
Journal of Computer and Communications, 2023, 11, 23-50
https://www.scirp.org/journal/jcc

ISSN Online: 2327-5227
ISSN Print: 2327-5219

DOI: 10.4236/jcc.2023.1110003 Oct. 23, 2023 23 Journal of Computer and Communications

A360 Bot Framework: Empowering Smart
Robotic Process Automation Solutions

Sai Madhur Potturu

Robotics Center of Excellence (CoE) Zoetis Inc., Parsippany, USA

Abstract
This research paper explores the significance of the “A360 Bot Framework” in
Automation 360 (A360) platform. A360 is Automation Anywhere’s cloud-
based automation platform designed to make business processes more effi-
cient. It’s known for its user-friendly interface, which allows both technical
and non-technical users to use it effectively. Automation 360 is versatile, of-
fering a range of tools to automate tasks, manage complex workflows, and
integrate various applications. It empowers users to create customized solu-
tions for their specific needs. Being cloud-based it ensures scalability, securi-
ty, and real-time updates, making it a top choice in the fast-paced digital
world. As demand for A360 rises, having a structured way to develop bots
becomes crucial. The paper introduces the “A360 Bot Framework” as a guid-
ing approach for bot developments. This framework ensures consistency and
scalability, especially when working with both professional developers and
non-technical users. It outlines key elements like setting up work folders,
managing logs, dealing with errors, and ensuring secure bot execution. Ulti-
mately, the “A360 Bot Framework” is presented as a foundational structure
that enhances consistency, resiliency, and development efficiency. By follow-
ing predefined practices and templates, bot developers can mitigate risks and
streamline debugging processes. This framework accelerates the bot devel-
opment lifecycle, allowing developers to focus on specific functionalities and
value-added features. The research paper aims to provide insights into the
benefits of adopting the A360 Bot Framework and its potential to revolution-
ize A360 bot development practices, leading to more efficient and effective
automation solutions.

Keywords
Robotic Process Automation (RPA), Automation Anywhere, Automation
360, A360 Bot Framework, Reusability, Citizen Development, Scalability

How to cite this paper: Potturu, S.M.
(2023) A360 Bot Framework: Empowering
Smart Robotic Process Automation Solu-
tions. Journal of Computer and Commu-
nications, 11, 23-50.
https://doi.org/10.4236/jcc.2023.1110003

Received: September 6, 2023
Accepted: October 20, 2023
Published: October 23, 2023

Copyright © 2023 by author(s) and
Scientific Research Publishing Inc.
This work is licensed under the Creative
Commons Attribution International
License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

Open Access

https://www.scirp.org/journal/jcc
https://doi.org/10.4236/jcc.2023.1110003
https://www.scirp.org/
https://orcid.org/0009-0005-9905-9778
https://doi.org/10.4236/jcc.2023.1110003
http://creativecommons.org/licenses/by/4.0/

S. M. Potturu

DOI: 10.4236/jcc.2023.1110003 24 Journal of Computer and Communications

1. Introduction

Automation Anywhere is a top player in the Robotic Process Automation (RPA)
and Intelligent automation space. A360 is Automation Anywhere’s cloud-based
platform which makes building automation solutions easy and reliable. It offers
seamless integrations with various tools and technologies to facilitate digital
transformation [1] [2] [3].

A360 is a No-Code/Low-Code platform. With its intuitive visual interface,
creating automation solutions becomes effortless through drag-and-drop ac-
tions. This interface harmoniously integrates with an extensive range of systems,
tools, and technologies. Additionally, A360 provides a bot store, a collection of
pre-designed actions and components catering to various functions across dif-
ferent systems. These can be seamlessly integrated into RPA bots without re-
quiring manual coding [4].

The user-friendly interface, along with comprehensive documentation and
training resources provided by Automation Anywhere, helps both developers
and citizen developers [5] to quickly grasp the concepts and start building auto-
mation solutions.

A360 has high demand in the industry due to its ability to automate tasks,
boost efficiency, cut costs, ensure accuracy, integrate with existing systems, and
facilitate rapid scalability while driving digital transformation and enhancing
competitive advantage. As the Adaption of the A360 continues to grow, the need
for systematic and structured approaches to A360 bot development becomes pa-
ramount. The central idea is to create a standardized framework that guides de-
velopers in building bots. This framework ensures consistency, scalability, and
success, especially when collaborating with citizen developers and establishing a
thriving Center of Excellence (COE) for RPA [6].

In this research paper, we establish and examine the fundamental elements of
the “A360 Bot Framework” and showcase its practical application. We emphas-
ize key components including the creation of working folders, log management,
downloading bot-dependent files, reading configuration files, error handling,
standardized communication, and establishing a secure working environment
for bot executions.

The “A360 Bot Framework” provides a foundational structure that ensures
consistency in bot design, and development. By adhering to predefined tem-
plates and practices, bot developers can mitigate risks, enhance resiliency, and
streamline the process of debugging errors.

Furthermore, the A360 Bot Framework approach significantly accelerates the
development lifecycle by providing developers with a well-defined starting point.
Developers can focus on crafting functionalities specific to their use cases, with-
out the need to reinvent common practices for each bot. This streamlined ap-
proach not only saves time and resources but also empowers developers to in-
novate and create value-added features.

In conclusion, the implementation of A360 Bot Framework presents a para-
digm shift in A360 bot development, emphasizing the significance of consisten-

https://doi.org/10.4236/jcc.2023.1110003

S. M. Potturu

DOI: 10.4236/jcc.2023.1110003 25 Journal of Computer and Communications

cy, resilience, design patterns, and development acceleration. This paper aims to
offer insights into the benefits of adopting A360 Bot Framework and their po-
tential to revolutionize A360 bot development practices, ultimately contributing
to the realization of more efficient and effective automation solutions [7].

2. Solution

The solution elaborates on various tasks/components, including close/kill appli-
cations, creating a context ID, setting up a working folder, creating a log file and
defining log format, downloading files required for the bot’s functionality, read-
ing configuration files, utilizing the Orchestrator task to create a template for
developing primary use cases, and leveraging Send Notifications for efficient
communication. We provide detailed explanations of each aspect and elucidate
the procedure for saving this code as reusable templates. All the components and
templates are developed using the Task Bot editor, which provides hundreds of
commands and drag-and-drop actions to create automated processes.

2.1. Close/Kill Applications

Closing application sessions before deploying an RPA bot is crucial for optimal
performance and smooth operations. By closing unnecessary applications, re-
source efficiency is enhanced, providing the bot with sufficient CPU, memory,
and disk resources to execute tasks without hindrance. This practice fosters a
predictable environment, shielding the bot from unexpected behavior caused by
conflicting applications. Additionally, it maintains consistency by eliminating
external factors that might introduce variability into the automation process.
This controlled setup also simplifies identifying and fixing problems, making the
process of debugging, and troubleshooting easier and leading to a seamless RPA
deployment and operation.

The “Close Application Sessions” can be created as a Task Bot in the “Utility”
folder (Figure 1). A Task Bot is an interface/workspace where a developer can
access pre-defined and custom packages to develop a software robot [8].

Figure 1. Close application sessions task syntax.

https://doi.org/10.4236/jcc.2023.1110003

S. M. Potturu

DOI: 10.4236/jcc.2023.1110003 26 Journal of Computer and Communications

2.2. Generate Context ID

A context ID is a unique code generated by the bot for each bot execution. This
is a specific value assigned to individual processes, transactions, or events in an
automation process. This identifier serves to track and distinguish different in-
stances of these processes or events. It is commonly used in process execution
logs to provide a means of identifying and organizing log entries related to vari-
ous activities within a system.

A context ID offers valuable benefits in bot execution logs. It ensures tracea-
bility by enabling the clear tracking of processes and events in a system, aiding in
understanding their sequence. This ID facilitates efficient troubleshooting and
debugging, allowing swift identification of issues and their locations. Moreover,
it enables correlation of logs from different bot components, granting a com-
prehensive view of activities. In terms of compliance, it supports auditing efforts
by creating an accountable record of actions. Additionally, these IDs aid perfor-
mance analysis, assisting in identifying bottlenecks and areas for improvement.
They enhance bot reliability in distributed environments, offering a consistent
way to follow activities across different components. In essence, unique/context
IDs enhance the clarity, organization, and manageability of the bot execution
logs, playing a vital role in maintaining bot functionality and diagnosing prob-
lems effectively.

The “Generate Context ID” can be created as a task bot in the “Framework”
folder (Figure 2). This task generates a unique, random string that can be used
throughout the bot’s execution.

2.3. Create Working Folder

The A360 bots are deployed on a machine for execution [9]. Attended bots are
deployed on a local user’s machine, and unattended bots are deployed on an un-
attended bot runner machine [10]. In both cases, it is important to create a fold-
er with a time stamp for storing bot execution information.

Figure 2. Generate context ID task syntax.

https://doi.org/10.4236/jcc.2023.1110003

S. M. Potturu

DOI: 10.4236/jcc.2023.1110003 27 Journal of Computer and Communications

This component creates a working folder with a time stamp for each bot ex-
ecution in the user’s directory, which is frequently backed up. Generally, users’
Documents folders are backed up, or SharePoint/network drives can be used as
root directories to create working folders for saving all information related to
that specific bot execution. Creating working folders in backed-up directories
reduces the risk of data loss in case of a user machine crash. The bot stores all
process-related data, including configuration files, bot-dependent files, imports,
exports from third-party applications, consolidated reports, and more in these
folders.

These working folders can be referenced in exception emails sent to the sup-
port team. This helps the support team identify the working folder for a specific
bot execution and troubleshoot errors. Additionally, it maintains transparency
in bot activities for audit purposes. It is advisable to create repositories for each
bot in a SharePoint document library to store bot-dependent files like configura-
tion files, models, templates, and other files. This approach streamlines file
management and facilitates quicker changes to files when needed. These reposi-
tories can also serve as storage for bot outputs (Figure 3).

Figure 3. Data flow between Sharepoint Reporistory and working folder.

https://doi.org/10.4236/jcc.2023.1110003

S. M. Potturu

DOI: 10.4236/jcc.2023.1110003 28 Journal of Computer and Communications

A global value/variable [11] can be created to save the Bot Dependencies re-
pository path. This global value/variable can be accessed by any bot within the
control room (Figure 4). Each environment, Development, QA/UAT, and Pro-
duction will have this global variable. However, the variable’s value corresponds
to the respective bot dependencies repository of each environment.

The “Create Working Folder” can be created as a task bot in the “Framework”
folder. This task establishes mappings to process-specific directories within the
bot dependencies repository by using the “Bot dependencies repository” global
value.

This task creates a working folder on the user’s machine within the Docu-
ments directory, using the current date and time (Figure 5).

Figure 4. Global values in control room.

Figure 5. Mapping process specific directories.

https://doi.org/10.4236/jcc.2023.1110003

S. M. Potturu

DOI: 10.4236/jcc.2023.1110003 29 Journal of Computer and Communications

This task creates a folder within the Output directory of the process-specific
folder in the bot’s dependencies repository, appending a time stamp (Figure 6).
This folder is utilized for storing the final bot report generated during that ex-
ecution.

2.4. Create Log File, Log Format and Error Images Folder

Process execution log files are of paramount importance for multiple reasons.
They serve as invaluable tools for debugging and troubleshooting, offering a
comprehensive record of a process’s actions during execution to identify errors
and irregularities. Furthermore, these log files enable real-time monitoring and
auditing, ensuring processes function as expected and maintaining a historical
record of executions for compliance purposes. Performance analysis benefits
from log files by tracking execution times and resource usage, aiding in process
optimization. These logs also serve as documentation, facilitating communica-
tion among developers, and contributing to continuous improvement efforts by
identifying recurring issues. Overall, process execution log files are essential
components in maintaining reliability, performance, and security across auto-
mation solutions.

The “Create Log File and Error Folder” can be created as a task bot in the
“Framework” folder (Figure 7).

This task creates a text log file in the bot’s working folder, incorporating the
process name and timestamp in the file name.

For example: //Working folder path/Process Name/execution log_mm.dd.
yyyy_hh.mm.ss.txt.

This task creates a log format including the Context ID, Machine Name, and
Process Name. This log format is utilized in the log file alongside the log mes-
sage [12].

This workflow creates Error images folder in the bot’s working folder.
Screenshots of errors or exceptions captured during the bot’s execution are
stored in this designated folder.

Figure 6. Date and time stamp folder in process specific output directory.

https://doi.org/10.4236/jcc.2023.1110003

S. M. Potturu

DOI: 10.4236/jcc.2023.1110003 30 Journal of Computer and Communications

Figure 7. Create log file and error folder task syntax.

2.5. Copy Bot Dependent Files

The “Copy Bot Dependent Files” can be created as a task bot in the “Frame-
work” folder (Figure 8).

This task copies the bot-dependent files from SharePoint repository to work-
ing folder. It receives folder paths created in the “Create Working Folder” task as
Inputs.

2.6. Read Configuration File

The “Read Configuration File” can be created as a task bot in the “Framework”
folder (Figure 9).

This task read the values from the configuration file into an output Dictio-
nary. This dictionary can then be passed as input to various subtasks within the
bot, eliminating the need to create redundant variables for each task.

2.7. Framework Integration

The “Framework Integration” can be created as a task bot in the “Framework”
folder.

This task integrates [13] the “Generate Context ID”, “Create Working Folder”,
“Create Log file and Error Folder”, “Copy Bot Dependent Files” and “Read Con-
figuration File” tasks from the Framework Folder (Figure 10).

This Framework Integration task, along with all the tasks integrated with it,
are reusable components and do not require a frequent change. These tasks serve
as common steps for setting up a working environment for each bot/automation
process and are stored in the “Public” folder [14] [15] (Figure 11).

https://doi.org/10.4236/jcc.2023.1110003

S. M. Potturu

DOI: 10.4236/jcc.2023.1110003 31 Journal of Computer and Communications

Figure 8. Copy bot dependent files task syntax.

Figure 9. Read configuration file task syntax.

https://doi.org/10.4236/jcc.2023.1110003

S. M. Potturu

DOI: 10.4236/jcc.2023.1110003 32 Journal of Computer and Communications

Figure 10. Framework integration task design.

Figure 11. Framework folder.

2.8. Orchestrator Task Template

The “Orchestrator Task Template” can be created as a task bot in the “Bot Frame-
work” folder within the public folder.

The Orchestrator task is a blank task with defined error handling. This task is
equipped with all the necessary inputs to initiate the development of the actual
business case. The input and output parameters required for bot development
have already been created.

This task is saved as a template in the “Public” folder [16] or on GitHub [17].
It can be copied into a relevant bot subfolder, where the actual business case can
be developed and integrated into the bot’s Main task (Figure 12).

https://doi.org/10.4236/jcc.2023.1110003

S. M. Potturu

DOI: 10.4236/jcc.2023.1110003 33 Journal of Computer and Communications

Figure 12. Copy orchestrator task template from public folder to bot specific priate folder.

A developer can create subtasks to perform various functions, integrating and
orchestrating these subtasks within the orchestrator task as needed.

2.9. Subtask and Retry Framework

In Automation Anywhere (A360), a subtask is a smaller unit of work within an
automation process or bot. It represents a specific action that contributes to
achieving a task or objective, allowing for better organization and reusability.
The subtasks are self-contained modules that can be easily reused across mul-
tiple bots or scenarios. By breaking down complex processes into manageable
components, subtasks streamline bot development and improve automation ef-
ficiency.

There are different approaches for developing subtasks and retrying templates
in A360. These methods can aid developers in creating high-quality and consis-
tent code, while also assisting support teams in easily maintaining the code.
Furthermore, these methods improve the efficiency and resiliency of the auto-

https://doi.org/10.4236/jcc.2023.1110003

S. M. Potturu

DOI: 10.4236/jcc.2023.1110003 34 Journal of Computer and Communications

mation solution. Additionally, the retry framework can be leveraged to retry
subtasks a defined number of times or until the desired output is generated in
the event of system or unknown exceptions. This approach can enhance the
bot’s efficiency and reduce the manual support effort required to retrigger the
bot [8].

The “Subtask” and “Retry” templates are saved in the “Bot Framework” folder
within the “Public” folder. These templates are then copied to the bot-specific
private folder for developing the subtasks/functionalities (Figure 13).

2.10. Main Task Template

The “Main Task Template” can be created as a task bot in the “Bot Framework”
folder within the public folder.

The Main Task serves as the entry point for the automation process. It dictates
the sequence in which subtasks are executed, handles data flow between different
steps, manages error handling and exception scenarios, and interacts with ex-
ternal systems and applications as required.

Figure 13. Copy retry and subtask templates from public folder to bot specific priate folder.

https://doi.org/10.4236/jcc.2023.1110003

S. M. Potturu

DOI: 10.4236/jcc.2023.1110003 35 Journal of Computer and Communications

The Main task is saved as a template in the “Public” folder or on GitHub. It
can be copied into a relevant bot Main Task folder, update the placeholders, and
orchestrate the process flow as required (Figure 14).

The following components are integrated in the Main Task Template (Figure
15):

Process Name: Provide a place holder for the Process Name, this is crucial for
identifying the bot-specific folders within the bot dependencies repositories and
for sending out notifications.

Clean/Kill Application Sessions: Closing or killing application sessions before
bot execution ensures a smooth and reliable environment for bot execution.

Framework Interaction Task: All framework components including “Generate
Context ID”, “Create working folder”, “Create log file and error folder”, “Copy
bot dependent files”, and “Read Configuration file” are integrated within the
Framework Interaction task. This task sets up a safe and secure working envi-
ronment for bot execution.

Figure 14. Copy main task template from public folder to bot specific priate folder.

https://doi.org/10.4236/jcc.2023.1110003

S. M. Potturu

DOI: 10.4236/jcc.2023.1110003 36 Journal of Computer and Communications

Figure 15. Main task template design.

Send Notifications Task: The Send Notifications task can be used to send noti-
fications to either the support team or the process owners/stakeholders based on
the execution status of the orchestrator task.

Clean/Kill Application Sessions: Closing application sessions after bot execu-
tion helps manage resources efficiently, ensures better performance for upcom-
ing tasks, and maintains a clean, predictable environment. This practice lays the
foundation for smooth and reliable automation workflows in subsequent bot
runs.

3. Application Scenarios: Demonstrating the A360 Bot
Framework in Action

This section presents two comprehensive case studies that showcase the practical
implementation of the “A360 Bot Framework”. These case studies illustrate how
the framework serves as a foundational starting point to develop distinct auto-
mation use cases. By leveraging the framework’s standardized components,
streamlined practices, and reliable error management, developers can efficiently
create automation solutions that address specific business challenges. Each case

https://doi.org/10.4236/jcc.2023.1110003

S. M. Potturu

DOI: 10.4236/jcc.2023.1110003 37 Journal of Computer and Communications

study highlights how the framework’s structure and approach accelerate devel-
opment while maintaining consistency and robustness.

3.1. Case Study 1: Data Entry

In this scenario, we’ll explore how the “A360 Bot Framework” acts as a founda-
tional starting point for developing a bot that automates the process of filling out
a web form using data from an Excel spreadsheet. This use case is common in
scenarios where manual data entry into web forms is time-consuming and error
prone.

1) Prerequisites
Assuming the bot’s name is “Data Entry,” create a folder titled “Data Entry” in

the Bot dependencies repository (SharePoint/network drive). Create directories
such as Config, Templates, Models, and Outputs, and store bot-dependent files
such as Configuration file, Template file, and Model file in the corresponding
folders within the “Data Entry” folder (Figure 16).

2) Setting up the Main Task
Create a folder for the bot to save its primary/main task. Copy the “Main

Task” template from the public folder to the bot folder [18]. Rename the Main
Task to “Data Entry” (Figure 17).

Enter the bot’s name “Data Entry” into the Process name placeholder within
the main task (Figure 18). This action establishes the context for the bot’s
workflow, which involves downloading files from the designated bot name fold-
er in the repository to the working folder and executing the process.

Figure 16. “Data entry” folder in bot dependencies repository.

https://doi.org/10.4236/jcc.2023.1110003

S. M. Potturu

DOI: 10.4236/jcc.2023.1110003 38 Journal of Computer and Communications

Figure 17. Copy main task template.

Figure 18. Assign “data entry” to process name place holder.

https://doi.org/10.4236/jcc.2023.1110003

S. M. Potturu

DOI: 10.4236/jcc.2023.1110003 39 Journal of Computer and Communications

3) Framework Integration Task
The framework integration task is already integrated into the main task and

operates in alignment with the context of the bot/process name. The Framework
Integration task generates a context ID, creates a working folder in the bot’s
named folder in the user’s documents directory, generates log files and log for-
mats, establishes an error images folder, copies dependencies from the bot de-
pendencies repository to the working folder, and reads the configuration file
(Figure 19). The process name serves as the key input parameter for this task.

4) Orchestrator Task Setup
Create a folder for the bot to store its orchestrator task. Copy the “Orchestra-

tor Task” template from the public folder to the bot folder (Figure 20). Invoke

Figure 19. “Data entry” framework inregration task functionality.

Figure 20. Copy orchestrator task template.

https://doi.org/10.4236/jcc.2023.1110003

S. M. Potturu

DOI: 10.4236/jcc.2023.1110003 40 Journal of Computer and Communications

the orchestrator task from the bot’s main task and establish mappings for the va-
riables “Context ID”, “Working folder path”, “Outputs dated folder path”,
“Config file name”, “Template file names”, “Model file names” and “Configura-
tion Dictionary” (Figure 21).

5) Subtask Task Setup
Create the subtasks “Read Excel file” and “Complete Webform”. The “Com-

plete Webform” subtask is invoked within the “Read Excel file” task, where the
“Read Excel file” task extracts data from the Excel file and passes it to the “Com-
plete Webform” task to complete the web form. Both subtasks are integrated
within the orchestrator task (Figure 22). The pre-defined variables in the or-
chestrator, such as the configuration dictionary and working folder, are mapped
to these subtasks.

In conclusion, throughout the bot development process, a developer only
needs to invest time in creating the subtasks “Read Excel file” and “Complete
Webform”. The remaining templates are utilized as they are and integrated to
construct a comprehensive end-to-end automation solution (Figure 23). This
approach substantially reduces development time, enhances efficiency, mini-
mizes errors, and elevates overall automation quality, consistency, and reliability.

Figure 21. Map variables.

https://doi.org/10.4236/jcc.2023.1110003

S. M. Potturu

DOI: 10.4236/jcc.2023.1110003 41 Journal of Computer and Communications

Figure 22. Create subtasks.

3.2. Case Study 2: Consolidate Reports

This case study demonstrates how the “A360 Bot Framework” serves as a start-
ing point for developing a bot that downloads data from both a web application
and a Windows application, followed by consolidating the acquired data into
comprehensive reports.

1) Prerequisites
Assuming the bot’s name is “Consolidate Reports”, create a folder titled “Con-

solidate Reports” in the Bot dependencies repository (SharePoint/network drive).
Create directories such as Config, Templates, Models, and Outputs, and store
bot-dependent files such as Configuration file, Template file, and Model file in
the corresponding folders within the “Consolidate Reports” folder (Figure 24).

2) Setting up the Main Task
Create a folder for the bot to save its primary/main task. Copy the “Main

Task” template from the public folder to the bot folder (Figure 25). Rename the
Main Task to “Consolidate Reports”.

https://doi.org/10.4236/jcc.2023.1110003

S. M. Potturu

DOI: 10.4236/jcc.2023.1110003 42 Journal of Computer and Communications

Figure 23. Data entry end to end Bot design.

Figure 24. “Consolidate reports” folder in Bot dependencies repository.

https://doi.org/10.4236/jcc.2023.1110003

S. M. Potturu

DOI: 10.4236/jcc.2023.1110003 43 Journal of Computer and Communications

Figure 25. Copy main task template.

Enter the bot’s name “Consolidate Reports” into the Process name placehold-
er within the main task (Figure 26). This action establishes the context for the
bot’s workflow, which involves downloading files from the designated bot name
folder in the repository to the working folder and executing the process.

3) Framework Integration Task
The framework integration task is already integrated into the main task and

operates in alignment with the context of the bot/process name. The Framework
Integration task generates a context ID, creates a working folder in the bot’s
named folder in the user’s documents directory, generates log files and log for-
mats, establishes an error images folder, copies dependencies from the bot de-
pendencies repository to the working folder, and reads the configuration file
(Figure 27). The process name serves as the key input parameter for this task.

4) Orchestrator Task Setup
Create a folder for the bot to store its orchestrator task. Copy the “Orchestra-

tor Task” template from the public folder to the bot folder (Figure 28). Invoke
the orchestrator task from the bot’s main task and establish mappings for the va-
riables: “Context ID”, “Working folder path”, “Outputs dated folder path”,
“Config file name”, “Template file names”, “Model file names” and “Configura-
tion Dictionary”.

5) Subtask Task Setup
Create the subtasks: “Download Web file”, “Download Windows File” and

“Run Excel Macro”. The “Download Web file” task downloads files from a web
application, the “Download Windows File” task extracts data from a Windows
application, and the “Run Excel Macro” task consolidates the data into a final
report. These three subtasks are integrated within the orchestrator task (Figure
29). The predefined variables within the orchestrator, including the configura-
tion dictionary and working folder, are mapped to these subtasks.

https://doi.org/10.4236/jcc.2023.1110003

S. M. Potturu

DOI: 10.4236/jcc.2023.1110003 44 Journal of Computer and Communications

Figure 26. Assign “consolidate reports” to process name place holder.

Figure 27. “Consolidate reports” framework inregration task functionality.

https://doi.org/10.4236/jcc.2023.1110003

S. M. Potturu

DOI: 10.4236/jcc.2023.1110003 45 Journal of Computer and Communications

Figure 28. Copy orchestrator task template.

Figure 29. Create subtasks.

https://doi.org/10.4236/jcc.2023.1110003

S. M. Potturu

DOI: 10.4236/jcc.2023.1110003 46 Journal of Computer and Communications

In conclusion, throughout the bot development process, a developer only
needs to invest time in creating the subtasks “Download Web file”, “Download
Windows File”, and “Run Excel Macro”. The remaining templates are utilized as
they are and integrated to construct a comprehensive end-to-end automation
solution (Figure 30). This approach substantially reduces development time,
enhances efficiency, minimizes errors, and elevates overall automation quality,
consistency, and reliability.

4. Benefits of the Solution

The “A360 Bot Framework” offers several significant benefits to the field of Ro-
botic Process Automation (RPA) and automation solutions developed using
A360 [4] [19] [20].

4.1. Consistency and Standardization

The framework establishes a standardized approach to bot development. By ad-
hering to predefined templates and practices, developers ensure a consistent
structure and design across various automation solutions. This consistency re-
duces the risk of errors and enhances the overall quality of the developed bots.

Figure 30. Consolidate reports end to end Bot design.

https://doi.org/10.4236/jcc.2023.1110003

S. M. Potturu

DOI: 10.4236/jcc.2023.1110003 47 Journal of Computer and Communications

4.2. Efficient Development

The framework accelerates the development lifecycle by providing developers
with a well-defined starting point. Developers can focus on crafting functionali-
ties specific to their use cases rather than reinventing common practices for each
bot. This streamlined approach saves time, reduces redundancy, and promotes
efficiency.

4.3. Reduced Risk and Resilience

With built-in error handling mechanisms and logging practices, the framework
enhances the resiliency of developed bots. Error capture, reporting, and resolu-
tion processes are standardized, making it easier to identify and address issues
during bot execution. This results in more robust and reliable automation solu-
tions.

4.4. Simplified Collaboration

The framework facilitates collaboration between professional developers and
citizen developers within an organization. It offers a structured methodology that
is easy to understand and follow, enabling smoother communication and know-
ledge sharing across teams.

4.5. Scalability and Reusability

The framework’s standardized components can be reused across different auto-
mation projects. This reusability promotes scalability by providing a consistent
foundation for building a variety of automation solutions, regardless of their com-
plexity.

4.6. Enhanced Debugging

The standardized logging mechanisms and error handling procedures make de-
bugging and troubleshooting more efficient. Developers can easily track the ex-
ecution flow, identify errors, and access relevant logs, leading to quicker prob-
lem resolution.

4.7. Lower Learning Curve

The user-friendly interface of the A360 platform, combined with the A360 Bot
Framework, reduces the learning curve for both professional developers and cit-
izen developers. This enables quicker onboarding and faster adoption of RPA
within the organization.

4.8. Innovation

By abstracting common tasks and design patterns, the framework frees develop-
ers from repetitive tasks, allowing them to concentrate on creating value-added
features and addressing unique automation challenges. This empowers develop-
ers to focus on innovation and creativity.

https://doi.org/10.4236/jcc.2023.1110003

S. M. Potturu

DOI: 10.4236/jcc.2023.1110003 48 Journal of Computer and Communications

4.9. Effective Bot Management

The framework’s standardized communication and logging practices enable ef-
fective bot management and monitoring. Auditing and compliance efforts are
simplified due to the comprehensive logs and records maintained throughout
bot executions.

4.10. Business Agility

The framework’s efficiency and consistency contribute to quicker deployment
and adaptation of automation solutions. This agility is crucial in rapidly evolving
business environments, allowing organizations to respond promptly to changing
needs.

5. Conclusions

In conclusion, the research paper has delved into the transformative potential of
the “A360 Bot Framework” within the realm of Robotic Process Automation
(RPA) and automation solution development. The framework, conceptualized
within the context of this research, serves as a robust foundation that empowers
both professional developers and citizen developers to create automation solu-
tions that are efficient, consistent, and resilient.

The paper has highlighted the importance of A360, a cloud-based platform
that simplifies the creation of automation solutions through its user-friendly in-
terface, seamless integrations, and a repository of pre-designed actions. The
“A360 Bot Framework” emerges as a response to the growing demand for sys-
tematic and structured approaches to bot development, providing a standardized
blueprint that ensures uniformity, scalability, and success.

Through comprehensive case studies, the paper has showcased the versatility
of the framework in addressing diverse automation challenges. From automating
web form filling using Excel data to downloading and consolidating data from
various sources, the “A360 Bot Framework” acts as a guiding compass, accele-
rating development while maintaining consistency and reliability.

The solution’s benefits are far-reaching. It fosters consistency and standardi-
zation, accelerates development cycles, reduces risk through robust error man-
agement, and simplifies collaboration between developers and teams. Addition-
ally, the framework’s streamlined approach allows developers to focus on inno-
vation, creating value-added features and solutions. The benefits extend across
multiple business functions, enhancing efficiency and aligning with the broader
goals of digital transformation.

In the ever-evolving landscape of automation, the “A360 Bot Framework”
stands as a testament to the power of innovation and collaboration. As technol-
ogy continues to reshape industries, this framework offers a steadfast pathway
towards efficient, consistent, and transformative automation solutions. It is a
testament to the evolution of RPA, where the fusion of human ingenuity and in-
telligent automation brings forth a new era of possibilities.

https://doi.org/10.4236/jcc.2023.1110003

S. M. Potturu

DOI: 10.4236/jcc.2023.1110003 49 Journal of Computer and Communications

Conflicts of Interest

The author, Sai Madhur Potturu, is employed at Zoetis Inc., specifically in the
Robotics Center of Excellence (CoE) department. Zoetis Inc. is a company that
provides animal healthcare products and services. The development and imple-
mentation of the digital solution presented in this manuscript align with the au-
thor's role and responsibilities within the organization. The author declares no
financial or personal relationships that may have influenced the content or find-
ings presented in this manuscript.

Data Availability Statement

The data used to support the findings of this study are available from the cor-
responding author upon reasonable request. The data include the PowerApps
application design, RPA solution implementation details, and relevant datasets
used for testing and evaluation. Access to the data will be provided to research-
ers or individuals to replicate the study findings or conduct further analyses re-
lated to the presented digital solution.

References
[1] Automation Anywhere (2023) Automation 360.

https://docs.automationanywhere.com/bundle/enterprise-v2019/page/enterprise-clo
ud/topics/security-architecture/cloud-automation-anywhere-enterprise-overview.ht
ml

[2] Mahey, H. (2020) Robotic Process Automation with Automation Anywhere: Tech-
niques to Fuel Business Productivity and Intelligent Automation Using RPA. Packt
Publishing Ltd., Birmingham.

[3] Sorin, A. (2017) Robotic Automation Process—The Next Major Revolution in Terms
of Back Office Operations Improvement. Proceedings of the International Conference
on Business Excellence, 11, 676-686.
https://doi.org/10.1515/picbe-2017-0072

[4] Mullakara, N. and Asokan, A. K. (2020) Robotic Process Automation Projects: Build
Real-World RPA Solutions Using UiPath and Automation Anywhere. Packt Pub-
lishing Ltd., Birmingham.

[5] Automation Anywhere (2023) What Is Citizen Development and How Can You Ben-
efit from It?
https://www.automationanywhere.com/company/blog/rpa-thought-leadership/wha
t-citizen-development-and-how-can-you-benefit-it

[6] Automation Anywhere (2020) Tips for Scaling Automation #1: Build a Bot Shell.
https://www.youtube.com/watch?v=L6ichPI2EAQ

[7] Eight Best Practices for RPA Developers.
https://www.cai.io/resources/thought-leadership/eight-best-practices-for-rpa-devel
opers

[8] Potturu, S. (2023) Maximizing the Efficiency of Automation Solutions with Auto-
mation 360: Approaches for Developing Subtasks and Retry Framework. Intelligent
Control and Automation, 14, 19-35. https://doi.org/10.4236/ica.2023.142002

[9] Automation Anywhere (2023) Bot Runner Overview.
https://docs.automationanywhere.com/bundle/enterprise-v11.3/page/enterprise/top

https://doi.org/10.4236/jcc.2023.1110003
https://docs.automationanywhere.com/bundle/enterprise-v2019/page/enterprise-cloud/topics/security-architecture/cloud-automation-anywhere-enterprise-overview.html
https://docs.automationanywhere.com/bundle/enterprise-v2019/page/enterprise-cloud/topics/security-architecture/cloud-automation-anywhere-enterprise-overview.html
https://docs.automationanywhere.com/bundle/enterprise-v2019/page/enterprise-cloud/topics/security-architecture/cloud-automation-anywhere-enterprise-overview.html
https://doi.org/10.1515/picbe-2017-0072
https://www.automationanywhere.com/company/blog/rpa-thought-leadership/what-citizen-development-and-how-can-you-benefit-it
https://www.automationanywhere.com/company/blog/rpa-thought-leadership/what-citizen-development-and-how-can-you-benefit-it
https://www.youtube.com/watch?v=L6ichPI2EAQ
https://www.cai.io/resources/thought-leadership/eight-best-practices-for-rpa-developers
https://www.cai.io/resources/thought-leadership/eight-best-practices-for-rpa-developers
https://doi.org/10.4236/ica.2023.142002
https://docs.automationanywhere.com/bundle/enterprise-v11.3/page/enterprise/topics/aae-architecture-implementation/bot-runner-overview.html

S. M. Potturu

DOI: 10.4236/jcc.2023.1110003 50 Journal of Computer and Communications

ics/aae-architecture-implementation/bot-runner-overview.html

[10] Automation Anywhere (2023) Attended and Unattended Automation.
https://docs.automationanywhere.com/bundle/enterprise-v2019/page/enterprise-clo
ud/topics/aae-client/attended-automation/attend-automation-overview.html

[11] Automation Anywhere (2023) Global Values.
https://docs.automationanywhere.com/bundle/enterprise-v2019/page/enterprise-clo
ud/topics/aae-client/bot-creator/using-variables/cloud-global-variables.html

[12] Automation Anywhere (2023) Using Log to File Action.
https://docs.automationanywhere.com/bundle/enterprise-v2019/page/enterprise-clo
ud/topics/aae-client/bot-creator/commands/cloud-inserting-log-to-file-command.h
tml

[13] Automation Anywhere (2023) Task Bot Package.
https://docs.automationanywhere.com/bundle/enterprise-v2019/page/enterprise-clo
ud/topics/aae-client/bot-creator/commands/cloud-taskbot-command.html

[14] Automation Anywhere (2023) Check in a Bot.
https://docs.automationanywhere.com/bundle/enterprise-v2019/page/enterprise-clo
ud/topics/aae-client/bot-creator/working-with-automation-tasks/cloud-bot-check-i
n.html

[15] Automation Anywhere (2023) Check out a Single Bot.
https://docs.automationanywhere.com/bundle/enterprise-v2019/page/enterprise-clo
ud/topics/aae-client/bot-creator/working-with-automation-tasks/cloud-bot-check-o
ut.html

[16] Automation Anywhere (2023) Enabling Version Control in Automation Anywhere
Control Room.
https://docs.automationanywhere.com/bundle/enterprise-v11.3/page/enterprise/top
ics/aae-client/bot-creator/using-special-features/enabling-version-control-in-autom
ation-anywhere.html

[17] Automation Anywhere (2023) Integrating Control Room with Git Repositories.
https://docs.automationanywhere.com/bundle/enterprise-v2019/page/enterprise-clo
ud/topics/control-room/git-integration/cloud-cr-git-integration.html

[18] Automation Anywhere (2023) Copy a Bot.
https://docs.automationanywhere.com/bundle/enterprise-v2019/page/enterprise-clo
ud/topics/aae-client/bot-creator/working-with-automation-tasks/cloud-copy-a-bot.
html

[19] Beachnet (2023) The Benefits of Automation for Different Industries.
https://www.beachnet.com/industries-automation-benefits/

[20] KOFAX (2020) 7 Biggest Benefits of RPA (Robotic Process Automation).
https://www.kofax.com/learn/blog/benefits-of-rpa

https://doi.org/10.4236/jcc.2023.1110003
https://docs.automationanywhere.com/bundle/enterprise-v2019/page/enterprise-cloud/topics/aae-client/attended-automation/attend-automation-overview.html
https://docs.automationanywhere.com/bundle/enterprise-v2019/page/enterprise-cloud/topics/aae-client/attended-automation/attend-automation-overview.html
https://docs.automationanywhere.com/bundle/enterprise-v2019/page/enterprise-cloud/topics/aae-client/bot-creator/using-variables/cloud-global-variables.html
https://docs.automationanywhere.com/bundle/enterprise-v2019/page/enterprise-cloud/topics/aae-client/bot-creator/using-variables/cloud-global-variables.html
https://docs.automationanywhere.com/bundle/enterprise-v2019/page/enterprise-cloud/topics/aae-client/bot-creator/commands/cloud-inserting-log-to-file-command.html
https://docs.automationanywhere.com/bundle/enterprise-v2019/page/enterprise-cloud/topics/aae-client/bot-creator/commands/cloud-inserting-log-to-file-command.html
https://docs.automationanywhere.com/bundle/enterprise-v2019/page/enterprise-cloud/topics/aae-client/bot-creator/commands/cloud-inserting-log-to-file-command.html
https://docs.automationanywhere.com/bundle/enterprise-v2019/page/enterprise-cloud/topics/aae-client/bot-creator/commands/cloud-taskbot-command.html
https://docs.automationanywhere.com/bundle/enterprise-v2019/page/enterprise-cloud/topics/aae-client/bot-creator/commands/cloud-taskbot-command.html
https://docs.automationanywhere.com/bundle/enterprise-v2019/page/enterprise-cloud/topics/aae-client/bot-creator/working-with-automation-tasks/cloud-bot-check-in.html
https://docs.automationanywhere.com/bundle/enterprise-v2019/page/enterprise-cloud/topics/aae-client/bot-creator/working-with-automation-tasks/cloud-bot-check-in.html
https://docs.automationanywhere.com/bundle/enterprise-v2019/page/enterprise-cloud/topics/aae-client/bot-creator/working-with-automation-tasks/cloud-bot-check-in.html
https://docs.automationanywhere.com/bundle/enterprise-v2019/page/enterprise-cloud/topics/aae-client/bot-creator/working-with-automation-tasks/cloud-bot-check-out.html
https://docs.automationanywhere.com/bundle/enterprise-v2019/page/enterprise-cloud/topics/aae-client/bot-creator/working-with-automation-tasks/cloud-bot-check-out.html
https://docs.automationanywhere.com/bundle/enterprise-v2019/page/enterprise-cloud/topics/aae-client/bot-creator/working-with-automation-tasks/cloud-bot-check-out.html
https://docs.automationanywhere.com/bundle/enterprise-v11.3/page/enterprise/topics/aae-client/bot-creator/using-special-features/enabling-version-control-in-automation-anywhere.html
https://docs.automationanywhere.com/bundle/enterprise-v11.3/page/enterprise/topics/aae-client/bot-creator/using-special-features/enabling-version-control-in-automation-anywhere.html
https://docs.automationanywhere.com/bundle/enterprise-v11.3/page/enterprise/topics/aae-client/bot-creator/using-special-features/enabling-version-control-in-automation-anywhere.html
https://docs.automationanywhere.com/bundle/enterprise-v2019/page/enterprise-cloud/topics/control-room/git-integration/cloud-cr-git-integration.html
https://docs.automationanywhere.com/bundle/enterprise-v2019/page/enterprise-cloud/topics/control-room/git-integration/cloud-cr-git-integration.html
https://docs.automationanywhere.com/bundle/enterprise-v2019/page/enterprise-cloud/topics/aae-client/bot-creator/working-with-automation-tasks/cloud-copy-a-bot.html
https://docs.automationanywhere.com/bundle/enterprise-v2019/page/enterprise-cloud/topics/aae-client/bot-creator/working-with-automation-tasks/cloud-copy-a-bot.html
https://docs.automationanywhere.com/bundle/enterprise-v2019/page/enterprise-cloud/topics/aae-client/bot-creator/working-with-automation-tasks/cloud-copy-a-bot.html
https://www.beachnet.com/industries-automation-benefits/
https://www.kofax.com/learn/blog/benefits-of-rpa

	A360 Bot Framework: Empowering Smart Robotic Process Automation Solutions
	Abstract
	Keywords
	1. Introduction
	2. Solution
	2.1. Close/Kill Applications
	2.2. Generate Context ID
	2.3. Create Working Folder
	2.4. Create Log File, Log Format and Error Images Folder
	2.5. Copy Bot Dependent Files
	2.6. Read Configuration File
	2.7. Framework Integration
	2.8. Orchestrator Task Template
	2.9. Subtask and Retry Framework
	2.10. Main Task Template

	3. Application Scenarios: Demonstrating the A360 Bot Framework in Action
	3.1. Case Study 1: Data Entry
	3.2. Case Study 2: Consolidate Reports

	4. Benefits of the Solution
	4.1. Consistency and Standardization
	4.2. Efficient Development
	4.3. Reduced Risk and Resilience
	4.4. Simplified Collaboration
	4.5. Scalability and Reusability
	4.6. Enhanced Debugging
	4.7. Lower Learning Curve
	4.8. Innovation
	4.9. Effective Bot Management
	4.10. Business Agility

	5. Conclusions
	Conflicts of Interest
	Data Availability Statement
	References

