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Abstract 
With the development of wireless technology, Frequency-Modulated Conti-
nuous Wave (FMCW) radar has increased sensing capability and can be used 
to recognize human activity. These applications have gained widespread at-
tention and become a hot research area. FMCW signals reflected by target ac-
tivity can be collected, and human activity can be recognized based on the 
measurements. This paper focused on human activity recognition based on 
FMCW and DenseNet. We collected point clouds from FMCW and analyzed 
them to recognize human activity because different activities could lead to 
unique point cloud features. We built and trained the neural network to im-
plement human activities using a FMCW signal. Firstly, this paper presented 
recent reviews about human activity recognition using wireless signals. Then, 
it introduced the basic concepts of FMCW radar and described the fundamen-
tal principles of the system using FMCW radar. We also provided the system 
framework, experiment scenario, and DenseNet neural network structure. 
Finally, we presented the experimental results and analyzed the accuracy of 
different neural network models. The system achieved recognition accuracy 
of 100 percent for five activities using the DenseNet. We concluded the paper 
by discussing the current issues and future research directions.  
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1. Introduction 

With the continuous development of wireless technology and the increasing de-
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mand for human-computer interaction, using wireless signals to recognize hu-
man behavior has become a popular research topic [1]. Recognizable behaviors 
mainly include daily activity recognition, crowd counting, vital sign detection, 
fall detection, identity authentication, gesture recognition, and more [2] [3]. The 
wireless signals used for behavior recognition mainly include WiFi signals and 
radar signals. WiFi devices are widely deployed, and WiFi signals are easy to ob-
tain, making them highly practical [4]. Radar signals can provide high resolution 
and throughput, enabling fine-grained human behavior recognition [5]. These 
two typical wireless signals have been widely used in human activity recognition 
and have achieved significant results. In the following section, we will review 
these two common behavior recognition techniques. 

1) Human activity recognition based on WiFi signals 
With the widespread deployment of WiFi devices, using WiFi signals for be-

havior recognition has gained widespread interest. In 2011, Halperin et al. mod-
ified the network card driver of WiFi devices and released the CSI Tool script to 
extract channel state information [6] from commercial wireless network devices. 
The channel state information can be obtained from WiFi devices and can pro-
vide finer granularity, leading to widespread research. 

CARM [7] is a typical activity recognition system that analyzes the relation-
ship between human motion speed and specific activities through the CSI-Speed 
module and the CSI-Activity module to realize daily activity recognition. E-Eyes 
[8] uses matching algorithms to recognize 11 kinds of in-situ activities and 8 kinds 
of non-in-situ activities through analysis of CSI amplitude information. WiFall 
[9] is a typical fall detection system that uses a sharp drop in signal frequency as 
a judgment indicator to detect falls. WiseFi [10] establishes a signal arrival angle 
model to analyze the relationship between the CSI amplitude phase and activity 
to achieve activity recognition. 

We find that WiFi-based human activity recognition has made certain progress 
in many aspects, but also has some disadvantages, such as low resolution, weak 
signal interpretability, decreased accuracy in multi-person states, and more. 

2) Human activity recognition based on FMCW signals 
Although WiFi-based human activity recognition has made some progress, 

there are challenges due to the limited resolution of WiFi signals. When fine res-
olution is needed, FMCW is a more suitable choice. In addition to the advantag-
es of traditional WiFi, FMCW provides more data, finer resolution, and more 
physical features. As a result, FMCW can offer more potential applications, in-
cluding human action recognition, fall detection, and vital monitoring. 

Human Activity Recognition (HAR) is one of the major applications of FMCW 
radar [11]. Ding et al. [12] proposed a novel Dynamic Range-Doppler Trajectory 
(DRDT) method using FMCW radar to identify continuous human motions in 
emulating real-life scenarios. Ding et al. [13] combined sparse theory and Point-
Net network and utilized both the Time-Doppler (TD) and Range-Doppler (RD) 
domains to recognize human motion. 

Fall detection is another typical application of FMCW radar. Saeed et al. [14] 
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designed a recognition system to effectively identify falls/collapses and categor-
ize other daily living activities, including sitting, standing, walking, drinking, 
and bending. Wang et al. [15] utilized a Line Kernel Convolutional Neural Net-
work (LKCNN) to detect falling states, while Wang et al. [16] leveraged Pat-
tern Contour-Confined Doppler-Time (PCC-DT) maps to recognize soft fall 
motions. 

FMCW devices can also be used to monitor vital signals such as respiration 
and heart rate due to their fine resolution. For example, Alizadeh et al. [17] ex-
tracted the respiration and heart rates of a patient lying down on a bed. Turppa 
et al. [18] remotely monitored heart rate and respiration in normal and abnor-
mal physiological conditions during sleep and obtained an average relative mean 
absolute error of 3.6% (86% correlation) and 9.1% (91% correlation) for heart 
rate and respiration rate, respectively. Sacco et al. [19] achieved high accuracy 
in both respiratory rate and heartbeat monitoring. ViMo [20] is a typical mul-
tiple-person vital sign monitoring system using commodity millimeter-wave ra-
dio and achieved a median error of 0.19 and 0.92 Breaths per Minute (BPM), 
respectively, for Respiration Rates (RRs) and Heart Rates (HRs) estimation. 

In summary, FMCW radar has shown potential for various HAR applications, 
including remote health monitoring, indoor localization and tracking, and ges-
ture recognition. The technology holds promise for future advancements in se-
curity, healthcare, and human-computer interaction. 

Despite the notable performance achieved in the aforementioned studies, they 
typically construct specialized neural network models to achieve good recogni-
tion results. However, many typical deep learning models have been proven ef-
fective for feature extraction and classification in computer vision tasks. There-
fore, using these neural networks for human activity recognition is a hot re-
search topic. FMCW signals effectively contain human activity characteristics, so 
they can be employed to feed into typical neural networks to implement human 
activity recognition. This paper focuses on human activity recognition using 
FMCW. Specifically, the DenseNet model is used for human activity recognition 
using FMCW signals. 

The contribution of this paper can be summarized as follows. We proposed a 
human activity system using the FMCW signal and the DenseNet technique. The 
system achieved 100% accuracy for five human activities conducted by five par-
ticipants using the standard DenseNet model with adopted input and output 
shapes. This result shows that a typical neural network can be used for real hu-
man activity recognition using FMCW signals. It also indicates that some typical 
neural networks have a broad application scenario in human-computer interac-
tion using FMCW signals. 

2. Methodology 
2.1. FMCW Signal 

The frequency of a FMCW radar has a typical working characteristic where its 

https://doi.org/10.4236/jcc.2023.117002


W. S. Jiang et al. 
 

 

DOI: 10.4236/jcc.2023.117002 18 Journal of Computer and Communications 
 

signal changes linearly over time, creating a linear frequency-modulated pulse. 
The working principle of a linear frequency-modulated pulse signal in a radar 
system can be described as follows. Firstly, the signal source generates a linear 
frequency-modulated pulse and transmits it through the transmitting antenna 
(TX antenna). Then, the transmitted signal is reflected by the object to generate 
a reflected linear frequency-modulated pulse, which is received by the receiving 
antenna (RX antenna). Finally, the “mixer” mixes the TX-transmitted signal and 
the RX-received signal together, and a low-pass filter generates an Interme-
diate Frequency (IF) signal. This process is the processing of a linear frequen-
cy-modulated signal chirp. By performing the same processing on consecutive 
multiple chirps and then splicing them into a frame of data, a radar system can 
gather more information about the target object, such as its distance, velocity, 
and motion pattern. 

2.2. Framework of the System 

The fundamental principle of human activity recognition using FMCW can be 
depicted as follows. FMCW device transmits a continuous wave signal that is 
modulated in frequency. The transmitted signal is reflected back from the target 
object. When a person walks or conducts some activities within the range of 
FMCW signal coverage, the FMCW signal will undergo complex path changes 
and be reflected by the body. These changes can be used to recognize human ac-
tivity by building the relationship between the signal variation and the activity 
categories. We can infer object properties or object activity by analyzing the re-
flected signal characteristics. This approach enables FMCW devices to recognize 
various human activities, such as walking, running, sitting, and standing, by ana-
lyzing the unique signal patterns produced by each activity [11]. 

The system framework for FMCW-based human activity recognition contains 
four parts: experimental data collection, data processing, and neural network 
training, and human activity recognition, as shown in Figure 1. The DJ-IWR1843  

 

 
Figure 1. The framework of FMCW-based human activity recognition. 
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is used as the experimental device, with its basic parameters described in Table 
1. The distance between the hardware and participants is set to one meter, and 
they perform their activities in place. The FMCW device is placed on a pole with 
a height of one meter above the ground. 

During normal daily activities, the FMCW device generates a point cloud that 
can be collected. After collecting the point cloud data, the data are normalized 
and supplemented to feed them into a neural network. Finally, the preprocessed 
data are inputted into neural networks such as AlexNet [21], VggNet [22], and 
DenseNet [23] to evaluate the performance of the system. By analyzing the 
training and validation processing, human activity recognition is finally realized. 

In this system, we define the activity as a set of human actions that can be 
recognized by the FMCW-based human activity recognition system. We have 
chosen five daily activities to evaluate the system performance, which are stand 
up, march in place, squat down, side arm raise, and expand chest. These activi-
ties are represented as activity A-E. 

2.3. Neural Network Models 

Deep learning is a type of machine learning algorithm that utilizes multiple lay-
ers of representation to learn complex patterns in large datasets [24]. It uses deep 
neural networks to complete complex tasks [25]. Deep neural networks typically 
consist of an input layer, multiple hidden layers, and an output layer. They au-
tomatically extract hidden features of the data using simple but non-linear lay-
ers, with each layer using the output of the previous layer as input [26]. Deep 
learning has made tremendous progress in advancing various artificial intelli-
gence applications in recent years, particularly in fields like computer vision, au-
tomatic speech recognition, natural language processing, and medical image anal-
ysis, where it has achieved significant success [27]. 

In this paper, we utilize the typical DenseNet model to classify human activity 
using FMCW signals. Specifically, we employ the DenseNet121 model to cate-
gorize the activity using FMCW. Furthermore, we compare our model with 
other commonly used neural network models, such as AlexNet and VggNet, to  

 
Table 1. The main parameters of DJ-IWR1843 device. 

Radar working parameter Value 

Initial frequency (GHz) 76 

Bandwidth (GHz) 4 

Number of transmitting antennas 3 

Number of receiving antennas 4 

Frequency growth slope (MHz/μs) 60 

Range resolution (cm) 3.75 

Frame period (ms) 50 

Frame rate (fps) 20 
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verify the effectiveness of our system. We described the structure of AlexNet, 
VggNet, and DenseNet according to the reference [28]. 

AlexNet is a Convolutional Neural Network (CNN) proposed in 2012 for im-
age classification. It demonstrated the power of CNNs and GPU-based deep 
learning. AlexNet is comprised of 8 layers, consisting of 5 convolutional layers 
and 2 fully-connected layers, as depicted in Figure 2. It utilizes rectified linear 
units for nonlinearity, max pooling layers, dropout, and softmax loss. AlexNet 
achieved a top-5 error rate of 15.4% on ImageNet, far surpassing previous re-
sults. AlexNet’s architecture and training procedures established a template for 
modern CNNs. 

The VGG architecture is derived from the name of the study group (Visual 
Geometry Group) that proposed it in 2014. It is a convolutional neural network 
architecture that utilizes a simple design with only 3 × 3 convolutional layers  

 

 
Figure 2. The basic structure of the AlexNet. 
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stacked on top of each other in increasing depth, as depicted in Figure 3. This 
small receptive field is conducive to capturing more complex features. VGG 
achieved state-of-the-art accuracy on ImageNet with 16 - 19 layers during the 
competition. Two major variants, VGG16 and VGG19, have 16 and 19 layers, 
respectively. VGG emphasizes the importance of model depth, and its simplicity 
and strong performance have made it an influential CNN architecture. 

DenseNet is a convolutional neural network architecture that uses dense con-
nections between layers. In this architecture, each layer obtains additional inputs 
from all preceding layers and passes on its own feature-maps to all subsequent  

 

 
Figure 3. The basic structure of the VggNet. 
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layers, as depicted in Figure 4. The use of dense connections can alleviate the 
vanishing-gradient problem, strengthen feature propagation, reduce parameter 
redundancy, and improve learning efficiency. DenseNet models have achieved 
very good results on image classification and other tasks. DenseNet demonstrates 
the power of strengthened connections between network layers for more sophis-
ticated learning. 

The network parameters of the neural network adopted by this system are as 
follows. The system utilizes the PyTorch framework to implement the neural net-
work and modifies the input channel of the first convolution and the last classi-
fication number. The input channel is set to six since the point cloud has six fea-
ture dimensions, and the classification number is changed to five since the sys-
tem recognizes five activities. 

2.4. Results 

For the experiment, we invited 5 college students (two girls and three boys) to 
perform the activities. Specifically, each student collected about 50 samples for 
each activity, resulting in a total of approximately 2500 samples. The total sam-
ples were randomly split into training, validation, and test sets in a 7:2:1 ratio. 
We used the DenseNet neural network for the system and modified the network 
parameters according to our FMCW data. 

1) The FMCW data processing 
Each data frame that we collect contains six fields, which include the x, y, and 

z coordinates of the subjects, Signal-to-Noise Ratio (SNR), velocity, and noise. We 
found that different activities could result in a different number of point clouds, 
leading to a wide variation in the number of point clouds that we could collect. 
Because we use a neural network to implement activity classification, we need a 
fixed data shape to feed the data into the network. The hardware sends data at 20 
frames per minute, and we measured the data and found that the maximum 
number of point clouds is less than 80 when the subject performs various activi-
ties. We spent three seconds to perform an activity. So, we obtained 60 frames 
data since the rate of frame is twenty. We set the shape of one activity frame as 60 
× 80 × 6, where 60 is the number of frames during the activity time, 80 is the 
maximum point cloud count, and 6 is the dimension of one point. For frames that 
own less points, we supplement it with 0 to obtain a fixed shape for the activity. 

 

 

Figure 4. The basic structure of the DenseNet. 
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To ensure that the different units and values of the six fields in the data frame 
do not affect the computation process and recognition accuracy, we perform da-
ta normalization at each dimension. We normalize each field to have a mean of 
zero and a variance of one, which eliminates the adverse effects on recognition 
accuracy. 

2) The neural network model design 
In this paper, we use the DenseNet model to implement human activity rec-

ognition. We also compare the performance of the DenseNet model with two 
other typical models, AlexNet and VGG. Due to the differences between the orig-
inal FMCW data and the image data that is fed into the neural network, we must 
slightly modify the DenseNet parameters. 

Firstly, we modify the in_channel of conv0 of DenseNet features to 6 since we 
have six dimensions of FMCW point cloud. Secondly, we change the classifier of 
the DenseNet to have five categories. 

To train the neural network, we utilize the cross-entropy loss function and the 
Adam optimization method. To enhance training effectiveness, we set the initial 
learning rate as 0.01 and dynamically adjust the learning rate by multiplying 0.1 
when the validation accuracy plateaus. We initialize the original parameters of 
the neural network using the kaiming approach for each model. We can achieve 
more recognition results using a small epoch since we employ typical neural net-
work. Therefore, we set the epoch as 100 and the batch size as 16. 

3) The result of the experiment 
Figure 5 displays the training and validation accuracies plotted against the 

epoch. Our findings indicate that due to the utilization of kaiming network  
 

 
Figure 5. DenseNet training accuracy 
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parameter initialization, the training process converges rapidly after ten epochs. 
In addition, we draw the confusion matrix to evaluate the activity recognition 

results, as shown in Figure 6. We observed that every each activity is always 100 
percent on the test data, indicating that the activity recognition results are accu-
rate and consistent. 

2.5. Discussion 

In this section, we compare the recognition accuracy of various neural network 
models, such as AlexNet and VggNet, which are commonly used in image rec-
ognition applications, with that of DenseNet. This comparison can effectively 
prove that DenseNet has great performance in recognizing activity using FMCW 
signal. 

An analysis was first conducted regarding the influence of disparate training 
durations across three neural network architectures. It was ascertained that the 
DenseNet models reach convergence with celerity. At epoch 30 to 50 or after 70, 
the training loss and validation loss keep a similar trend and are almost equal. 
During other epochs, the training loss always decreases, and the validation loss 
has much variation. However, this variation may come from parameter updating 
and cannot affect test accuracy. We found the test accuracy kept at 100% after 30 
epochs for DenseNet, even though the validation had some fluctuation. Different 
from DenseNet, the other two models have the same feature. The validation loss 
keeps at 0.1 after some initial fluctuations. This result shows that the training 
process does not converge, and the difference between training loss and validation 
loss always has about 0.05. The result shows that DenseNet has great feature  

 

 
Figure 6. The confusion matrix of DenseNet for activity recognition. 
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extraction and activity recognition ability. 
Next, we analyze the recognition accuracy among these three models. We can 

find that the recognition accuracy reaches 100% for five actions and five sub-
jects. Therefore, DenseNet achieves the best test results for a neural network 
model. Differently, the other two models cannot implement activity classifica-
tion since the training process does not converge, even though we dynamically 
reduce the learning rate, as shown in Figure 7. Besides, we find that almost all 
test samples have been classified into three activities for the other models. So,  

 

 

 
Figure 7. The confusion matrix of AlexNet and VGG for human recognition. 
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these two models cannot perform real activity recognition for FMCW signal. 
Therefore, DenseNet has the best recognition performance among these neural 
networks. 

Although we obtained the expected identification result, there are still some 
issues that need to be addressed when using FMCW. Firstly, we should invite 
more participants and design more activities to evaluate the model. This will help 
us to validate the model’s performance on a larger and more diverse dataset. Se-
condly, we should conduct more experiments in more environments to evaluate 
the model’s performance. This will help us to determine how well the model can 
generalize to different environments and scenarios. To sum up, we should choose 
more neural network models to implement human activity recognition using a 
FMCW signal. 

3. Conclusion 

Currently, human-machine interaction has become a rapidly growing research 
area in artificial intelligence applications. FMCW-based human activity recogni-
tion has also increased attention due to its device-free pattern and good identifi-
cation accuracy. This paper studies human activity recognition of five activities 
using DenseNet and FMCW signals. Specifically, we utilized the DenseNet mod-
el to implement human activity identification based on the collected point cloud. 
After data preprocessing, we fed the point cloud data into the neural network 
model to extract features and perform activity recognition. We achieved human 
activity recognition of five activities and obtained 100% test performance. Diffe-
rently, the AlexNet and VggNet models almost did not converge after twenty 
epochs. The result shows that FMCW point cloud can effectively leverage Den-
seNet to extract features and implement activity classification. In addition, the 
results also validate that the FMCW signal has its characteristics compared with 
other wireless signals though we can consider these signals as a picture. These 
conclusions will help us to further improve the accuracy and robustness of the 
recognition system and make it more practical for real-world applications. 
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