution (DDSC) layer to learn imaging features with fewer pa-
rameters, which results in a lightweight and computationally inexpensive net-
work. Furthermore, depthwise dilated convolution in DDSC layer effectively 
expands the field of view of filters, allowing them to incorporate a larger con-
text. The second subnetwork is a hierarchical multi-scale feature fusion (HMFF) 
module that uses parallel multi-resolution branches architecture to process 
the input feature map in order to extract the multi-scale feature information 
of the input image. Experimental results on the CIFAR-10, Malaria, and Kva-
sirV1 datasets demonstrate that the proposed method is efficient, reducing the 
network parameters and computational cost by 65.02% and 39.78%, respec-
tively, while maintaining the network performance compared to the Mobile-
NetV1 baseline. 

How to cite this paper: Dembele, A., 
Mwangi, R.W. and Kube, A.O. (2024) A 
Lightweight Convolutional Neural Network 
with Hierarchical Multi-Scale Feature Fusion 
for Image Classification. Journal of Computer 
and Communications, 12, 173-200. 
https://doi.org/10.4236/jcc.2024.122011 
 
Received: November 13, 2023 
Accepted: February 26, 2024 
Published: February 29, 2024 
 
Copyright © 2024 by author(s) and  
Scientific Research Publishing Inc. 
This work is licensed under the Creative 
Commons Attribution International  
License (CC BY 4.0). 
http://creativecommons.org/licenses/by/4.0/   

  
Open Access

https://www.scirp.org/journal/jcc
https://doi.org/10.4236/jcc.2024.122011
https://www.scirp.org/
https://doi.org/10.4236/jcc.2024.122011
http://creativecommons.org/licenses/by/4.0/


A. Dembele et al. 
 

 

DOI: 10.4236/jcc.2024.122011 174 Journal of Computer and Communications 
 

Keywords 
MobileNet, Image Classification, Lightweight Convolutional Neural Network, 
Depthwise Dilated Separable Convolution, Hierarchical Multi-Scale Feature 
Fusion 

 

1. Introduction 

The purpose of computer image classification is to provide a better option for 
human visual perception of pictures through analysis and categorization of those 
images. In the field of computer vision, such as image classification [1], target 
tracking [2], target detection [3], and image segmentation [4], deep convolutional 
neural networks (CNNs) have gained remarkable success. Most recent CNNs in-
clude hundreds of hidden layers and training parameters to improve accuracy, 
but this comes at a large computational cost. Therefore, it’s still challenging to 
train and deploy large-scale convolutional neural network models, and it needs 
access to powerful computational and storage infrastructure. 

The growth of smart mobile phones, embedded devices, and Internet of Things 
devices has increased the need for training and deploying convolutional neural 
networks on such devices. Large convolutional neural networks, such as VGGNet 
[5] and ResNet [6], are not ideal for training and deployment on such devices 
due to their restricted computational and storage capacity. As a result, CNNs for 
real-world applications operating on edge devices must be lightweight and effi-
cient while maintaining high accuracy. 

Throughout the years, various research papers have suggested various tech-
niques to construct lightweight networks for performing real-time inference on 
small hardware. Network pruning is a method for reducing the complexity of a 
neural network by removing neurons and parameters that have a minimal im-
pact on the model’s performance. This approach can be used to address overfit-
ting by eliminating redundant or unnecessary elements from the network [7] [8]. 
Low-bit representation-based approaches are another strategy that involves uti-
lizing low-precision numbers to represent the parameters and activations of a 
neural network [9]. Most of the time, these models do not change the structure 
of the network, and the convolutional operations could be done faster on CPUs 
by using logical gates. A more recent strategy, known as a compact network, in-
volves factoring a computationally expensive convolution operation [10] [11] [12]. 
These models are designed to be computationally efficient, which means that the 
underlying model structure learns fewer parameters and performs fewer float-
ing-point operations (FLOPs). 

MobileNetV1 is a type of compact CNN that utilizes depthwise separable con-
volution [13]. However, this method of convolution can lead to a large number 
of 1 × 1 convolutions (pointwise convolutions), which can consume significant 
computational resources. [14] has developed an optimized version of the Mobi-
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leNet baseline called “kMobileNet”, which replaces pointwise convolution with 
grouped pointwise convolution in depthwise separable convolution layer. He has 
significantly reduced MobileNet network parameters and complexity; however, 
there are still some drawbacks that need to be addressed. Firstly, as the network 
deepens, the features extracted by the neural network shift from particular edge 
features to abstract semantic features. While these deeper layers contain rich se-
mantic information crucial for classification tasks, the model’s use of a series of 
strides of two within its network architecture leads to a substantial issue. This 
series of large stride operations significantly diminishes the resolution and detail 
in the final feature map. Consequently, there is a notable reduction in both the 
detail and spatial information, resulting in a loss of critical fine features essential 
for accurate image analysis [15] [16] [17]. Secondly, a model with a lot of train-
ing parameters can improve the accuracy of classification to some extent, but this 
will take a lot of time and storage space. 

In order to solve the above problems, this study proposed a hierarchical mul-
ti-scale feature fusion (HMFF) module to extract features for a lightweight and 
accurate network. To minimize the impact on network computation costs, the 
hierarchical multi-scale feature fusion is strategically placed just before the final 
classification layer in the MobileNetV1 architecture. This module adeptly merges 
features from different scales. While it is understood that some spatial details are 
diminished in the earlier layers due to downsampling, the module selectively am-
plifies residual spatial information still present in the deeper layers. It harnesses 
the finer nuances embedded within these layers, enhancing the detail resolution 
that is critical for precise image classification. The hierarchical multi-scale fea-
ture fusion module uses depthwise dilated separable convolution, which has the 
advantage of expanding the kernel size without increasing the number of training 
parameters. Depthwise dilated separable convolution uses depthwise convolution 
with dilate rate parameter and combines it with grouped pointwise convolution. 
Furthermore, the hierarchical multi-scale feature fusion (HMFF) technique is em-
ployed to make full use of diverse levels of features, particularly the fusing of shal-
low edge information and deep semantic information, as well as to avoid gridding 
artifacts induced by dilated convolution. The main contributions of this study 
are summarized as follows:  

1) The study proposed a lightweight convolutional neural network for image 
classification with hierarchical multi-scale feature fusion named HMFF-MobileNet, 
with the goal of building an efficient deep learning network suited for use in cloud 
computing, mobile vision, and embedding system applications.  

2) The study presented a hierarchical multi-scale feature fusion (HMFF) mod-
ule that is conducive to learning varied-sized input image features and improves 
prediction performance by enlarging the receptive field and capturing the discri-
minative multi-scale feature without raising convolution parameters.  

3) Experiments on the CIFAR-10, Malaria, and KvasirV1 datasets show that the 
proposed HMFF-MobileNet network outperforms other state-of-the-art networks, 
such as MobileNetV1 [13] and kMobileNet [18] variants, despite having few pa-
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rameters and low complexity.  
The study is divided into five sections: Section 2 reviews the literature, Section 

3 details the technique used, Section 4 presents the findings, and Section 5 pro-
vides a conclusion to the study.  

2. Related Work 

In recent years, lightweight CNNs have become a popular way of reducing mod-
el sizes. [19] discovered that the deep network parameters contain a lot of re-
dundancy. These parameters were ineffective in improving classification accu-
racy but had an impact on processing efficiency. [20] greatly enhanced the com-
pressed model by utilizing the combined knowledge of multiple models. The 
accuracy of classification for this streamlined network was nearly equivalent to 
that of a more complex network. In 2016, [21] introduced a tiny CNN structure 
called SqueezeNet that drastically reduced the amount of network parameters by 
using network compression techniques. However, model compression reduces 
model accuracy. 

MobileNetV1 is one of lightweight CNNs model and its main feature is the 
use of depthwise and pointwise convolution instead of regular convolution, which 
is more efficient for mobile devices and embedded applications with limited re-
sources [13]. The authors of MobileNetV1 introduced two hyper-parameters 
that allow an engineer to choose an appropriate model size depending on the 
characteristics of the problem. Standard CNN architecture-based models con-
tinue to outperform MobileNetV1. Therefore, MobileNetV2 [11] is proposed as 
a solution to the problem. The model has an inverted residual structure, with 
shortcut connections between the thin bottleneck layer and the intermediate ex-
pansion layer, which uses depthwise convolution to filter features as a nonli-
nearity source. MnasNet is based on the MobileNet V2 model architecture and 
incorporates lightweight attention modules into the bottleneck structure via 
squeeze and excitation [22]. These structures are placed after the depthwise fil-
ters feed-forward pass to obtain attention to be applied to the largest image re-
presentation. In order to get attention that is applied to the largest image repre-
sentation, these structures are positioned following the feed-forward pass of the 
depthwise filters. To address the vanishing gradient issue and guarantee greater 
accuracy, [23] enhanced the MobileNet V2 and suggested MobileNet V3, which 
employs modified swish nonlinearities and swaps the original sigmoid function 
for the hard sigmoid. 

ShuffleNet employed a combination of point-group convolution and channel 
shuffle, which significantly reduced the number of parameters and computation 
flops while maintaining a high level of performance in tasks such as image clas-
sification and object detection [24]. With the introduction of ShuffleNetV2, [12] 
enhanced the original ShuffleNet even more. The model takes into account both 
the direct and indirect metrics of computation complexity, such as required mem-
ory and device characteristics, as well as indirect metrics like FLOPs. 
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Dilated convolution is often used for tasks like semantic segmentation and 
target detection [25] [26], and it is also used in part for image classification tasks 
[27]. Dilated convolution extends the receptive field while maintaining feature 
map resolution by inserting holes into the normal convolution (max-pooling or 
strided convolution reduces feature map resolution) without increasing the amount 
of complexity. The dilation convolution differs from the original standard con-
volution in that it contains a hyper-parameter called dilation rate, which corres-
ponds to the number of intervals in the convolution kernel (e.g. standard con-
volution is dilatation rate 1). 

Recently, researchers have begun to combine depthwise separable convolution 
with dilated convolution [28] [29] [30]. This combination has been found to 
improve the performance of convolutional neural network, particularly in com-
puter vision. However, depthwise separable convolution uses pointwise convolu-
tion, which generates more than 80% of the parameters in the most recent deep 
convolutional neural architectures, according to [18]. In order to reduce the pa-
rameter size and computational complexity, [14] has proposed using grouped 
pointwise convolution, which can compress the parameters of pointwise convo-
lution while still maintaining a reasonable accuracy. This combination is show-
ing promise in computer vision tasks, it has been demonstrated to reduce the 
computational complexity of convolutional neural network. This study took ad-
vantage of the benefits of dilated convolution, depthwise convolution, and grouped 
pointwise convolution in order to have a lightweight network. The proposed 
method, called depthwise dilated separable convolution (DDSC), combines these 
operations to reduce the number of parameters and increase the accuracy of the 
network. 

Although dilated convolution reduces the disparity between receptive field 
size and feature map resolution, it still has significant drawbacks. When dilated 
convolution is used with a single dilation rate, all of the neurons in the feature 
map have the same receptive field, and the network only uses features on a single 
scale. This can be a problem when trying to classify objects in an image with dif-
ferent scales because the network might not be able to recognize objects that are 
much bigger or smaller than the dilation rate. For example, if the dilation rate is 
set too high, the network may recognize only large objects in the image while 
missing small objects, and vice versa. However, [31] [32] showed that multi-scale 
information can aid in the resolution of ambiguous cases and result in more ro-
bust classification. [33] proposed atrous spatial pyramid pooling (ASPP) module, 
which joins together feature maps with different rates of dilation. This way, the 
output feature map includes semantic information from multiple scales, which 
can improve classification performance. 

[34] developed spatial pyramid pooling (SPP) block to extract multiscale in-
formation by running several parallel dilated convolutions. [35] came up with an 
idea for a multi-scale dilated network with depthwise separable convolution 
network based on concatenation and summation feature fusion technique for the 
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prediction of abnormalities in chest radiographs. The concept was based on Mo-
bileNet network with an early feature fusion approach, which can result in net-
work redundancy, an increase in the number of parameters to train, and a more 
complicated model. Their approach differs from ours in that ours uses late fea-
ture fusion with hierarchical feature fusion. The hierarchical fusion approach is 
advantageous in that it utilizes the contextual information of both high-level and 
low-level features. 

[36] has proposed a three-branch hierarchical multi-scale feature fusion net-
work structure called HiFuse for medical image classification. The HiFuse model 
consists of a parallel hierarchy of local and global feature blocks to extract local 
features and global representations at various semantic scales. However, the com-
putational complexity of the proposed model is significantly higher compared to 
traditional lightweight models. This is due to the parallel processing and multiple 
feature extraction layers involved in the HiFuse model. [37] presented a novel 
image classification system called CMSFL-Net, which utilizes a consecutive mul-
tiscale feature-learning approach. The CMSFL-Net is a combination of consecu-
tive multiscale feature learning (CMSFL) modules, max-pooling operations, and 
fully connected dense layers for feature extraction and classification. The proposed 
system addresses the challenges of efficient computation, low generalization on 
small-scale images, and underfitting with limited data. However, the results sug-
gest that the optimal number of CMSFL modules depends on the specific data-
sets and the trade-off between accuracy and efficiency. 

[38] has developed the ESPNet network for semantic segmentation based on 
the efficient spatial pyramid (ESP) module. A standard convolution is divided 
into a point-wise convolution and a spatial pyramid of dilated convolutions us-
ing three steps. Firstly, the ESP module performs a 1 × 1 convolution on input 
features to project high-dimensional feature maps onto a low-dimensional space. 
Secondly, it divides pointwise convolution kernel maps into multiple parallel 
branches and performs dilated convolution operations with different rates on 
each kernel independently. Indeed, it performs hierarchical feature fusion in or-
der to extract multi-scale features. The ESP module aligns with the idea of this 
study’s multi-scale hierarchical feature fusion module. In reference to the eighth 
paragraph of this section, it is noteworthy to highlight that the 1 × 1 convolution 
accounts for over 80% of the computational cost within the ESP module. This 
underscores the potential for significant performance enhancements in the mul-
ti-scale hierarchical feature fusion module by optimizing the efficiency of the 1 × 
1 convolution. Furthermore, this research suggested replacing the computation-
ally intensive convolution with the grouped pointwise convolution, as proposed 
by [14]. This substitution could offer the dual advantage of reducing computa-
tional overhead while preserving accuracy.  

3. Materials and Methods 

This section details the different components of the proposed hierarchical mul-
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ti-scale feature fusion (HMFF) module, followed by a description of the lightweight 
network architecture (HMFF-MobileNet).  

3.1. Baseline Methods 

This subsection briefly introduces depthwise dilated convolution and grouped 
pointwise convolution in order to develop depthwise dilated separable convolu-
tion (DDSC), which is a component of the HMFF module.  

3.1.1. Depthwise Dilated Convolution 
A depthwise dilated convolution is a depthwise convolution variant in which the 
kernel is applied to the input feature map with a dilation rate. The dilation rate is 
a hyperparameter that determines the gap between values in the kernel, which in 
turn influences the size of the convolution’s receptive field [39]. 

Let us take a depthwise convolution layer as an input H W M× ×  feature 
map F and produces H W N′ ′× ×  feature map O, where H and W are respec-
tively the spatial height and width of input feature map, M is the number of in-
put channels (input depth), H ′  and W ′  are respectively the spatial width and 
height of output feature map and N is the number of output channel [13], then a 
dilated convolutional layer operates on the feature map H W MF × ×∈R  using a 
convolutional kernel K KD D M NK × × ×∈R  with a dilation rate d.  

Using the kernel K, we compute the output feature map H W NO ′ ′× ×∈R  in Eq-
uation (1):  

, , , , , , ,
, ,

k h w k h dm w dn k k m n
k m n

O F K′ ′+ += ×∑                    (1) 

Then, depth-wise convolution is applied to the dilated convolution as in Equ-
ation (2):  

, , , , , ,
,

d
k h w k m n k h dm w dn

m n
F K F + +′ = ×∑                     (2) 

It should be noted that the process does not perform cross-channel multipli-
cation and instead only performs spatial multiplication, where dK  is the kernel 
for the depth-wise dilated convolution. 

Floating points of operations (Flops) and number of parameters are used to 
assess the network’s computational complexity. Flops denote the network’s time 
complexity, while number of parameters represents the network’s spatial com-
plexity. 

The cost dwFlops  of the depthwise dilated convolution layer with stride one 
can then be definied as:  

 dw K KFlops H W M D D= × × × ×                   (3) 

The total number of parameters ( dwP ) depthwise dilated convolution gene-
rates is:  

 dw K KP D D M= × ×                       (4) 

As can be seen, the cost multiplicatively depends on the number of input, the 
number of output channels, the kernel size and the input channel size.  
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3.1.2. Grouped Pointwise Convolution (Gconv) 
Grouped pointwise convolution use the idea of group convolution and use ad-
vantage of parallelization computing on pointwise convolution. The architecture 
as defined in Figure 1, starts with a pointwise grouped convolution layer R, which 
is made up of filter groups R1 and R2 paths. This is followed by a channel inter-
leaving layer, which combines channels for the next pointwise grouped convolu-
tion layer L (constituted by filter groups L1 and L2 paths). All of the channels in 
groups R1 and R2 are added together to make one path. The same process is per-
formed for the L layer. For layers R and L, the number of filter groups and filters 
per group is calculated by exact divisions of the original number of input chan-
nels and filters by Ch [14].  

Grouped pointwise convolution has been proposed to replace the computation-
al expensive standard pointwise convolution, which generates M N×  parame-
ters, and costs H W M N′ ′× × ×  computation. 

Now, let us consider the group convolution introduced in [14] with Ch num-
ber of channels per group. The total number of parameters gconvP  of grouped 
pointwise convolution is then calculated by multiplying the number of original 
filters by the number of input channels per filter:  

 ( )2gconvP N Ch= ×                           (5) 

The cost gconvFlops  of the grouped pointwise convolution layer with stride 
one can then be definied as:  

 ( )2dwFlops H W N Ch′ ′= × × ×                    (6) 

Hence, given the number of parameters and the costs of grouped pointwise 
convolution, it is clear that Ch must be significantly less than M/2 in order to 
optimize a regular pointwise convolutional layer. 

3.2. Proposed Method 

This section explains the HMFF-MobileNet architecture by describing its depthwise  
 

 
Figure 1. Schematics show the grouped pointwise convolution architecture and the pointwise convolution replace-
ment. This example takes the place of a pointwise convolution by using 14 input channels and 10 filters. It has two 
convolutional layers, R and L, and it also includes one interleaving layer and one summation layer. Channels that 
have been replicated have a red line around them. 
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dilated separable convolutions, which allow the network to efficiently learn re-
presentations from a large effective receptive field. A description of how to use 
the hierarchical multi-scale feature fusion (HMFF) module is given, which enables 
the proposed network to effectively capture features at different scales and com-
bine them for improved performance.  

3.2.1. Depthwise Dilated Separable Convolution (DDSC) 
Many different ways have been suggested to replace the standard convolution 
layers in a deep CNN architecture with different types of convolution layers, 
such as the depthwise separable convolution layer [13]. 

Depthwise dilated separable convolution, use the idea of depthwise separable 
convolution (DSC). It combines depthwise dilated convolution with grouped 
pointwise convolution. After each layer in the modified depthwise separable 
convolution, batch normalization [40] and Swish [41] as the activation function 
are applied. 

From Equations (4) and (5), the total number of parameters (P) of DDSC 
layer is defined as:  

 ( )2DDSC K KP D D M N Ch= × × + ×                   (7) 

The cost DDSCFlops  of DDSC convolution layer with stride one can then be 
definied as:  

 ( )2DDSC K KFlops H W M D D H W N Ch′ ′= × × × × + × × ×        (8) 

As a result, the computational cost ratio of depthwise separable convolution to 
depthwise dilated separable convolution can be expressed as:  

 ( )
( )

2K KDDSC

DSC K K

H W M D D H W N ChFlops
Flops H W M D D H W N M

′ ′× × × × + × × ×
=

′ ′× × × × + × × ×
      (9) 

3.2.2. Hierarchical Multi-Scale Feature Fusion (HMFF) Module 
To increase the accuracy of the model of imaging classification, local characte-
ristics and global representations from different levels can be fused, this study 
proposed an hierarchical multi-scale feature fusion (HMFF) module based on 
the split-transform-merge strategy. The HMFF module starts by splitting the 
output of grouped pointwise convolution into K parallel branches (Step1 (Split) 
in Figure 2). Then, each branch uses depthwise dilated separable convolution 
with different dilation rates given by { }12 , 1, , 1p p K− ∈ −  to process these 
feature maps at the same time in parallel without changing the network’s para-
meters or complexity (Step2 (Transform) in Figure 2). The HMFF module can 
learn representations from a large effective receptive field by using different dila-
tion rates in each branch. However, using dilated convolution as a feature ex-
tractor directly will lead to some information being lost because it suffers from 
the gridding artifact problem. Thus, before concatenating the feature maps 
obtained with different dilation rates, they are hierarchically added (HFF). To 
strengthen information flow, a skip-connection between input and output is added 
(Step3 (HFF) in Figure 2). The residual connection is used when the number of  
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Figure 2. Hierarchical multi-scale feature fusion (HMFF) module. 

 
channels going into the block and coming out of the block is the same. We use 
batch normalization and activation function after every convolutional layer.  

Let ˆ iF , the output of grouped pointwise convolution with iN  filters in layer 
i, d dilated convolution rate, and ( 4K = ) number of branches. 

Because 
iN

K
 is not a perfect division in general, combining K and 

iN
K

-dim-  

ensional feature maps would not generate an iN -dimensional output. To deal 
with this, we use n1 kernels with a dilation rate of 1 and n2 kernels with a dilation 
rate of 2 p , { }1, 1p K∈ − . Depthwise dilated separable convolution is applied to 
each branch in order to extract multi-scale features. The output of each convolu-
tion in K-partitions is defined as:  

 
( )

( ) { }
1

1
2

, 1

ˆ

, 2

if 1,
ˆ

if 1, , 1
i

p

i
H W n dp

H W N i
H W n d

DDSC F p
O

DDSC F p K−

× × =

× ×

× × =

 == 
∈ − 

        (10) 

where  

 
( )

{ }

1

2

1 if 1
ˆ

if 2 , 1, , 1

i
i

i

i
p

Nn N K d
K

N
Nn d p K
K

   
= − − =       = 
  = = ∈ − 
 



      (11) 

Output of hierarchical feature fusion (HFF) step is defined as:  

 2 2 2

2 2 2

1 2 4

2 8 1

ˆ ˆ

ˆ
H W n H W n H W n

H W n H W n H W n

S O O

S O S
× × × × × ×

× × × × × ×

 = +


= +
                   (12) 

( )( )1 2 2

2 1 2ˆ , ,H W n H W n H W nconcat Activation BN O S S× × × × × ×
 =            (13) 

 ( )ˆ
i

i
H W N

O Activation concat F
× ×

= +                  (14) 

In Equation (13), the three matrices (or tensors) denoted by 
1

2ˆ
H W nO × × , 

2

1
H W nS × × , 

and 
2

2
H W nS × ×  are concatenated (combined) into a single matrix, which is subse-

quently processed through an Activation function and a batch normalization (BN) 
function. The outcome of these operations is stored in the variable concat as de-
fined in Equation (14).  
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3.2.3. Lightweight Network Architecture 
Based on the proposed hierarchical multi-scale feature fusion (HMFF) module 
and depthwise dilated separable convolution, and kMobileNet baseline architec-
ture [18], the architecture of the proposed network (HMFF-MobileNet) is shown 
in Table 1. The proposed method involves two modifications to kMobileNet. 
Firstly, the network architecture contains five layers of separable filters with 512 
filters, compared to kMobileNet’s architecture which has six such layers. This re-
duction in the number of layers improves the efficiency of the network, resulting 
in a decrease in memory consumption while maintaining accuracy. Secondly, the 
final layer of the KMobileNet architecture has been swapped out for the HMFF 
module. This modification adds the ability to capture multi-scale features, en-
hancing the network’s discriminative power. 

The proposed network increases the depth of the network by repeating depth-
wise dilated separable convolutions with a dilation rate of 1 at each spatial level. 
In addition, batch-normalisation and Swish activation function [41] are used af-
ter every convolution layer. The discriminative features obtained from a series of 
DDSCs are sent to HMFFM to learn multi-scale imaging features. Then, a fully 
connected layer is used to make predictions based on the features that were ex-
tracted.  

4. Experiments 

This section evaluates and compares the performance of the HMFF-MobileNet 
network on CIFAR-10, malaria, and Kvasir datasets for image classification. First  
 
Table 1. HMFF-MobileNet architecture, where Conv stands for standard convolution, FC 
stands for full connected layer. 

Operator Layer No. of Filter Kernel Size Stride 

Conv 32 3 × 3 2 

DDSC 64 3 × 3, 1 × 1 1 

DDSC 128 3 × 3, 1 × 1 2 

DDSC 128 3 × 3, 1 × 1 1 

DDSC 256 3 × 3, 1 × 1 2 

DDSC 256 3 × 3, 1 × 1 1 

DDSC 512 3 × 3, 1 × 1 2 

DDSC 512 3 × 3, 1 × 1 1 

DDSC 512 3 × 3, 1 × 1 1 

DDSC 512 3 × 3, 1 × 1 1 

DDSC 512 3 × 3, 1 × 1 1 

DDSC 1024 3 × 3, 1 × 1 2 

HMFF 1024 3 × 3, 1 × 1 1 

Global-Avg Pool - 7 × 7 1 

FC 1000 - 1 

https://doi.org/10.4236/jcc.2024.122011


A. Dembele et al. 
 

 

DOI: 10.4236/jcc.2024.122011 184 Journal of Computer and Communications 
 

of all, a highlight of the performance of various HMFF-MobileNet architecture 
design is given. By varying the values of hyperparameters Ch, trade-offs between 
accuracy and computational cost in terms of model size and floating-point oper-
ations (FLOPS) is investigated.  

4.1. Datasets 

● CIFAR-10 [42]: It is a popular dataset in computer vision and machine learn-
ing. It consists of 60,000 labeled images, each measuring 32 × 32 pixels and 
featuring RGB color. These images are categorized into ten different classes. 
These classes represent commonplace objects and scenes such as planes, cars, 
birds, cats, deer, dogs, frogs, horses, ships, and trucks. It is considered a rela-
tively small dataset, but it is still hard to work with because the images are 
small and have low resolution, and the objects in the images often look the 
same. This dataset has been divided into 50,000 training images and 10,000 
testing images. We chose 5000 images for validation and left 45,000 in the 
training set. 

● Malaria dataset [43]: The dataset consists of 27,558 cell images, divided into 
two categories of infected and healthy cells, each with an equal number of 
images. 10% of the images, or 2756 images, were set aside for validation, and 
an additional 10% were designated for testing. In all training, validation, and 
testing subsets, half of the images depict healthy cells.  

● KvasirV1 [44]: The dataset consists of 4000 images of endoscopic gastroin-
testinal diseases, categorized into 8 classes with each class containing 500 im-
ages. It includes images showcasing anatomical landmarks such as Z-line, py-
lorus, or cecum, as well as pathological findings like esophagitis, polyps, and 
ulcerative colitis. The dataset contains images of varying resoluti ons, ranging 
from 720 × 576 to 1920 × 1072 pixels. To standardize the data, all images are 
downsized to 224 × 224 pixels. The dataset is then split into 3200 training 
images and 800 testing images. 800 images were picked for validation and left 
2400 in the training set.  

4.2. Implementation Details 

The proposed model is implemented using Python with K-CAI [14], Tensor-
flow/Keras [45], deep learning framework, trained and tested on machine with 
CPU Intel Core i7-1760H @2.2GHz, GPU Nvidia GTX 1060, RAM 12GB DDR4, 
and CUDA 10.1 with cuDNN back-ends. For optimization, Adam optimizer [46] 
is used and decay schedule learning rate [47]. Decay schedule learning rate is a 
learning rate schedule that reduces the learning rate by a factor every few epochs, 
where epoch count is a hyperparameter. At each epoch, the learning rate Lr is 
evaluated as:  

 0
epochLr lr decayfactor

stepdecay
  

= × ∗  
  

             (15) 

where lr  is initial learning rate, decayfactor is to drop the learning rate by half 
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every stepdecay epoch. 
The experiment set ( 0 1e 3lr = −  for Cifar-10 and malaria data), ( 0 1e 3lr = −  

for Kvasir data), stepdecay by 10, 0.75decayfactor =  as initial values of the pa-
rameters. 

Data augmentation techniques such as random cropping, flipping, and rota-
tion were applied to improve the robustness of model. To fit the settings for the 
baseline network’s origin, the size of the various datasets is changed to 224 × 224. 
With cifar-10 and malaria data, the differents networks have been trained with a 
batch size of 64 for 50 epochs, and a batch size of 32 for 150 epochs with Kvasir 
data by optimizing the cross-entropy loss. The technique outlined in [48] was 
used to initialize the weights in networks. 

The minimum number of input channels per group is appended to the end of 
each implementation’s name. HMFF-MobileNet 32Ch, for instance, has a min-
imum of 32 input channels per group. This naming convention allows to easily 
differentiate between different versions of implementations.  

4.2.1. Performance Metrics 
To evaluate the performance of HMFF-MobileNet, the number of Flops, and the 
number of parameters have been employed. Accuracy, Precision, and Recall are 
used as classification indicators. Equation (16) indicates the accuracy of the model, 
which is the metric used to measure the total number of correct predictions. How-
ever, the accuracy rate of the model does not guarantee the model’s ability to 
classify the classes if the dataset has an unequal distribution with class imbalance; 
therefore, it is necessary to generalize to all classes when classifying medical im-
ages. Precision and recall play a crucial role in providing valuable information 
about the model’s performance under these conditions. All of these metrics are 
calculated using the confusion matrix. The symbols in the confusion matrix are 
defined as follows: true positive (TP), true negative (TN), false positive (FP), and 
false negative (FN) (FN). As a result, Equation (16) calculates accuracy to obtain 
the percentage of correctly identified samples: 

 accuracy TP TN
TP TN FP FN

+
=

+ + +
                    (16) 

To reflect the accuracy of the model prediction for binary classification, Equa-
tion (17) has been used to calculate the precision rate, which is the proportion of 
samples with correct, true values among the samples predicted to be correct:  

 Precision TP
TP FP

=
+

                        (17) 

recall TP
TP FN

=
+

                         (18) 

To reflect the comprehensiveness of the model prediction for binary classifi-
cation task, Equation (18) has been used to determine the recall rate, which is 
the number of positive samples identified in the data for which all true values are 
properly predicted. 

In a multi-class classification setting, micro-averaged precision and recall was 
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used, and defined in Equations (19) and (20) respectively: 

1

1 1

Micro Precision =
N

i
N N

i

ii ii

TP

TP FP
=

= =
+

∑
∑ ∑

                 (19) 

1

1 1

Micro Recall
N

i
N

i
N

i ii i

TP

TP FN
=

= =

=
+

∑
∑ ∑

                  (20) 

4.2.2. Baseline Models 
In order to illustrate the performance of the proposed network, two categories of 
state-of-the-art methods have been selected: high-accuracy methods and effec-
tive, lightweight methods. To further highlight the superior balance of complex-
ity and performance offered by HMFF-MobileNet, we juxtaposed its perfor-
mance against these models. To further highlight the superior balance of com-
plexity and performance offered by HMFF-MobileNet, this experiment juxta-
posed its performance against these models. Models such as Res2Net, HiFuse, 
Deformable Registration of Medical Images with Anatomical ShuffleNet V2, 
MnasNet, and MobileNetV3 were utilized as references. The details of these 
techniques are not mentioned because they have already been covered in Section 
2. The following subsection describes the identical training and evaluation con-
ditions that were applied to both the reference models and our proposed me-
thod.  

4.3. Results on Cifar-10 Dataset 

Table 2 compares multiple versions of the MobileNetV1 model and their  
 
Table 2. After 50 epochs, the Cifar-10 dataset showed the following results. 

Models 
Params 

(Million) 
Reduction 

FLOPs  
(Billion) 

Reduction Accuracy 

Res2Net 23.53 - 1.75 - 0.788 

ShuffleNetV2 1.13 - 1.24 - 0.755 

MnasNet 3.12 - 0.93 - 0.611 

MobileNetV3 2.24 - 0.73 - 0.731 

MobilenetV1 3.21 0% 0.567 0% 0.926 

CMSFL-Net 0.86 - 0.65 - 0.794 

kMobileNet16Ch 0.244 96.40% 0.092 83.79% 0.885 

kMobileNet32Ch 0.403 87.47% 0.153 72.90% 0.910 

kMobileNet64Ch 0.718 77.66% 0.251 55.65% 0.920 

kMobileNet128Ch 1.32 58.83% 0.370 34.76% 0.923 

HMFF-MobileNet16Ch 0.245 92.35% 0.090 84.11% 0.898 

HMFF-MobileNet32Ch 0.375 88.31% 0.148 73.89% 0.913 

HMFF-MobileNet64Ch 0.633 80.29% 0.238 57.98% 0.921 

HMFF-MobileNet128Ch 1.12 65.02% 0.341 39.78% 0.927 
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adjustments in terms of trainable parameters, FLOPs reduction, and test accu-
racy. 

With 3.21 million trainable parameters and 0.567 billion FLOPs, and a test 
accuracy of 92.62%, the MobileNetV1 model serves as a baseline for comparison. 
The changes are done in order to reduce the number of trainable parameters and 
FLOPs while maintaining test accuracy. Compared to the MobileNetV1 model, 
the kMobileNet models with 16Ch, 32Ch, 64Ch, and 128Ch reduced the number 
of trainable parameters and FLOPs by 83.79%, 72.90%, 55.65%, and 34.76%, re-
spectively. Nevertheless, this comes at the expense of reduced test accuracy, with 
the kMobileNet 16Ch model having the lowest accuracy of 88.51%. 

In comparison to the MobileNetV1 model, the HMFF-MobileNet models with 
16Ch, 32Ch, 64Ch, and 128Ch have reduced the number of trainable parameters, 
and FLOPs by 84.11%, 73.89%, 57.98%, and 39.78%, respectively. These models’ 
test accuracy, however, are slightly higher than that of the kMobilenet models, 
ranging from 89.83% to 92.78%. 

After the initial decline, the loss curves for the HMFF-MobileNet-128Ch, 
HMFF-MobileNet-64Ch, and MobileNetV1 models show a small discrepancy 
between the training and validation losses, with the validation loss plateauing 
and the training loss continuing to decrease, indicating a moderate level of over-
fitting. This is most likely mitigated by the figure’s effective early stopping im-
plementation (Figure 3). 

 

 
Figure 3. Experimental observation of (training and validation) loss vs. total number of epochs on Cifar-10 dataset. 
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In addition, According to Figure 4 and Figure 5, the various models appear 
to have performed well for most classes, with high precision and recall values. 
However, these models perform slightly worse on recall for the classes cat, bird, 
and dog, indicating that these models have a higher number of false negatives for 
these classes. 

Overall, the findings indicate that altering the MobileNetV1 model can result 
in models with fewer parameters and FLOPs while still maintaining excellent 
accuracy. In terms of retaining accuracy while reducing parameters and FLOPs, 
the HMFF-MobileNet models tend to outperform the kMobileNet models.  

4.4. Results on Malaria 

For the Malaria dataset, Table 3 compares the performance of multiple variants 
of HMFF-MobileNet and the MobileNetV1 model. The results show that the 
HMFF-MobileNet models obtain the highest accuracy of all models, ranging 
from 96.92% to 97.24% accuracy. Figure 6, which shows the loss curves for each  
 

 
Figure 4. Confusion matrix showcasing the classification performance of the proposed methods on Cifar-10 dataset. 
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Figure 5. Performance analysis of proposed HMFF-MobileNet with the different baseline deep learning models for Cifar-10 data-
set. 

 
Table 3. After 50 epochs, the Malaria dataset showed the following results. 

Models 
Params 

(Million) 
Reduction 

FLOPs 
(Billion) 

Reduction Accuracy 

MobileNetV1 3.21 100% 0.567 0% 0.966 

kMobileNet16Ch 0.244 96.40% 0.092 83.79% 0.9652 

kMobileNet32Ch 0.403 87.47% 0.153 72.90% 0.9673 

kMobileNet64Ch 0.718 77.66% 0.251 55.65% 0.9670 

kMobileNet128Ch 1.32 58.83% 0.370 34.76% 0.9706 

HMFF-MobileNet16Ch 0.245 92.35% 0.090 84.11% 0.9692 

HMFF-MobileNet32Ch 0.375 88.31% 0.148 73.89% 0.9706 

HMFF-MobileNet64Ch 0.633 80.29% 0.238 57.98% 0.9721 

HMFF-MobileNet128Ch 1.12 65.02% 0.341 39.78% 0.9724 
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Figure 6. Experimental observation of (training and validation) loss vs. total number of epochs on Malaria dataset. 

 
proposed model and shows how they perform on the training and validation da-
tasets over the training epochs, illustrates the models’ capacity for generalization. 
Figure 7 and Figure 8 show that these models achieve high precision and recall 
scores for all the classes, indicating that they have accurately classified the im-
ages in the malaria datasets while minimizing false positives and false negatives. 
This is an extremely promising outcome, as high accuracy on medical datasets 
like the malaria dataset is critical for proper diagnosis and treatment. 

The table also indicates that reducing the number of channels in the convolu-
tional layers (16Ch, 32Ch, 64Ch, and 128Ch) reduces the number of trainable 
parameters and FLOPs while having no effect on accuracy. This is a significant 
funding because decreasing the computational complexity of deep learning models 
is critical for applications that demand real-time processing or have limited com-
putational resources. 

Additionally, the results show that the proposed HMFF-MobileNet models 
outperform the standard MobileNetV1 model while requiring far fewer trainable 
parameters and FLOPs. This shows that the suggested model’s HMFF module is 
effective at lowering computational complexity while maintaining good accuracy. 
Furthermore, the HMFF-MobileNet models’ use of hierarchical feature fusion al-
lows them to collect both low-level and high-level aspects in the data, which can 
lead to higher accuracy.  
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Figure 7. Confusion matrix showcasing the classification performance of the proposed methods on Malaria dataset. 

4.5. Results on KvasirV1  

HMFF-MobileNets were tested on the Kvasir dataset to evaluate its generaliza-
tion capabilities. Table 4 showcases the performance of different models on the 
heterogeneous KvasirV1 dataset, highlighting HMFF-MobileNet models in par-
ticular The HMFF-MobileNet models include 16, 32, 64, and 128 channels, with 
varying levels of channel reduction. The results indicate that as the channel re-
duction increases, the trainable parameters and FLOPs decrease, while the test 
accuracy decreases. However, the HMFF-MobileNet models perform better in 
terms of accuracy than the kMobileNet models, despite having a slightly smaller 
reduction in parameters and FLOPs. This indicates that the HMFF module is ef-
fective at enhancing the model’s performance by integrating multi-level features 
from different scales and resolutions. The results indicate that the HMFF mod-
ule can be a useful technique for enhancing the performance of CNNs in a va-
riety of computer vision tasks. 

It is demonstrated that the HMFF-MobileNet 64Ch model outperforms the 
HMFF-MobileNet 128Ch model in terms of test accuracy. This is somewhat  
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Figure 8. Performance analysis of proposed HMFF-MobileNet with the different baseline deep learning 
models for Malaria dataset. 

 
Table 4. After 150 epochs, the KvasirV1 dataset showed the following results. 

Model 
Params 

(Million) 
Reduction 

FLOPs  
(Billion) 

Reduction 
Test  

Accuracy 

VGG-19 143.68 - 19.67 - 0.6089 

HiFuse_Tiny 82.49 - 8.13 - 0.7287 

HiFuse_Small 93.82 - 8.84 - 0.7314 

HiFuse_Base 127.80 - 10.97 - 0.7474 

MobileNetV1 3.21 0% 0.567 0% 0.7175 

kMobileNet16Ch 0.244 96.40% 0.092 83.79% 0.6587 

kMobileNet32Ch 0.403 87.47% 0.153 72.90% 0.6800 

kMobileNet64Ch 0.718 77.66% 0.251 55.65% 0.7013 

kMobileNet128Ch 1.324 58.83% 0.370 34.76% 0.7288 

HMFF-MobileNet16Ch 0.245 92.35% 0.090 84.11% 0.6925 

HMFF-MobileNet32Ch 0.375 88.31% 0.148 73.89% 0.7288 

HMFF-MobileNet64Ch 0.633 80.29% 0.238 57.98% 0.7438 

HMFF-MobileNet128Ch 1.12 65.02% 0.341 39.78% 0.7425 

https://doi.org/10.4236/jcc.2024.122011


A. Dembele et al. 
 

 

DOI: 10.4236/jcc.2024.122011 193 Journal of Computer and Communications 
 

surprising because one would expect a model with more channels to outperform 
a model with fewer channels. Again, this indicates that the complexity of the im-
ages influences the optimal number of channels per group selection. In other 
words, images that are less complex may require fewer channels per group. 

To validate the effectiveness of the proposed methods, the training and valida-
tion loss curves were plotted. As shown in Figure 9, all models show a signifi-
cant improvement at the start of training, which is typical because initial weights 
are adjusted significantly to reduce loss. The most stable and closely aligned 
training and validation loss curves are found in the HMFF-MobileNet-64Ch 
model, indicating effective learning and generalization without significant over-
fitting. There is some divergence between training and validation loss in the 
MobileNetV1 and HMFF-MobileNet-32Ch models, but it is not as pronounced, 
indicating mild overfitting. The HMFF-MobileNet-128Ch model, on the other 
hand, exhibits quite a bit overfitting, as indicated by the persistent gap between 
training and validation losses. 

In addition, According to Figure 10, the performance of HMFF-MobileNet 
models have consistently performed in identifying “polyps” and “ulcerative-colitis”, 
with the latter class consistently showing high true positive rates. That is confirmed 
with high precision and recall values in Figure 11. Moreover, it underperformed 
in other classes, which including “dyed-resection margins” and “polyps”, with  
 

 
Figure 9. Confusion matrix showcasing the classification performance of the proposed methods on KvasirV1 dataset. 
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Figure 10. Experimental observation of (training and validation) loss vs. total number of epochs on KvasirV1 dataset. 

 
low recall and precision values. The differences in true positive rates between 
models for “dyed-lifted-polyps” and “normal-pylorus” suggest that there may be 
room for improvement in the feature extraction and model training processes to 
achieve more balanced classification performance across all classes.  

4.6. Models’ Inference on Hardware 

A neural network’s throughput is defined as the maximum number of input in-
stances that the network can process in a unit of time (e.g. a second) [49]. Unlike 
latency, which requires the processing of a single instance, we would like to 
process as many instances as possible in parallel to achieve maximum through-
put. The effective parallelism is obviously dependent on data, model, and device. 
To accurately measure throughput, we first performed the following two steps:  
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Figure 11. Performance analysis of proposed HMFF-MobileNet with the different baseline deep learning models for KvasirV1 
dataset. 

 
1) We calculated the optimal batch size for maximum parallelism, and 2) given 
this optimal batch size, we calculated the number of instances the network can 
perform in one second. To determine the optimum batch size, which depends on 
the hardware type and network size, we used a for loop, increasing the batch size 
iteratively until the run-time error is achieved. The largest batch size is 256 that 
the GPU can process for the different neural network models and the input data 
it processes. 

The latency and throughput of the compared models were measured using an 
image malaria dataset with an image size of 224 × 224. Table 5 shows the aver-
age latency and throughput for the different models that run on the cloud ma-
chine of paperspace (A4000, 45GB RAM, 8CPU, 16GB GPU Nvidia). All experi-
ments have been done without compressing the different models. 
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Table 5. The average latency and throughput for the different models. 

Model Latency(s) Throughput(s) 

MobileNetV1 0.0647 358.048 

kMobileNet16Ch 0.0491 284.72 

kMobileNet32Ch 0.0499 290.54 

kMobileNet64Ch 0.0554 284.78 

kMobileNet128Ch 0.0626 299.66 

HMFF-MobileNet16Ch 0.0481 276.53 

HMFF-MobileNet32Ch 0.04918 286.49 

HMFF-MobileNet64Ch 0.0551 279.53 

HMFF-MobileNet128Ch 0.0620 285.12 

 
In terms of latency, the average latency of the HMFF-MobileNet models is 

slightly better than the regular MobileNetV1 model, specifically the HMFF- 
MobileNet models with 16 channels, as shown in table. These findings imply 
that the HMFF-MobileNet models with 128 channels could be an appropriate 
choice for applications requiring high accuracy, low latency, and high through-
put. Because it trades off low latency, fewer parameters, and complexity.  

5. Conclusion 

In this study, a lightweight convolution neural network named hierarchical mul-
ti-scale feature fusion MobileNet (HMFF-MobileNet), an improved variant of 
MobileNet with multi-scale feature fusion method is proposed. The aim of this 
research was to develop an image classification model with fewer parameters and 
low computational complexity. To achieve this, this study developed a hierar-
chical multi-scale feature fusion (HMFF) module that can effectively extract im-
portant cross-dimensional features and spatial information at various scales in 
images by learning representations from a large effective receptive field. The expe-
rimental results demonstrate that our proposed network achieves state-of-the-art 
performance on several benchmark datasets while reducing the number of parame-
ters and computational complexity, making it a promising solution for real-world 
applications. For further research, the proposed HMFF module can be inte-
grated into various deep learning architectures to improve their performance 
in tasks, such as image classification, object detection, and semantic segmenta-
tion. 
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Abbreviations 

The following abbreviations are used in this manuscript: 
 

CNNs Convolutional neural networks 

DDSC Depthwise dilated separable convolution 

HMFF Hierarchical multi-scale feature fusion 

CMSFL Consecutive multiscale feature learning 

ESP Efficient spatial pyramid 

Gconv Grouped pointwise convolution 

HFF Hierarchical feature fusion 

FLOPs Floating-point operations 

TP True positive 

TN True negative 

FP False positive 

FN False negative 
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