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Abstract 
This paper proposes a multi-criteria decision-making (MCGDM) method 
based on the improved single-valued neutrosophic Hamacher weighted aver-
aging (ISNHWA) operator and grey relational analysis (GRA) to overcome 
the limitations of present methods based on aggregation operators. First, the 
limitations of several existing single-valued neutrosophic weighted averaging 
aggregation operators (i.e., the single-valued neutrosophic weighted averag-
ing, single-valued neutrosophic weighted algebraic averaging, single-valued 
neutrosophic weighted Einstein averaging, single-valued neutrosophic Frank 
weighted averaging, and single-valued neutrosophic Hamacher weighted av-
eraging operators), which can produce some indeterminate terms in the ag-
gregation process, are discussed. Second, an ISNHWA operator was devel-
oped to overcome the limitations of existing operators. Third, the properties 
of the proposed operator, including idempotency, boundedness, monotonici-
ty, and commutativity, were analyzed. Application examples confirmed that 
the ISNHWA operator and the proposed MCGDM method are rational and 
effective. The proposed improved ISNHWA operator and MCGDM method 
can overcome the indeterminate results in some special cases in existing sin-
gle-valued neutrosophic weighted averaging aggregation operators and 
MCGDM methods. 
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1. Introduction 

Multi-criteria group decision-making (MCGDM) refers to a decision-making 
process in which several decision-makers (DMs) compare and select finite alter-
natives by using specific methods according to the evaluation information of 
multiple criteria [1] [2]. Due to the complex uncertainty of environmental con-
ditions and the cognitive limitations of DMs, traditional quantitative methods 
usually cannot accurately describe decision-making problems. Many scholars 
have focused on fuzzy sets (FSs) [3] [4] [5] and their extensions (e.g., intuitionis-
tic fuzzy sets (IFSs) [6] [7] [8], hesitant fuzzy sets (HFSs) [9] [10] [11], picture fuzzy 
sets (PFSs) [12] [13] [14]), and fuzzy rough sets (FRSs) and so on [15] [16]) to 
solve this issue. However, compared those extensions, neutrosophic sets (NSs) [17] 
[18] [19] characterized by truth-membership, indeterminacy-membership, and 
falsity-membership function can better describe the fuzzy uncertainty of deci-
sion-making provided by DMs. Wang et al. [20] and Ye [21] extended the scope of 
membership degrees from the non-standard unit interval ]0-, 1+[ to standard 
unit interval [0, 1] and defined single-valued neutrosophic sets (SNSs) to further 
promote the application of NSs. 

The single-valued neutrosophic MCGDM and multi-criteria decision-making 
(MCDM) methods have been investigated mainly from three aspects: aggrega-
tion operators [22] [23] [24], information measures [25] [26] [27] [28], and out-
ranking relations [29] [30] [31]. The aggregation operator, which is fundamental 
for the MCGDM and MCDM methods, can effectively present decision-making 
results in most cases. Ye [21] defined the single-valued neutrosophic weighted 
averaging (SNWA) operator and developed the corresponding MCDM method; 
meanwhile, Peng et al. [22] developed the single-valued neutrosophic weighted 
algebraic averaging (SNWAA) and single-valued neutrosophic weighted Einstein 
averaging (SNEWA) operators; Garg [24] defined the single-valued neutrosoph-
ic Frank weighted averaging (SNFWA) operator and applied it to handle MCDM 
problems; moreover, Liu et al. [32] developed an MCGDM method based on the 
single-valued neutrosophic Hamacher weighted averaging (SNHWA) operator. 
Finally, Kilic et al. [33] developed a single-valued neutrosophic leanness assess-
ment methodology based on SNWAA operator and Mishra et al. [34] proposed a 
CRiteria Importance through Intercriteria Correlation (CRITIC) method using the 
SNWAA operator, while Pani et al. developed a multi-objective optimization 
based on ratio analysis with the full multiplicative form (MULTIMOORA) me-
thod based on the SNWAA operator. 

However, existing single-valued neutrosophic weighed averaging operators 
and their corresponding MCGDM and MCDM methods have the following 
limitations. 1) The SNWA [21], SNWAA [22], SNEWA [22], SNFWA [23], and 
SNHWA operators [30] may produce unreasonable results in the aggregation 
process (i.e., indeterminate aggregated terms in some cases). 2) The corresponding 
decision-making methods, including the MCDM method using the SNWA op-
erator [21], the MCDM method using the SNWAA and SNEWA operators [22], 
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the MCDM method using the SNFWA operator [24], and the MCGDM method 
using the SNHWA operator [32] can also produce unreasonable decision-making 
results, which do not allow to the real decision-making. 

In this paper, we present an improved SNHWA (ISNHWA) operator that was 
developed to exceed the limitations of existing aggregation operators. An im-
proved single-valued neutrosophic MCGDM method based on the ISNHWA 
operator and grey relational analysis (GRA) is also proposed to overcome the 
limitations of existing MCGDM and MCDM methods based on aggregation op-
erators. 

The structure of this paper is organized as follows. Section 2 reviews related con-
cepts, including SNSs, single-valued neutrosophic numbers (SNNs), the compari-
son method of SNNs, some existing single-valued neutrosophic weighted averaging 
operators, and GRA. Section 3 analyzes the limitations of existing aggregation op-
erators. Section 4 describes the proposed ISNHWA operator and discusses its 
properties. Section 5 introduces a single-valued neutrosophic MCGDM method 
based on the ISNHWA operator and GRA. Section 6 provides some application 
examples to verify the effectiveness and feasibility of the proposed method. Fi-
nally, conclusions are drawn in Section 7. 

2. Preliminaries 
2.1. Single-Valued Neutrosophic Averaging Operators 

In this section, related concepts, including SNSs, SNNs, the comparison method 
of SNNs, and some existing single-valued neutrosophic averaging operators, are 
reviewed. 

Definition 1 [19]. Let X be a space of points (objects) with a generic element 
in X, denoted by x. An SNS in X is characterized as  

( ) ( ) ( ){ }, , ,S S SS x t x f x k x x X= ∈ , where ( )St x , ( )Sf x , and ( )Sk x  are the 
truth-membership (satisfying ( )0 1St x≤ ≤ ), indeterminacy-membership (sa-
tisfying ( )0 1Sf x≤ ≤ ), and falsity-membership (satisfy ( )0 1Sk x≤ ≤ ) respec-
tively. If X has only one element, then ( ) ( ) ( ), ,S S SS t x f x k x=  is called an 
SNN and is denoted by , ,S t f k= . 

Definition 2 [22]. Assuming that 1S  and 2S  are two SNNs, then their 
comparison can be described as follows: 

1) If ( ) ( )1 2p S p S> , then 1 2S S ; 
2) If ( ) ( )1 2p S p S=  and ( ) ( )1 2q S q S> , then 1 2S S ; 
3) If ( ) ( )1 2p S p S=  and ( ) ( )1 2q S q S= , then 1 2S S= . 

Here ( ) 1 1
3

i i i
i

t f k
p S

+ − + −
=  and ( )i i iq S t k= − ( )1,2i =  denote the score 

and accuracy functions, respectively. 
Definition 3. It is hypothesized that ( ), , 1, 2, ,j j j jS t f k j n= =   is a group 

of SNNs and jω  the corresponding weight of jS , [ ]0,1jω ∈  and 
1

1
n

j
j
ω

=

=∑ . 

In this case, the following single-valued neutrosophic weighted average opera-
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tors can be defined. 
1) SNWA operator [21]: 

( )

( ) ( ) ( )
1 2

1 1 1

SNWA , , ,

1 1 ,1 1 ,1 1j j j

n

n n n

j j j
j j j

S S S

t f k

ω

ω ω ω

= = =

= − − − − − −∏ ∏ ∏



.         (1) 

2) SNWAA operator [22]: 

( ) ( )1 2
1 1 1

SNWAA , , , 1 1 , ,j j j
n n n

n j j j
j j j

S S S t f k
ω ω ω

ω
= = =

= − −∏ ∏ ∏ .      (2) 

3) SNEWA operator [22]: 

( )

( ) ( )

( ) ( ) ( ) ( )

1 2

1 1 1 1

1 1 1 1 1 1

SNEWA , , ,

1 1 2 2
, , .

1 1 2 2

j j j j

j j j jj j

n

n n n n

j j j j
j j j j
n n n n n n

j j j j j j
j j j j j j

S S S

t t f k

t t f f k k

ω

ω ω ω ω

ω ω ω ωω ω

= = = =

= = = = = =

+ − −
=

+ + − − + − +

∏ ∏ ∏ ∏

∏ ∏ ∏ ∏ ∏ ∏



(3) 

4) SNFWA operator [24]: 

( )

( ) ( )

( ) ( )

1 2

1

1 1

1

SNFWA , , ,

1 log 1 1 , log 1 1 ,

log 1 1 1 .

j jj j

jj

n

n n
t f

j j

n
k

j

S S Sω

ω ω

λ λ

ω

λ

λ λ

λ λ

−

= =

=

   
= − + − + −   

   

 
+ − > 

 

∏ ∏

∏



       (4) 

5) SNHWA operator [32]: 

( )
( )( ) ( )

( )( ) ( ) ( )

( )( )( ) ( )

( )( )( ) ( )

1 1
1 2

1 1

1

1 1

1

1 1

1 1 1
SNHWA , , , ,

1 1 1 1

,
1 1 1 1

.
1 1 1 1

j j

j j

j

j j

j

j j

n n

j j
j j

n n n

j j
j j

n

j
j

n n

j j
j j

n

j
j

n n

j j
j j

t t
S S S

t t

f

f f

k

k k

ω ω

ω ω ω

ω

ω ω

ω

ω ω

γ

γ γ

γ

γ γ

γ

γ γ

= =

= =

=

= =

=

= =

+ − − −
=

+ − + − −

+ − − + −

+ − − + −

∏ ∏

∏ ∏

∏

∏ ∏

∏

∏ ∏



  (5) 

In Equation (5), 0γ > . If 1γ = , then the SNHWA operator would be re-
duced to the SNWAA operator in Equation (2); if 2γ = , then the SNHWA op-
erator would be reduced to the SNEWA operator in Equation (3). 

2.2. Grey Relational Analysis 

GRA is a method to quantify the grey and fuzzy information association rela-
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tionship between sequences, which is suitable to solve the problem with uncer-
tainty information or insufficient information. The comparison sequence and 
the reference sequence are determined firstly, and then the correlation degree 
between the sequences can be obtained based on the fitting degree of the geome-
try between different sequence curves. The more similar the geometry, the 
greater the degree of correlation between them. The mathematical expression for 
the grey correlation coefficients is presented as follows [35]: 

( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
0 0

0 0

min min max max

max max
i ii k i k

i
i ii k

k k k k
k

k k k k

ε ε ς ε ε
τ

ε ε ς ε ε

− + −
=

− + −
.      (6) 

where ( )0,1ς ∈  denotes the distinguishable coefficient, and ( ) ( )0 ik kε ε−  
denotes the absolute distance between the comparison values and the reference 
values. For the study of the specific value of distinguishable coefficient, most 
scholars have verified the fluctuation hours of the sequence data through exam-
ples, and ς  should take a larger value in the range (0, 1); otherwise, when the 
sequence data fluctuates greatly, it should take a smaller value. 0.5ς =  is de-
termined in this paper. 

3. Limitations of Existing Single-Valued Neutrosophic 
Weighted Average Operators 

In this section, the limitations of existing single-valued neutrosophic weighted 
average operators (i.e., the SNWA [21], SNWAA [22], SNEWA [22], SNFWA 
[24], and SNHWA [32] operators) are discussed. 

1) It is assumed that 1 1,0,0S = , 2 0,1,0S = , and 3 0,0,1S =  are three 
SNNs, and that their weight vector is ( )T0,0,1ω = . Based on the SNWA operator 
in Equation (1), ( ) 0 0 1 0 0 1 0 0 1

1 2 3SNWA , , 1 0 1 1 ,1 1 0 1 ,1 1 1 0S S Sω = − × × − × × − × ×  
can be obtained. Since indeterminate value (00) can be found in the aggregated 
results, the SNWA operator [21] is unreasonable in some cases. 

2) It is assumed that 1 1,0,0.2S = , 2 0.3,0.1,0S = , and 3 0.2,0.3,0.5S =  
are three SNNs, and that their weight vector is ( )T0,0,1ω = . Based on the 
SNWAA operator in Equation (2),  

( ) 0 0 1 0 0 1 0 0 1
1 2 3SNWA , , 1 0 0.3 0.2 ,0 0.1 0.3 ,0.2 0 0.5S S Sω = − × × × × × ×  can be 

obtained. The three terms in the aggregated results all include 00, which is an 
indeterminate value: the SNWAA operator [22] has limitations in some cases. 

3) It is assumed that 1 0.5,0.3,0.4S = , 2 0.3,0,0.5S = , and  

3 0.4,0.4,0S =  are three SNNs, and that their weight vector is ( )T1,0,0ω = . 
Based on the SNEWA operator in Equation (3), two terms 1 0 00.3 0 0.4× ×  and 

1 0 00.4 0.5 0× ×  can be found in the aggregated results. Since they are indeter-
minate values, the SNEWA operator [22] is unreasonable in some cases. 

4) It is assumed that 1 1,0,0.5S =  and 2 0.5,0.3,0.4S =  are two SNNs, 
and that their weight vector is ( )T0,1ω = . Based on the SNFWA operator in 
Equation (4), two indeterminate terms, i.e., ( )0 0.50 1λ× −  and 0 10 0.3× , can be 
found in the aggregated results: the SNFWA operator [24] is unreasonable in 
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some cases. 
5) It is assumed that 1 1,0.2,0.3S = , 2 0.5,0,0.5S = , and 3 0.5,0.6,0S = , 

and that weight vector is ( )T1,0,0ω = . Based on the SNHWA operator in Equa-
tion (5), two indeterminate terms ( 1 0 00.2 0 0.6× ×  and 1 0 00.3 0.5 0× × ) can be 
obtained in the aggregated results: the SNHWA operator [32] is unreasonable in 
some cases. 

4. The Improved Single-Valued Neutrosophic Weighted  
Average Operator 

In this section, we defined an ISNHWA operator that can overcome the limita-
tions of the SNWA, SNWAA, SNEWA, SNFWA, and SNHWA operators. 

Definition 4. Assuming that ( )( ), , 1, 2, ,j j j jS t f k j n= =   is a group of 

SNNs and jω  the weight of jS , [ ]0,1jω ∈  and 
1

1
n

j
j
ω

=

=∑ , then the ISNHWA 

operator can be defined as a function nS S→ : 

( )

( )( ) ( )

( )( ) ( ) ( )

( )( )

( )( ) ( ) ( )( )

1 2

1 1

1 1

1

1 1

ISNHWA , , ,

11 1 1 1 1
,

11 1 1 1 1 1

11 1 1 1

11 1 1 1 1 1 1

j j

j j

j

jj

n

n n

j j
j j

n n

j j
j j

n

j
j

n n

j j
j j

S S S

t t

t t

f

f f

ω

ω ω

ω ω

ω

ωω

γ ρ
ρ

γ γ ρ
ρ

γ ρ
ρ

γ γ ρ
ρ

= =

= =

=

= =

  
+ − − − − −     =

  
+ − + − − − −     

  
− − − −     

  
+ − + − − − − −    

∏ ∏

∏ ∏

∏

∏ ∏



( )( )

( )( )( ) ( ) ( )( )
1

1 1

,

11 1 1 1
.

11 1 1 1 1 1 1 1

j

j j

n

j
j

n n

j j
j j

k

k k

ω

ω ω

γ ρ
ρ

γ γ ρ
ρ

=

= =




  
− − − −     

  
+ − − + − − − − −     

∏

∏ ∏

  (7) 

In the above equation, 0γ >  and 0 1ρ< < . 
1) If 1γ = , then the ISNHWA operator can be reduced to the improved sin-

gle-valued neutrosophic weighted average (ISNWA) operator: 

( )

( ) ( )( )

( )( )

1 2

1 1

1

ISNWA , , ,

1 11 1 , 1 1 1 1 ,

11 1 1 1 .

jj

j

n

n n

j j
j j

n

j
j

S S S

t f

k

ω

ωω

ω

ρ ρ
ρ ρ

ρ
ρ

= =

=

   
= − − − − − −   

   

 
− − − − 

 

∏ ∏

∏



       (8) 

2) If 2γ = , then the ISNHWA operator can be reduced to the improved sin-
gle-valued neutrosophic Einstein weighted average (ISNEWA) operator: 
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( )

( ) ( )

( ) ( )

( )( )

( ) ( )( )

( )( )

1 2

1 1

1 1

1

1 1

1

ISNEWA , , ,

11 1 1 1
,

11 1 1 1

12 1 1 1 1
,

12 1 1 1 1

12 1 1 1 1

j j

j j

j

jj

j

n

n n

j j
j j

n n

j j
j j

n

j
j

n n

j j
j j

n

j
j

S S S

t t

t t

f

f f

k

ω

ω ω

ω ω

ω

ωω

ω

ρ
ρ

ρ
ρ

ρ
ρ

ρ
ρ

ρ
ρ

= =

= =

=

= =

=

 
+ − + − − 

 =
 

+ + − − − 
 

  
− − − −     

 
− + − − − − 

 

  
− − − −     

∏ ∏

∏ ∏

∏

∏ ∏

∏



( ) ( )( )
1 1

.
12 1 1 1 1 jj

n n

j j
j j

k k
ωω

ρ
ρ= =

 
− + − − − − 

 
∏ ∏

         (9) 

If 1ρ = , then the ISNHWA operator in Equation (9) can be reduced to the 
SNHWA operator in Equation (5). For convenience, in this study we considered 

0.98ρ =  and 3γ = . Apparently, the larger the value of ρ , the higher will be 
the similarity degree between the aggregated results using the ISNHWA operator 
and those using the SNHWA operator. 

Here, we will utilize the proposed ISNHWA operator to handle the problems 
presented in Section 3, overcoming the limitations of the SNWA [21], SNWAA 
[22], SNEWA [22], SNFWA [24], and SNHWA [32] operators. The corres-
ponding results are summarized below. 

1) We assumed that 1 1,0,0S = , 2 0,1,0S = , and 3 0,0,1S =  were three 
SNNs, and that their weight vector was ( )T0,0,1ω = . In this case, using the 
ISNHWA operator, we obtained ( )1 2 3ISNHWA , , 0,0,1S S Sω = , which is in 
accord with the actual decision-making process: the ISNHWA operator can 
overcome the limitations of the SNWA operator [21]. 

2) We assumed that 1 1,0,0.2S = , 2 0.3,0.1,0S = , and 3 0.2,0.3,0.5S =  
were three SNNs, and that their weight vector was ( )T0,0,1ω = . In this case, us-
ing the ISNHWA operator, we obtained ( )1 2 3ISNHWA , , 0.2,0.3,0.5S S Sω = , 
which is in accord with the actual decision-making process: the ISNHWA operator 
overcomes the shortcomings of the SNWAA operator [22]. 

3) We assumed that 1 0.5,0.3,0.4S = , 2 0.3,0,0.5S = , and  

3 0.4,0.4,0S =  were three SNNs, and that their weight vector was  
( )T1,0,0ω = . In this case, using the ISNHWA operator, we obtained  

( )1 2 3ISNHWA , , 0.5,0.3,0.4S S Sω = , which is also in accord with the actual 
decision-making process: the ISNHWA operator overcomes the limitations of 
the SNEWA operator [22]. 

4) We assumed that 1 1,0,0.5S =  and 2 0.5,0.3,0.4S =  were two SNNs, 
and that their weight vector was ( )T0,1ω = . In this case, using the ISNHWA 
operator, we obtained ( )1 2 3ISNHWA , , 0.5,0.3,0.4S S Sω = , which is in accord 
with the actual decision-making process: the ISNHWA operator overcomes the 
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limitations of the SNFWA operator [24]. 
5) We assumed that 1 1,0.2,0.3S = , 2 0.5,0,0.5S = , and 3 0.5,0.6,0S =  

are three SNNs, and that their weight vector was ( )T1,0,0ω = . In this case, us-
ing the ISNHWA operator, we obtained ( )1 2 3ISNHWA , , 1,0.2,0.3S S Sω = , 
which is in accord with the actual decision-making process: the ISNHWA oper-
ator overcomes the shortcomings of the SNHWA operator [32]. 

To sum up, the ISNHWA operator overcomes the shortcomings of the SNWA 
[21], SNWAA [22], SNEWA [22], SNFWA [24], and SNHWA [32] operators. 

Based on Definition 4, some properties of the ISNHWA operator will be dis-
cussed below. 

Theorem 1 (Idempotency). Let ( )1,2, ,jS j n=   be a group of SNNs and 

jω  be the weight of jS  ( [ ]0,1jω ∈  and 
1

1
n

j
j
ω

=

=∑ ). If  

1 2 , ,nS S S S t f k= = = = = , then ( )1 2ISNHWA , , , nS S S Sω = . 

Proof. Since 1 2 , ,nS S S S t f k= = = = = : 

( )

( )( ) ( )

( )( ) ( ) ( )

( )( )

( )( )( ) ( ) ( )( )

1 1

1 1

1

1 1

1 2ISNHWA , , ,

11 1 1 1 1
,

11 1 1 1 1 1

11 1 1 1

11 1 1 1 1 1 1 1

n n
i i

i i

n n
i i

i i

n
i

i

n n
i i

i i

nS S S

t t

t t

f

f f

ω

ω ω

ω ω

ω

ω ω

γ ρ
ρ

γ γ ρ
ρ

γ ρ
ρ

γ γ ρ
ρ

= =

= =

=

= =

∑ ∑

∑ ∑

∑

∑ ∑

  
+ − − − − −     =

  
+ − + − − − −     

  
− − − −      

  
+ − − + − − − − −      



( )( )

( )( )( ) ( ) ( )( )

( ) ( )
( ) ( )( )

( )( )
( )( ) ( )

( )( )
( )( ) ( )

1

1 1

,

11 1 1 1

11 1 1 1 1 1 1 1

1 1 1 11 1 1
, ,

1 1 1 1 1 1 1 1 1 1 1 1

, , .

n
i

i

n n
i i

i i

k

k k

f kt t
t t f f k k

t f k

ω

ω ω

γ ρ
ρ

γ γ ρ
ρ

γ γγ
γ γ γ γ γ γ

=

= =

∑

∑ ∑



  
− − − −      

  
+ − − + − − − − −      

− − − −+ − − −
=

+ − + − − + − − + − + − − + −

=
 

Theorem 2 (Boundedness). Let ( )1,2, ,jS j n=   be a group of SNNs. If 

( )min ,max ,max 1,2, ,j j jS t f k j n− = =   and  

( )max ,min ,min 1,2, ,j j jS t f k j n+ = =  , then  

( )1 2ISNHWA , , , nS S S S Sω
− +≤ ≤ . 

Proof. Assuming that ( )( )
1

1 1 j
n

j
j

x t
ω

γ
=

= + −∏ , ( )
1

11 1 1 j
n

j
j

y t
ω

ρ
ρ =

 
= − − − 

 
∏ , 

and ( ) ( ) ( ) ( )1 2ISNHWA , , , , ,n j j jS S S p t p f p kω = , then  
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( ) ( ) ( )
1

1 1j
x yp t

x y x y
γ

γ γ
−

= = −
+ − + −

. 

Since 
( )( )

( )
1

1

1 1

11 1 1

j

j

n

j
j

n

j
j

t
x
y

t

ω

ω

γ

ρ
ρ

=

=

+ −
=

 
− − − 

 

∏

∏
 and x

y
 is a monotonous increasing 

function of jt , also ( )jp t  is a monotonous increasing function of jt . Thus, 

( )
( )( ) ( )

( )( ) ( ) ( )

1 1

1 1

11 1 min 1 1 1 min

11 1 min 1 1 1 1 min

min

j j

j j

n n

j j
j j

j n n

j j
j j

j

t t
p t

t t

t

= =

= =

  
+ − − − − −     ≥

  
+ − − − − − −     

=

∏ ∏

∏ ∏

ω ω

ω ω

γ ρ
ρ

γ γ ρ
ρ

 

and 
( )

( )( ) ( )

( )( ) ( ) ( )

1 1

1 1

11 1 max 1 1 1 max

11 1 max 1 1 1 1 max

max .

j j

j j

n n

j j
j j

j n n

j j
j j

j

t t
p t

t t

t

ω ω

ω ω

γ ρ
ρ

γ γ ρ
ρ

= =

= =

  
+ − − − − −     ≤

  
+ − − − − − −     

=

∏ ∏

∏ ∏
 

Similarly, we can prove that ( )min maxj j jf p f f≤ ≤  and  

( )min maxj j jk p k k≤ ≤ . Hence,  

( )1 2min 1 max 1 max ISNHWA , , , max 1 minj j j n j jt f k S S S t fω+ − + − ≤ ≤ + −  

1 min jk+ − , i.e., ( ) ( )( ) ( )1 2ISNHWA , , , np S p S S S p Sω
− +≤ ≤ . So  

( )1 2ISNHWA , , , nS S S S Sω
− +≤ ≤  is true. 

Theorem 3 (Monotonicity). Let ( )1,2, ,jS j n=   and ( )1,2, ,jS j n=   be 
two groups of SNNs. If j jS S≤ , j jt t≤ , j jf f≥ , and ( )1,2, ,j jk k j n≥ =  , 
then ( ) ( )1 2 1 2ISNHWA , , , ISNHWA , , ,n nS S S S S Sω ω≤  . 

Proof. Since j jt t≤ , j jf f≥  and ( )1,2, ,j jk k j n≥ =  , based on Theorem 
2, we can obtain ( )( ) ( )( )1 2 1 2ISNHWA , , , ISNHWA , , ,n np S S S p S S Sω ω≤  . 
Therefore, ( ) ( )1 2 1 2ISNHWA , , , ISNHWA , , ,n nS S S S S Sω ω≤  . 

Theorem 4 (Commutativity). Let ( )1,2, ,jS j n=   be a group of SNNs. If 
( )1,2, ,jS j n=

  is an arbitrary permutation of jS , then  
( ) ( )1 2 1 2ISNHWA , , , ISNHWA , , ,n nS S S S S Sω ω=   

  . 
The process of proof is omitted here. 

5. Improved Single-Valued Neutrosophic MCGDM Method 
Based on the ISNHWA Operator and GRA 

Let { }1 2, , , nS S S S=   be a group of alternatives, { }1 2, , , mC C C C=   a group 

of criteria, and { }1 2, , , zD D D D=   a group of DMs. The weight vectors of the 

criteria and DMs will be ( )T
1 2, , , mw w w w=   and ( )T

1 2, , , zλ λ λ λ=  , respec-

tively, and satisfy the following conditions: [ ], 0,1j lw λ ∈ , 
1

1
m

j
j
ω

=

=∑ , and 
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1
1

z

l
l
λ

=

=∑ . It is assumed that , ,l l l l
ij ij ij ijR t f k=   

( )1, 2, , ; 1, 2, , ; 1, 2, ,i n j m l z= = =    is the criteria value provided by the 
DM lD  for the alternative iS  under criterion jC . The steps involved in the 
application of the new MCGDM method, which is based on such promises, are 
described in the following subsections. Notably, if there is only one DM, then 
Step 2 can be omitted: the single-valued neutrosophic MCDM method is a spe-
cial case of the MCGDM method. Moreover, if the weight information of criteria 
is completely known, then Step 3 can be omitted here; otherwise, if the weight 
information of criteria is completely unknown, the weight of criteria will be de-
termined using the grey correlation analysis method. The steps for selecting the 
alternative(s) are provided in the following and the flowchart of the proposed 
method is shown in Figure 1 and Algorithm 1 respectively. 

Step 1. Normalization of the decision matrix. 
Since the criteria may be of the cost or benefit type, the criteria normalization 

method can be determined as: 

( )
, for the benefit criteria

, for the cost criteria

l
ij jl

cij l
ij j

R C
R

R C

= 


, ( )1,2, , ; 1, 2, ,i n j m= =  ,   (10) 

where ( ) ( ), ,
cl l l l

ij ij ij ijR k f t=  denotes the complement of l
ijS . 

Step 2: Calculation of the comprehensive evaluation values of all DMs. 
From the ISNHWA operator, let 0.98ρ =  and 3γ = . In this case, the ag-

gregated comprehensive evaluation values ( )1,2, , ; 1, 2, ,ij i n j mδ = =   of all  
 

 
Figure 1. Flowchart of the proposed method. 
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Algorithm 1. The score function and the accuracy function values of each alternative. 

Input: The single-valued neutrosophic decision matrix ( ) ( )1,2, ,l
ij n m

R l z
×

=  , the 

alternatives is { }1 2, , , nS S S S=  , and the distinguish coefficient is 0.5ς = . 

Output: The score function and the accuracy function values of each alternative. 

function the score function and the accuracy function values of each alternative 

( )( ), ,l
ij n m

R ς ρ
×

 

for each DM 1 z= →  do 

function the general decision matrix ( )ij n m
δ

×
 

calculate the aggregated decision matrix ( )ij n m
δ

×
 in Equation (11) 

end for 

return ( )ij n m
δ

×
 

end function 

function the weight of criteria jw  

for each criterion 1j m= →  do 

calculate the arithmetic mean value of the alternative under criteria iδ  

end for 

calculate the iδ  in Equation (12) 

return iδ  

for each alternative under criterion ( ), 1 1,2, , ; 1,2, ,i j i n j m= = =  , determine 

the grey relation coefficient ( ),i ijτ δ δ  do 

Calculate the ( ),i ijτ δ δ  in Equation (13), calculate the grey correlation degree 

( ),i ijπ δ δ  in Equation (14), calculate the weight of criteria jw  in Equation (15) 

end for 

return jw  

end function 

for each alternative ( )1,i zeros n←  do 

calculated the aggregated overall values iδ  of each alternative in Equation (16), 
calculated the score function and accuracy function values of each alternative ( )ip δ  

and ( )iq δ  in Equation (17) 

end for 

return ( )ip δ  and ( )iq δ  

end function 
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DMs are the following: 

( )

( ) ( )

( ) ( )

( )( )

( )( )

1 2

1 1

1 1

1

, , ISNHWA , , ,

11 2 1 1 1 0.98
0.98

,
11 2 2 1 1 1 0.98

0.98

13 1 1 1 0.98 1
0.98

1 1

l l

l l

l

l

z
ij ij ij ij ij ij ij

z z
l l
ij ij

l l

z z
l l
ij ij

l l

z
l

ij
l

l
ij

t f k R R R

t t

t t

f

f

λ

λ λ

λ λ

λ

λ

δ

γ

= =

= =

=

= =

  + − − − −  
  =

  + + − − −  
  

  − − − −  
  

+ −

∏ ∏

∏ ∏

∏



( )( )

( )( )

( )( ) ( )( )

1 1

1

1 1

,
12 1 1 1 0.98 1

0.98

13 1 1 1 0.98 1
0.98

.
11 2 1 2 1 1 1 0.98 1

0.98

l

l

l l

z z
l

ij
l l

z
l
ij

l

z z
l l
ij ij

l l

f

k

k k

λ

λ

λ λ

= =

=

= =

  + − − − −  
  

  − − − −  
  
  + − + − − − −  

  

∏ ∏

∏

∏ ∏

  (11) 

Step 3: Determination of the weight of criteria 
Grey correlation analysis describes the proximity between comparison se-

quence (CS) and reference sequence (RS), which can be measured by the grey 
correlation coefficient [36] [37]. First, we will use the corresponding column of 
the comprehensive decision-making matrix provided by all DMs as the CS, i.e., 

( )( )1 2, , , 1, 2, ,j j j nj j mδ δ δ δ= =  . Second, the RS is the key factor to deter-
mine the weight of criteria. According to the maximum entropy principle, the 
weight of all criteria is equal without any prior information. Then the RS can be 
considered as the arithmetic mean value of the alternative under all criteria and 
denoted as: ( )1 2, , , nδ δ δ δ=  , where 

( )

( ) ( )

( ) ( )

( )( )

( )( )

1 1 2

1 1

1 1

1 1

1 1

1

1

1

1

ISNHWA , , ,

11 2 1 1 1 0.98
0.98

,
11 2 2 1 1 1 0.98

0.98

13 1 1 1 0.98 1
0.98

11 1 2 1 1
0.98

i n i i im

m mn n
ij ij

j j

m mn n
ij ij

j j

m n

ij
j

m n
ij

j

t t

t t

f

f

δ δ δ δ

γ

= =

= =

=

=

=

  
+ − − − −     =

  
+ + − − −     

  
− − − −     

+ − + −

∏ ∏

∏ ∏

∏

∏



( )( )

( )( )

( )( ) ( )( )

1

1

1

1

1 1

1 1

,
1 0.98 1

13 1 1 1 0.98 1
0.98

.
11 2 1 2 1 1 1 0.98 1

0.98

m n

ij
j

m n

ij
j

m mn n

ij ij
j j

f

k

k k

=

=

= =

  
− − −     

  
− − − −     

  
+ − + − − − −     

∏

∏

∏ ∏

  (12) 

Then the corresponding grey correlation coefficient between iδ  and ijδ  
can be obtained as: 
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( )
( ) ( )

( ) ( )
min min , max max ,

,
, max max ,

i ij i ijj i j i
i ij

i ij i ijj i

d d

d d

δ δ ς δ δ
τ δ δ

δ δ ς δ δ

+
=

+
.        (13) 

where ( ) ( )1,
3 ij ij iji i ii ijd t t f f k kδ δ δδ δ δδ δ = − + − + − . ( )0 1ς ς< <  represents  

the distinguished degree. The smaller the parameter value is, the higher the dis-
tinguished degree between the correlation coefficients is. In general, if the se-
quence data fluctuation is small, then the parameter should take a larger value in 
the interval of (0, 1); otherwise, when the sequence data fluctuation is large, the 
smaller value should be determined. Based on the empirical value, 0.5ρ =  will 
be used in this paper. 

Then the grey correlation degree between the RS and the CS can be deter-
mined: 

( ) ( )
1

1, ,
n

j i ij
in

π δ δ τ δ δ
=

= ∑ .                   (14) 

The RS is the aggregation information of each alternative that the weight of all 
criteria is equal, which can be regarded as a virtual criterion. Similar to the con-
sensus problem in group decision-making, the higher the correlation between 
the DM and the consensus opinion of the group, the higher the weight should be 
given to the corresponding DM. Therefore, the weight of criteria can be deter-
mined as: 

( )
( )

1

,

,

j
j m

j
j

w
π δ δ

π δ δ
=

=

∑
.                      (15) 

Step 4: Calculation of the overall values for each alternative. 
From Step 2, the aggregated overall values ( )1,2, ,i i nδ =   of each alterna-

tive can be determined using the ISNHWA operator as follows: 

( )1 2, , ISNHWA , , ,i i i i w i i imt f k R R Rδ = =  .           (16) 

Step 5: Calculation of the score function and of the accuracy function. 
The score function ( )ip δ  and accuracy function ( )( )1, 2, ,iq i nδ =   can 

be determined from Definition 2. 
Step 6. Ranking of the alternatives. 
The larger the value of ( )ip δ , the better is the alternative iS . Based on Step 

4, the final ranking can be obtained. 

6. Application Examples 

With the rapid development of urbanization and industrialization in China, the 
environmental problems are becoming more and more serious. Under the back-
ground of rapid global climate change, the surface wind speed in most regions 
has decreased, and the air quality has touched the red line many times, which 
has seriously damaged the health of the people. Especially in autumn and winter, 
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the degree of air pollution and the number of air pollution days increase more, 
so it is very important to predict and estimate the air quality. The 19th Asian 
Games 2022 will be held in Hangzhou during September 10-25. In order to forecast 
the air quality during the 19th Asian Games, the local environmental department 
intends to present a comprehensive evaluation of the air quality in Hangzhou dur-
ing September 2018, 2019, 2020, and 2021. To this aim, three air-quality monitor-
ing stations (i.e., three DMs) can be considered: { }1 2 3, ,D D D D= , and the cor-
responding weight of three stations is ( )T0.31,0.4,0.29λ = . The monthly air 
quality during September 2018, 2019, 2020, and 2021 can be denoted as alterna-
tives: { }1 2 3 4, , ,S S S S S= =  {September 2017, September 2018, September 2019, 
September 2020}. From the Implementing Details for Urban Environmental 
Comprehensive Treatment and Quantitative Examination (General Office of 
State Environmental Protection Administration (GOSEPA, 2006), the important 
criteria for evaluation can be denoted instead as  

{ } { }1 2 3 4 5 2 2.5 10 2 3, , , , NO ,PM ,PM ,SO ,CO,OC C C C C C= = . 
For the data in experiment, all members of the monitoring station department 

should be provided the evaluation information in linguistic terms based on the 
actual data for attributes of air quality and DMs’ knowledges respectively. The 
transformation rules between the linguistic terms and SNNs are presented in 
Table 1. For example, one DM in 1D  provides the language evaluation infor-
mation “higher” for the CO2 emissions in 2018, then the corresponding SNN is 

0.8,0.1,0.2 . Second, according to the evaluation information for all DMs in 

1D , the average values for three parameters can be obtained as 0.5,0.3,0.2 . 
Finally, since the criterion for CO2 emissions is cost-type, then the normalized 
value of evaluation information is 0.2,0.3,0.5  based on Equation (10). 

In order to rank the four alternatives, the measured values can be converted to 
SNNs based on the monitoring stations: ( ) ( )

4 3
1, 2,3l l

ijR R l
×

= = . 

1

0.2,0.3,0.5 0.5,0.3,0.5 0.4,0.4,0.3 0.2,0.1,0.3 0.5,0.1,0.2 0.3,0.1,0.3
0.2,0.4,0.4 0.2,0.4,0.4 0.4,0.3,0.3 0.3,0.1,0.2 0.4,0.2,0.1 0.5,0.2,0.2
0.5,0.4,0.3 0.4,0.3,0.3 0.5,0.3,0.2 0.4,0.2,0.3 0.4,0.2,0.3 0.4,0.2,0.

R =
3

0.3,0.5,0.2 0.4,0.3,0.3 0.5,0.2,0.3 0.1,0.4,0.3 0.3,0.3,0.3 0.3,0,0.3

 
 
 
 
  〈 〉 

; 

 
Table 1. The transformation rules used for the evaluation of air quality. 

Linguistic term SNN 

Very high (0.9, 0, 0.1) 

High (0.8, 0.1, 0.2) 

Medium high (0.7, 0, 0.1) 

Medium (0.5, 0.1, 0.1) 

Medium low (0.4, 0, 0.1) 

Low (0.3, 0.1, 0.2) 

Very low (0.2, 0, 0.1) 
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2

0.3,0.5,0.1 0.1,0.5,0.4 0.2,0.4,0.4 0.2,0.4,0.2 0.5,0.1,0.1 0.3,0.1,0.2
0.2,0.6,0.2 0.4,0.3,0.3 0.3,0.4,0.3 0.4,0.1,0.1 0.6,0,0.2 0.4,0.1,0
0.5,0.5,0.2 0.5,0.4,0.3 0.5,0.6,0.1 0.3,0.2,0.2 0.4,0,0.1 0.4,0.2,0.2
0.4,0

R =

.5,0.1 0.4,0.4,0.3 0.4,0.3,0.3 0.2,0.3,0.2 0.5,0.1,0.2 0.5,0.1,0.2

 
 
 
 
  
 

; 

3

0.3,0.5,0.2 0.5,0.4,0.3 0.4,0.2,0.3 0.2,0.1,0.3 0.4,0.1,0 0.5,0.5,0
0.1,0.6,0.3 0.5,0.4,0.4 0.6,0.2,0.2 0.3,0.2,0.4 0.5,0.1,0.1 0.4,0.2,0.1
0.5,0.3,0.1 0.5,0.2,0.3 0.5,0.6,0.2 0.4,0.1,0.3 0.5,0.2,0.2 0.4,0,0.1
0.6,0

R =

.5,0.1 0.5,0.3,0.3 0.4,0.5,0.2 0.5,0,0.2 0.6,0.1,0.1 0.4,0.1,0

 
 
 
 
  
 

. 

Step 1. Normalization of the decision matrix. 
Since these criteria are of the cost type, the normalized decision matrix can be 

obtained from Equation (9): l lR R= . 
Step 2. Calculation of the comprehensive evaluation values of all DMs. 
Based on the MCGDM method using the ISNHWA operator, and considering 

0.98ρ =  and 3γ =  (see Equation (10)), the comprehensive values of all DMs 
can be determined as: 

0.269,0.4712,0.4452 0.3442,0.4601,0.4032 0.3209,0.4226,0.3291
0.1706,0.5081,0.5346 0.3695,0.4403,0.3577 0.4236,0.4067,0.301

0.5,0.4612,0.4074 0.4698,0.4067,0.3 0.5,0.4911,0.4878
0.4323,0.5,0.5023 0.4297,0.429

R =

8,0.3368 0.4318,0.41,0.309

0.2,0.3023,0.1788 0.4718,0.2143,0.1026 0.36,0.2856,0.1722
0.3404,0.246,0.1261 0.5125,0.1203,0.0513 0.4318,0.2824,0.1571
0.3604,0.296,0.1652 0.4297,0.1434,0.0655 0.4,0.1865,0.09








.
12

0.2579,0.2378,0.1369 0.4723,0.268,0.1443 0.4109,0.1194,0.0516






  

Step 3. Determination of the weight of criteria 
Form Equation (11)-Equation (12), the reference sequence is determined as: 

1 0.3286,0.4327,0.2479f = , 2 0.3766,0.4052,0.2122f = ,  

3 0.4442,0.404,0.2114f =  and 4 0.4068,0.4014,0.2078f = . The grey rela-
tional coefficient can be obtained: 

( )
0.6788 0.8071 1 0.6442 0.5042 0.7279
0.4380 0.8239 0.9158 0.6944 0.4621 0.7559

,
0.6640 0.9589 0.5644 0.7490 0.5630 0.5945
0.5648 0.8363 0.9209 0.5933 0.7175 0.5472

i ijf Rτ

 
 
 =
 
 
 

. 

Based on Equation (13)-Equation (14), the grey correlation degree between 
the RS and the CS can be obtained as: ( )1, 0.5864π δ δ = , ( )2, 0.8565π δ δ = , 
( )3, 0.8503π δ δ = , ( )4, 0.6702π δ δ = , ( )5, 0.5617π δ δ = , and  
( )6, 0.6563π δ δ = . Then the weight of criteria can be determined as:  

1 0.1402w = , 2 0.2048w = , 3 0.2033w = , 4 0.1603w = , 5 0.1343w = , and  

6 0.1571w = . 
Step 4. Calculation of the overall values for each alternative. 
Based on the ISNHWA operator and Equation (15), the overall aggregated 

values for each alternative can be obtained: 1 0.3262,0.4381,0.2593δ = ,  
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2 0.3785,0.4137,0.2235δ = , 3 0.4472,0.4130,0.2271δ = , and  

4 0.4066,0.4063,0.2150δ = . 
Step 5. Determination of the score and accuracy functions. 
From the comparison method in Definition 2, the score value of each alterna-

tive can be obtained: ( )1 0.5430p δ = , ( )2 0.5804p δ = , ( )3 0.6024p δ = , and 
( )4 0.5951p δ = . 
Step 6. Ranking of the alternatives. 
Since ( ) ( ) ( ) ( )3 4 2 1p p p pδ δ δ δ> > > , 3 4 2 1S S S S   . The best and 

worst alternatives would be 3S  and 1S . 
In order to further explore the effectiveness of the proposed method, the sen-

sitivity analysis of different parameters will be carried out below to explore the 
influence of different parameter value on the final decision-making results. 

If 0.98ρ = , 0.5ς =  and 0 10γ< < , then the corresponding weight and the 
final rankings are shown in Figure 2 & Figure 3. Obviously, the change of pa-
rameter γ  have less impact on 4w  and more effects on other five weights. 
However, according to the results in Figure 3, as the parameter value γ  be-
come larger, the final ranking of four alternatives gradually tends to stabilize, 
i.e., 3 4 2 1S S S S   . The best and worst alternatives would be 3S  and 1S . If 

0.98ρ = , 0 1ς< < , and 3γ = , then the corresponding weight and the final 
rankings are shown in Figure 4 & Figure 5. From Figure 4, the change of para-
meter ς  have more impacts on 2w  and 3w , and less effects on other four 
weights. Moreover, the different values of the parameter ς  do not affect the 
ordering of four alternatives, and the final ranking is always 3 4 2 1S S S S   . 
If 0 1ρ< < , 0.5ς = , and 3γ = , then the corresponding weight and the final 
rankings are shown in Figure 6 & Figure 7. According to Figure 5, different 
values of the parameter ρ  have less effect on the weights, and the final rankings 
of four alternatives are not affected by the parameter ρ . 

Therefore, from the analysis presented above, although the parameter changes  
 

 
Figure 2. Weight with 0.98ρ = , 0.5ς =  and 0 10γ< < . 
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Figure 3. Final rankings with 0.98ρ = , 0.5ς =  and 0 10γ< < . 

 

 
Figure 4. Weights with 0.98ρ = , 0 1ς< < , and 3γ = . 

 

 
Figure 5. Final rankings with 0.98ρ = , 0 1ς< < , and 3γ = . 
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Figure 6. Weights with 0 1ρ< < , 0.5ς = , and 3γ = . 

 

 
Figure 7. Final rankings with 0 1ρ< < , 0.5ς = , and 3γ = . 

 
affect the value of the corresponding weights, it did not influence the final rank-
ings of four alternatives, ensuring the stability of the proposed decision method. 

At the same time, DMs can choose different parameter values according to 
their own preferences, providing more choices for different decision-making 
problems. 

Moreover, since the existing MCDM methods based on those operators dis-
cussed earlier cannot handle decision-making problems where the weight in-
formation is completely unknown. Then if Example 6.1 is solved by applying the 
SNWA-operator based MCDM method [21], the SNWAA- and SNEWA-operator 
based MCDM methods [22], the SNFWA-operator based MCDM method [24], 
and the SNHWA-operator based MCGDM method [32], the weight of criteria in 
Step 2 is used: ( )T0.2942,0.3367,0.3691ω = . The corresponding compared re-
sults shown in Table 2 can be obtained. Notably, the aggregation operators in 
the compared MCDM methods can be used twice to handle MCGDM problems. 
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Table 2. Compared results. 

MCDM methods Ranks 

SNWA-operator based MCDM method [21] 4 3 2 1S S S S    

SNWAA-operator based MCDM method [22] 3 4 2 1S S S S    

SNEWA-operator based MCDM method [22] 4 3 1 2S S S S    

SNFWA-operator based MCDM method ( 2λ = ) [24] 4 3 2 1S S S S    

SNHWA-operator based MCGDM method ( 3γ = ) [32] 3 4 2 1S S S S    

ISNHWA-operator based MCGDM method ( 3γ = ) 3 4 2 1S S S S    
 

From Table 1, it can be seen that the ranking obtained by using the proposed 
single-valued neutrosophic MCGDM method is the same as that obtained by 
using the SNWAA-operator based MCDM method [22] and SNHWA-operator 
based MCGDM method ( 3γ = ) [31]: 3 4 1 2S S S S    and the best alterna-
tive is 3S . However, the ranking obtained by applying the proposed MCGDM 
method based on the ISNHWA operator is different from that obtained by apply-
ing the SNWA-operator based MCDM method [19], the SNEWA-operator based 
MCDM method [22], and the SNFWA-operator based MCDM method ( 2λ = ) 
[25], and the best alternative would be 4S . Moreover, the SNWA-operator based 
MCDM method [21], the SNEWA-operator based MCDM method [22], and the 
SNFWA-operator based MCDM method [24] have limitations, as discussed in 
Examples 5.1 and 5.2. Thus, the ISNHWA-operator based MCGDM method, the 
SNWAA-operator based MCDM method [22], and the SNHWA-operator can 
produce more reasonable results in this case. 

In the following, another example with known weight information is provided 
to make a comparative analysis to further verify the effectiveness and superiority 
of the proposed method. 

7. Conclusion 

A novel single-valued neutrosophic MCGDM method based on the ISNHWA 
operator is proposed in this paper. The proposed ISNHWA operator avoids the li-
mitations of existing aggregation operators (i.e., the SNWA [21], SNWAA [22], 
SNEWA [22], SNFWA [24], and SNHWA [31] operators). Additionally, the novel 
single-valued neutrosophic MCGDM method overcomes the limitations of the 
SNWA-operator based MCDM method [21], the SNWAA- and SNEWA-operator 
based MCDM methods [22], the SNFWA-operator based MCDM method [24], 
and the SNHWA-operator based MCGDM method [31]. Several application 
examples have been provided to demonstrate that the ISNHWA operator and 
the single-valued neutrosophic MCGDM method are effective and feasible for 
solving MCDM and MCGDM problems. Future research should focus on the 
improvement of other single-valued neutrosophic aggregation operators (i.e., the 
Bonferroni mean operator and Heronian mean operators), and of the corres-
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ponding MCDM and MCGDM methods. 
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