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Abstract 
Electromagnetic acoustic emission technology is one of nondestructive test-
ing, which can be used for defect detection of metal specimens. In this study, 
round and cracked metal specimens, round metal specimens, and intact metal 
specimens were prepared. And the electromagnetic acoustic emission signals 
of the three specimens were collected. In addition, the local mean decomposi-
tion(LMD), Autoregressive model(AR model) and least squares support vec-
tor machine (LSSVM) algorithms were combined to identify the eletromag-
netic acoustic emission signals of round and cracked, round, and intact spe-
cimens. According to the algorithm recognition results, the recognition ac-
curacy of can reach above 97.5%, which has a higher recognition rate com-
pared with SVM and BP neural network. The results of the study show that 
the algorithm is able to identify quickly and accurately crack defect in metal 
specimens. 
 

Keywords 
Electromagnetic Acoustic Emission Technology, LMD, LSSVM, Defect  
Detection of Metal Crack 

 

1. Introduction 

High-performance metals and their alloys are widely used in aerospace, petro-
leum and petrochemical, machinery manufacturing, transportation and other 
industrial fields [1] [2]. And metals and their alloys are used under pressure and 
force for a long time, leading to micro-cracks on the metal surface. If cracks are 
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not detected in time, the cracks will extend during the use of metal structural 
parts, leading to fracture, causing casualties and property damage, and triggering 
serious safety accidents [3]. At present, the conventional nondestructive testing 
methods for metal crack defects mainly include: Ultrasonic Testing [4], Radio-
graphic Testing [5], Magnetic Flux Leakage [6], Eddy Current Testing [7], Pene-
tration Testing [8] and Acoustic Emission [9]. Each technology has corres-
ponding application areas and different defect detection capabilities, but all 
have certain limitations, such as Ultrasonic Testing and Radiographic Testing 
for the detection of defects within the metal structure, Magnetic Flux Leakage, 
Eddy Current Testing and Penetration Testing for the detection of surface and 
near-surface cracks in metal specimens. Compared with other NDT methods, 
Acoustic Emission can receive acoustic emission signals in real time, which is 
easy to realize online detection; it can detect dynamic cracks, crack sprouting 
and crack growth of metal structural parts. However, there are also problems 
such as harsh loading conditions, poor repeatability and noise interference. 
Therefore, on the basis of the existing NDT methods, the improvement and de-
velopment of new inspection techniques and the integration and application of 
various NDT will become the main development trend in the field of NDT [10]. 
Electromagnetic acoustic emission technology combines electromagnetic detec-
tion technology and acoustic emission detection technology, which has well de-
tection capability for small cracks. The basic principle is to load an electric cur-
rent through a coil on top of a metal specimen with defects (such as cracks, 
pores or inclusions), and the current concentration effect occurs at the defective 
area to form a high density current, which generates Lorentz force at the defec-
tive area of the metal specimen and thus excites the acoustic emission signal [11] 
[12] [13]. Thus, this technology enables the detection of cracks in sheet metal 
specimens and tubular metal specimens. 

2. Literature Review 

Currently, the focus of research on the electromagnetic acoustic emission tech-
nology has shifted to signal processing. The main signal processing methods are 
FFT, wavelet packet transform, Hilbert-Yellow transform [14], etc, which ana-
lyze electromagnetic acoustic emission signals from different perspectives. In the 
literature, a combination of wavelet packet transform and energy entropy was 
used to achieve electromagnetic acoustic emission signal feature extraction and 
input to BP neural network for identification, and a high accuracy rate was ob-
tained [15]. 

Local mean decomposition is an adaptive signal decomposition method that 
can decompose a signal into several PF components and is suitable for the 
processing of non-stationary nonlinear signals [16] [17]. The upper and lower 
envelopes obtained by the LMD decomposition using the smoothing algorithm 
can effectively solve the under-envelope problem and the endpoint effect in the 
EMD decomposition. AR model is a time series model, and the autoregressive 
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parameters of the model are sensitive to changes in status and can be used as 
feature vectors for acoustic emission signal identification [18] [19]. LSSVM is an 
improved SVM with stronger generalization ability, which has better advantages 
in small sample classification recognition [20] [21]. Based on the above research 
results, the paper uses the LMD algorithm to decompose the electromagnetic 
acoustic emission signal to obtain the PF component signal, and selects the op-
timal PF component signal according to the energy occupation ratio method. 
The AR model of the component signal is built, and the optimal order of the 
model is determined by the AIC criterion. The autoregressive parameters and 
mean square deviation of the AR model are extracted as feature vectors, which is 
fed into the LSSVM classifier for signal recognition. 

3. Methodology 
3.1. Local Mean Decomposition 

Local mean decomposition is an adaptive signal decomposition method that can 
decompose a complex non-smooth signal into a finite number of smooth single 
component signals and a monotonic function adaptively, which is applicable to 
the processing of non-stationary and non-linear signals. The specific steps are as 
follows [16]: 

Find all local extrema in  from the original signal ( )x t  and the average 
function im  and envelope estimation function ia  of two adjacent extrema in  
and 1in +  can be calculated by 

1

1

2

2

i i
i

i i
i

n n
m

n n
a

+

+

+ =
 − =

                         (1) 

The local mean function ( )11m t  is obtained by connecting all the mean func-
tions with straight lines and smoothing them by sliding translation method. The 
local envelope estimation function ( )11a t  is obtained by connecting all the 
envelope estimates with a straight line and smoothing them by the sliding trans-
lation method. 

The local mean function ( )11m t  is subtracted from the original signal ( )x t  
and the resulting signal ( )11h t  is given by 

( ) ( ) ( )11 11h t x t m t= −                       (2) 

The FM signals ( )11s t  can be obtained by dividing ( )11h t  by ( )11a t . 

( ) ( )
( )

11
11

11

h t
s t

a t
=                          (3) 

The ideal FM signals ( )11s t  is a pure FM function. In other words, envelope 
estimation function ( )12 1a t ≈ . If ( )11s t  is not a pure FM function, then 

( )11s t  is regarded as the original signal to calculate repetitively above procedure 
until ( )11s t  becomes a pure FM function. 
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The envelope signal ( )1a t  can be obtained by multiplying the envelope esti-
mation functions of the above iterations. 

( ) ( ) ( ) ( ) ( )1 11 12 1 1
1

n

n q
q

a t a t a t a t a t
=

= =∏               (4) 

The first PF component signal of the original signal can be obtained by mul-
tiplying the envelope signal ( )1a t  and the pure FM signal ( )1ns t . 

( ) ( ) ( )1 1 1nPF t a t s t=                       (5) 

( )1u t  can be obtained by separating the component signals ( )1PF t  from the 
original signal ( )x t . ( )1u t  can be considered as a new original signal and the 
above process is repeated. After k cycles, until k becomes a monotonic function. 

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )

1 1

2 1 2

1k k k

u t x t PF t
u t u t PF t

u t u t PF t−

 = −
 = −


 = −



                    (6) 

Thus, the original signal ( )x t  can be decomposed into a sum of k-PF com-
ponents and a monotonic function ( )ku t . 

( ) ( ) ( )
1

k

p k
p

x t PF t u t
=

= +∑                      (7) 

3.2. AR Model 

AR model is a type of time series model, and its autoregressive parameters are 
sensitive to changes in the underlying patterns, making it suitable as a feature 
vector for acoustic emission signal recognition. 

3.2.1. AR Model Principle 
The following AR model can be established for a stationary time series  
{ }( )1,2, ,kx k N=  : 

1 1 2 2
1

m

k k k m k m k i k i k
i

x x x x a x aφ φ φ φ− − − −
=

= + + + + = +∑          (8) 

where, ( )1,2, ,i i mφ =   is the autoregressive coefficient, m is the order of the 
model, and { }( )1,2,ka k =   is a set of uncorrelated discrete white noise se-
quences with mean 0 and variance ( )2 20a aδ δ< < ∞ . 

The key to establishing an AR model is to solve the model parameters and de-
termine the model order, as can be seen from Equation (8). The autoregressive 
parameters of AR model can be determined using the method of least squares, 
which has the advantage of being computationally simple and fast. The optimal 
model order can be determined using the Akaike information criterion (AIC), 
which can improve the accuracy of building the model. Thus, in this paper, the 
model parameters are calculated using the least squares method, and the model 
order is determined based using the AIC criterion. 
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3.2.2. Least Squares Estimation of AR Model Parameters 
The specific steps for using the least squares method to solve the AR model coef-
ficients ( )1,2, ,i i mφ =   and mean squared error are as follows [19]: 

From equation (8), the model order can be obtained by 

1 1 2 2k k k k m k ma x x x xφ φ φ− − −= − − − −                 (9) 

For the AR model, 2
aδ  is the mean square error of the model residual se-

quence. Therefore 

( ) ( )2 2
1 1 2 2

1

1 N

a k k k k m k m
k m

E a E x x x x
N

δ φ φ φ− − −
= +

= = − − − −∑        (10) 

The coefficients are determined according to the principle of least squares, 
even if the mean square deviation reaches its minimum. Then, this is trans-
formed into the problem of finding the extremum of a multivariate function. 
Therefore 

( )( )

( )( )

( )( )

1 1 2 2 1
1

1 1 2 2 2
2

1 1 2 2

2 0

2 0

2 0

k k k m k m k

k k k m k m k

k k k m k m k m
m

E x x x x x

E x x x x x

E x x x x x

δ φ φ φ
φ
δ φ φ φ
φ

δ φ φ φ
φ

− − − −

− − − −

− − − −

∂  = − − − − − = ∂
 ∂

 = − − − − − =  ∂


∂  = − − − − − =  ∂









      (11) 

After simplification and consolidation, it can be expressed in matrix form 

mP ϕ ρ=                           (12) 

where, 
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, [ ]T1 2, , , mϕ φ φ φ=  ,  

[ ]T1 2, , , mρ ρ ρ ρ=  . 

Equation (12) is called the Yule-Walker equation, where mP  is the autocor-
relation matrix that belongs to the Toeplitz matrix, ϕ  is the parameter matrix, 
and ρ  is the autocorrelation coefficient matrix. The autocorrelation coeffi-
cients ( )1,2, ,i i mρ =   can be calculated by { }( )1,2, ,kx k N=  , and the pa-
rameter matrix ϕ  can be obtained by solving a linear system of equations. 
Therefore 

1
mPϕ ρ−=                           (13) 

During the inversion of the autocorrelation matrix, the Levinson recursive al-
gorithm can be used. 

3.2.3. Minimum Information Criterion-AIC Guideline 
The principle of Minimum Information Criterion is to prefer the model with the 
lowest AIC value when selecting the best model from a set of models [22]. The 
formula is that 
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( ) ( )2 2AIC ln a
mm

N
δ= +                     (14) 

where, N the data length, 2
aδ  is the mean squared error of the model, and m is 

the order of the model. 

4. Electromagnetic Acoustic Emission Signal Feature Extraction 

A total of three types of metal specimens were prepared as research objects, in-
cluding specimens with circular holes and cracks, specimens with only circular 
holes, and intact specimens, for conducting electromagnetic acoustic emission ex-
periments. The signals collected through the experiment are non-stationary and 
non-linear, and signal characteristics cannot be accurately reflected by using con-
ventional signal processing methods. Therefore, the LMD decomposition was ap-
plied to the electromagnetic acoustic emission signal to convert the complex 
non-stationary signals into stationary signals. The optimal PF component signal 
was selected to establish an AR model, and the autoregressive parameters and mean 
square deviation of the model were extracted as characteristic vectors. The feature 
extraction process of electromagnetic acoustic emission is shown in Figure 1. 

4.1. Experiment of Electromagnetic Acoustic Emission 

The electromagnetic excitation was performed using a Model-10030 program-
mable current source and a CH-130 electromagnet, while the signal was acquired 
using an SAEU2S digital acoustic emission transmitter, as shown in Figure 2. 
The SR150N sensor was used arranged at 10 cm from the crack defect using a 
coupling agent to ensure the integrity of the acquired signals, as shown in Figure 
3. The electromagnetic excitation method is 0 A gradually loaded to 20 A and 
then 20 A down to 0 A. 

Magnesium alloy is widely used in industrial fields such as aerospace and 
transportation. Therefore, this paper selects magnesium alloy AZ31B as the re-
search object. Three thin plate specimens were prepared, respectively: 1# magne-
sium alloy specimen with a pre-fabricated circular hole and crack in the center, 
simulating crack defects around bolt holes of large metal components in indus-
try; 2# magnesium alloy specimen with a pre-fabricated circular hole in the cen-
ter, simulating screw holes in large metal components in industry; 3# magne-
sium alloy specimen without any pre-fabricated holes or cracks in the center. 
The geometry of the magnesium alloy specimen is 300 mm × 100 mm × 1 mm, 
the radius of the circular hole is 5 mm, and the crack size is 15 mm × 1 mm. 

 

 
Figure 1. Flow chart of feature extraction. 
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After multiple repeated experiments, the experimental results are shown in 
Figure 4. 

 

 
Figure 2. Example of a figure caption (figure caption). 

 

 
Figure 3. Arrangement diagram of sensor. 

 

 
Figure 4. Original signal of electromagnetic acoustic emission. 
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4.2. LMD Decomposition and Building AR Model 

The experimentally acquired electromagnetic acoustic emission signals were 
subjected to LMD decomposition, and the decomposition results are shown in 
Figure 5. 

In order to select the optimal PF component signals from the LMD compo-
nent signals for analysis, the energy percentage of each PF component was cal-
culated, and the results are shown in Table 1. From Table 1, we can see that the 
PF1 component signal energy accounts for the most percentage of the original 
signal energy, indicating that it contains more information of the original signal, 
so PF1 is chosen for the study. 

AR models were separately established for the component signals of the three 
specimen signals, and the variation of the value of the criterion function AIC 
with the order of the model was plotted as shown in Figure 6. 

As can be seen from Figure 6, when the model order 5m > , the variation of  
 

 
Figure 5. PF component of electromagnetic acoustic emission signal. (a) PF component of the round hole and cracked metal spe-
cimen; (b) PF component of the round hole metal specimen; (c) PF component of the intact metal specimen. 
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Table 1. The energy percentage of each PF component. 

Energy Percentage PF1 PF2 PF3 PF4 uk 

The round hole and cracked specimen 89.05% 8.52% 1.78% 0.38% 0.28% 

The round hole specimen 83.28% 13.62% 1.21%  1.88% 

The intact specimen 65.76% 22.72% 4.68%  6.84% 

 

 
Figure 6. Variation of AIC value with model order. 

 
AIC values are small and less than AIC values of 1 to 5. Therefore, the optimal 

order of the AR model can be determined as 5. The first 5 autoregressive para-
meters and mean squared error of the AR model for each dataset are extracted as 
feature vectors. 

4.3. Feature Extraction 

Based on the above method, the electromagnetic acoustic emission signals of the 
three specimens were decomposed by using LMD algorithm, and an AR model 
was established for the optimal PF component signals. And the first 5th order 
autoregressive parameters ( )1,2, ,5k kϕ =   and mean square deviation 2

aδ  of 
the AR models were extracted to form a six-dimensional feature vector. Some of 
the AR parameters are shown in Table 2. 

By observing Table 2, it can be found that the numerical changes of the auto-
regressive parameters and mean square deviation characteristics of the same 
type of metal specimens have limited and relatively stable variations. The ranges 
of the autoregressive parameters and mean squared error features for different 
types of metal specimens are slightly different. Among them, the absolute values 
of the autoregressive parameters of the round hole and crack metal specimens  
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Table 2. Partial AR parameters. 

Metal specimen 1ϕ  2ϕ  3ϕ  4ϕ  5ϕ  
2
aδ  

Round hole and cracked −2.9418 2.8767 −0.4928 −0.8290 0.3951 3.89E−05 

Round hole and cracked −2.0383 1.3508 −0.0319 −0.4762 0.2343 2.72E−07 

Round hole and cracked −1.9170 1.0715 0.1635 −0.5093 0.2281 2.38E−07 

Round hole and cracked −2.2122 1.1412 0.3830 −0.2648 −0.0401 1.38E−06 

Round hole and cracked −2.6136 2.4251 −0.6436 −0.3884 0.2402 8.01E−05 

Round hole metal specimen −1.4429 0.1728 0.2142 0.0290 0.0629 1.37E−07 

Round hole metal specimen −1.3133 0.0867 0.0792 0.0313 0.1608 8.72E−07 

Round hole metal specimen −1.3550 0.1593 0.1557 −0.0284 0.0964 1.44E−07 

Round hole metal specimen −1.6210 0.4306 0.2637 −0.1459 0.0944 1.07E−07 

Round hole metal specimen −1.5854 0.2668 0.2323 0.2035 −0.0879 2.42E−06 

Intact metal specimen −1.3174 0.1161 0.1270 −0.0600 0.1500 1.20E−07 

Intact metal specimen −1.2278 −0.1280 0.1618 0.1262 0.1037 2.86E−06 

Intact metal specimen −1.3324 0.1209 0.1216 −0.0315 0.1475 1.56E−07 

Intact metal specimen −1.4085 0.1436 0.1701 0.0361 0.0794 2.06E−07 

Intact metal specimen −1.2386 0.0663 0.0696 −0.0259 0.1534 1.85E−07 

 
are relatively large compared to other metal specimens. Therefore, it is feasible 
and effective to extract electromagnetic acoustic emission signal features by us-
ing LMD and AR modeling methods. 

5. Research Results 
5.1. LSSVM Identification 

The round hole metal specimens with crack defects were considered as one cat-
egory, and a total of 40 sets of experimental data were collected, which category 
label is 1. The round hole metal specimens and intact metal specimens without 
crack defects were considered as one category, and 20 sets of experimental data 
were collected separately, for a total of 40 sets of experimental data, which cate-
gory label is 2. Randomly select 20 sets of data from each category as training 
samples, and the remaining 20 sets as test samples. That is, 40 sets of data are 
used for training and 40 sets of data are used for testing. 

The feature vectors are input into LSSVM for training and testing, and the 
regularization parameters and kernel function parameters are optimized by us-
ing 5-fold cross-validation. The optimization result of the regularization para-
meter is 3.6816γ = , the optimization result of the kernel function parameter is 

2 1.8455σ = , and the identification result is shown in Figure 7. 
From Figure 7, it can be seen that in the recognition of electromagnetic 

acoustic emission signals by LSSVM, there is only one misclassification in the 40 
test samples, and the recognition accuracy of the test set can reach 97.5%. The 
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identification of the circular hole and crack metal specimens is all correct, while 
there is one error in the identification of normal metal specimens, indicating 
that the LSSVM classifier can accurately distinguish metal specimens with crack 
defects from normal metal specimens. 

5.2. Algorithm Comparison and Analysis 

The LSSVM was compared with the BP neural network and SVM, and the com-
parison results are shown in Table 3. It can be seen that the LSSVM is superior 
to both the BP neural network and SVM in terms of recognition accuracy and 
training time. 

The combination of LMD and AR model for electromagnetic acoustic emis-
sion feature extraction is proved to be very effective through experiments. It is 
also proved that LSSVM can effectively solve the small sample and nonlinear 
classification problems, and it is proved that the combination of LMD and 
LSSVM can be effectively used in electromagnetic acoustic emission signal clas-
sification and recognition, which is a new method for electromagnetic acoustic 
emission signal classification and recognition, and can realize the detection of  

 

 
Figure 7. Identification result chart. 

 
Table 3. Comparison of identification results. 

Classifier 
Training  
Sample 

Test  
Sample 

Correct identification 
number 

Recognition  
accuracy 

Training  
time 

LSSVM 40 40 39 97.5% 0.21s 

SVM 40 40 36 90% 1.26s 

BPNN 40 40 34 85% 0.37s 

https://doi.org/10.4236/jcc.2023.115006


C. L. Yang et al. 
 

 

DOI: 10.4236/jcc.2023.115006 81 Journal of Computer and Communications 
 

metal cracks. 

6. Conclusions and Implication 

A method combining LMD, AR model, and LSSVM is proposed to recognize the 
electromagnetic acoustic emission signals, addressing the challenge of extracting 
features from non-stationary signals. Firstly, the LMD algorithm is used to 
transform the electromagnetic acoustic emission signals into stationary compo-
nent signals. Then, the best component signal is selected from the component 
signal by the energy occupation method and an AR model is established. And 
the autoregressive parameters and mean squared error extracted from the model 
are used to construct a six-dimensional feature vector. Finally, the feature vec-
tors were trained and tested using LSSVM, SVM, and BP neural networks. in 
which the test set recognition accuracy of LSSVM can reach 97.5%, the test set 
recognition accuracy of SVM is 90%, and the test set recognition accuracy of BP 
neural network is 85%. It is proved through experiments that the combination of 
LMD, AR model and LSSVM has high superiority in the identification of electro-
magnetic acoustic emission signals, which is a novel method of the recognition of 
electromagnetic acoustic emission signals for the detection of metal cracks. 
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