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Abstract 
The preparation process parameters of intercalated meltblown nonwoven 
materials are complicated, and the relationship between process parameters, 
structural variables, and product performance needs to be investigated to es-
tablish a good mechanism for product performance regulation. In this 
study, we first used Wilcoxon test and Pearson correlation analysis to in-
vestigate the effect of intercalation rate on structural variables and product 
performance. Then, regression models were constructed to predict the values 
of each structural variable under different combinations of process parameters. 
Finally, we constructed a multi-objective constrained optimization problem 
based on the stepwise regression model and the product variable conditions. 
The problem was solved using the NSGA-II algorithm. The optimal was 
achieved when the acceptance distance was 2.892 cm and the hot air speed 
was 2000 r/min. 
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1. Introduction 

Meltblown nonwoven material [1] is a widely used air filtration material due to 
its good filtration performance, simple production process, low cost, and light 
weight. It is an important raw material for mask production for domestic and 
foreign enterprises. However, the fine fiber of meltblown nonwoven material of-
ten results in poor compression and elasticity performance in the final product. 
To address this issue, scientists have developed the interlayer meltblown method 
and created “Z-shaped” interlayer meltblown nonwoven material [2] [3]. The 
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intercalated meltblown composite technology is to add a staple fiber carding 
machine and a blower to the traditional melt-blown equipment. After the inter-
calated fibers are cleared, they are blown into the melt-blown ultra-fine fiber flow 
by the blower device. This technology significantly improves the compressive resi-
lience of the product, thereby enhancing its filtration efficiency performance. 

The preparation of interlayer meltblown nonwoven materials is a complex 
process, and the resulting structural variables (such as thickness, porosity, and 
compressive resilience) of the product can differ under different meltblown process 
parameters (such as receiving distance and hot air velocity). These variations in 
structural variables can affect the product properties, such as filtration resis-
tance, filtration efficiency, and gas permeability. Therefore, it is important to in-
vestigate the relationship between process parameters and structural variables 
and product performance to establish a more effective product performance 
regulation mechanism. 

2. Method 
2.1. Regression Model 

1) Multiple linear regression model [4] 
Response variables Y and p the explanatory variables 1 2, , , pX X X . The re-

lationship between can be portrayed by the following linear model. 

0 1 1 2 2 .p pY X X Xβ β β β ε= + + + + +                (1) 

where 0β  is the constant term, and 1 2, , , pβ β β  is the regression coefficient of 
the model, and ε  is the random error. The regression coefficient represents the 
contribution of an explanatory variable to the response variable Y of the model. 

2) Ridge regression [5] 
Ridge regression is an improved least squares estimation method that deals 

with the problem of covariance among the independent variables of a regression 
model. In the case of high covariance, perturbations in the data can cause large 
variations in the regression coefficient estimates, and ridge regression can reveal 
this phenomenon. 

3) Lasso regression [6] 
The advantage of Lasso regression is that it is a regression method that avoids 

overfitting, and while fitting the model the method simultaneously screens the 
variables, and any type of dependent variable can be modeled using Lasso re-
gression. 

4) Polynomial regression [7] 
When the linear model cannot fit the target data well, then a polynomial re-

gression model can be considered. The polynomial regression incorporates a 
higher order of the independent variable, which is equivalent to increasing the 
degrees of freedom of the model to explore the nonlinear variations in the data. 

5) Model evaluation method 
Multiple models are compared for their advantages and disadvantages, and 

the evaluation metrics selected in this paper are residual mean square MSE, in-
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formation criterion AIC and BIC [8]. When these three metrics are smaller, it 
means that the model is better and thus the final model is determined. 

2.2. Multi-Objective Constrained Optimization Problem 

A multi-objective constrained optimization problem [9] [10] is one in which 
there are multiple conflicting objectives along with constraints that need to be 
satisfied by multiple equations or inequalities. Its specific definition equation is. 

( ) ( ) ( )( )
( )
( )

T
1min , ,

s.t. 0, 1, ,

0, 1, ,

m

i

j

F x f x f x

g x i q

h x j p

=

≤ =

= =







                  (2) 

Among them, the ( ) ( ) ( )( )T
1 , , mF x f x f x=   is the m dimensional target 

vector, [ ]1, , nx x x=   are variables, and n is the dimensional decision space, 
( )ig x  is the constraint condition of the i-th inequality, and ( )jh x  is the con-

straint condition of the j-th equality. 

2.3. Methods for Solving Multi-Objective Constrained Optimization 

The main algorithms for solving the problem are mathematical-based planning 
methods and evolutionary algorithm-based methods. Among them, the core of 
multi-objective evolutionary algorithms is to coordinate the relationship be-
tween each objective function and find the optimal set of solutions that makes 
each objective function reach the larger (or smaller) function value as much as 
possible. Among the many evolutionary algorithms for multi-objective optimi-
zation, the NSGA-II algorithm is one of the most influential and widely used al-
gorithms [11] [12]. 

In this paper, we used NSGA-II algorithm to solve the multi-objective con-
strained problem, which is a multi-objective optimization algorithm based on 
Pareto optimal solution, that is, on the basis of the basic genetic algorithm, the 
selection regeneration method is improved: each individual is stratified accord-
ing to their dominant and non-dominant relationships, and then the selection 
operation is done, which makes the algorithm obtain very satisfactory results in 
multi-objective optimization. 

3. Data Analysis 
3.1. Data Sources 

The engineering data in this paper comes from the C question data provided by 
the third “Huashu Cup” National College Students Mathematical Modeling Com-
petition [13]. The data mainly includes the structural variables and product per-
formance of 25 sets of products generated under different process parameters. 

3.2. Relationship between Intercalation Rate and Structural  
Variables, Product Performance 

To study the impact of the intercalation technique on structural variables and 
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product performance, this paper analyzes the presence or absence of intercala-
tion and the intercalation rate. Firstly, 25 groups of control experiments were 
conducted before and after intercalation, and the change patterns of structural 
variables and product performance were identified by drawing bar graphs and 
box plots. Secondly, the Wilcoxon test was used to compare the differences be-
tween the three structural variables and the three product performances before 
and after intercalation. Finally, to investigate the effect of the intercalation rate 
on the changes in structural variables and product performances, Pearson corre-
lation analysis was used to examine the relationship between the intercalation 
rate and other variables. 

Analysis of Structural Variables and Product Performance Changes  
before and after Interpolation 

In order to study the changes of each variable before and after interpolation, the 
scatter plot of the distribution density of the variables before and after interpola-
tion is plotted in this section for analysis. 

Based on Figure 1, it can be observed that the distribution of post-intercalation 
sample values for the three structural variables of thickness, porosity, and com-
pression resilience is skewed to the right compared to the pre-intercalation sam-
ple. This suggests that the post-intercalation sample generally has larger values 
for these structural variables than the pre-intercalation sample. Furthermore, the 
post-intercalation sample exhibits a lower filtration resistance and higher permea-
bility than the pre-intercalation sample at the same filtration efficiency. These re-
sults indicate that intercalation technology can effectively enhance the structural 
variables and product performance of meltblown nonwoven materials. 

The effect of interpolation on each variable is further observed by bar and box 
plots of the changes in structural variables and product performance before and 
after interpolation. 

As can be seen in Figure 2(a) and Figure 2(c), the bars of meltblown nonwo-
ven material thickness and porosity after intercalation are higher than those be-
fore intercalation. In Figure 2(b), most of the thicknesses of the materials before 
intercalation are less than 2 mm, while the average level of the material thickness 
after intercalation is about 3 mm, which is significantly higher compared with 
that before intercalation. In Figure 2(d), the dispersion of porosity of the ma-
terial after intercalation is significantly reduced compared with that before in-
tercalation, and it is found in the experiment that the porosity of the material 
can be increased by 2 - 3 times by performing the intercalation operation when 
the receiving distance is small. In Figure 2(e), there are several groups of 25 ex-
periments in which the compressive resilience is unchanged or even decreased 
before and after intercalation, but the overall compressive resilience is increased. 

Through the two subplots of Figure 3(a) and Figure 3(c), it is found that the 
receiving distance is negatively correlated with both the filtration resistance and 
the filtration efficiency of the material. The smaller the receiving distance, the 
greater the filtration resistance and filtration efficiency of the material. In addition,  
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Figure 1. Distribution density of structural variables and product performance. 
 

the filtration resistance of the material decreases and the filtration efficiency gets 
increased after the intercalation compared with that before the intercalation. On 
the contrary, in Figure 3(e), the receiving distance is positively correlated with 
the permeability of the material, and the smaller the receiving distance, the 
smaller the permeability of the material. After intercalation, the gas permeability 
of the material is increased to a small extent compared with that before interca-
lation. 

Table 1 shows that there is a negative correlation between the intercalation 
rate and compression resilience and gas permeability, and a positive correlation  
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Figure 2. Differences in structural variables before and after interpolation. 

 

 
Figure 3. Difference in product performance before and after interpolation. 

 
Table 1. Correlation between intercalation rate, product structure and performance variables. 

 Thickness Porosity 
Compression 

resilience 
Filtration 
resistance 

Filtration 
efficiency 

Gas 
permeability 

Interpolation rate 0.15 0.12 −0.5 0.24 0.23 −0.024 
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with the remaining four variables. The correlation coefficient between the inter-
layer rate and the compression resilience is −0.5, which indicates that there is a 
moderate negative correlation between the interlayer rate and the compression 
resilience, so the interlayer rate should not be set too high when setting the in-
terlayer rate, which makes the compression resilience decrease in the reverse di-
rection. 

3.3. Relationship between Process Parameters and Structural  
Variables 

In order to study the relationship between process parameters and structural va-
riables, this paper firstly draws three-dimensional scatter plots of thickness, po-
rosity, and compression resilience of structural variables with process parame-
ters respectively, which are used to observe the distribution of structural va-
riables under different process parameters; secondly, according to the distribu-
tion of the three structural variables, different regression models are constructed 
for fitting, and by comparing the residual mean square MSE and information 
criterion AIC and BIC to evaluate the effect of the models. 

3.3.1. Model Building 
The three-dimensional scatter plots between the two process parameters and 
each structural variable were drawn separately to visually reflect the correlations 
between the variables. Figure 4(a) and Figure 4(b) show that there is a clear li-
near correlation between process parameters and thickness and porosity, so this 
paper integrates three methods of multiple linear regression, ridge regression 
and Lasso regression [14] to investigate the relationship between process  

 

 
Figure 4. Relationship between process parameters and structural variables. 
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parameters and thickness and porosity. Figure 4(c) shows the trend of curves, so 
the polynomial regression method is added to the above three methods to estab-
lish the relationship model between process parameters and compression resi-
lience. 

3.3.2. Model Building Results 
Multiple linear regression, ridge regression and Lasso regression models of 
process parameters with thickness and porosity were established respectively. 
The results of model evaluation are shown in Table 2 and Table 3. 

The effect of the model is evaluated by the three indicators of residual mean 
square MSE and information criterion AIC and BIC, the smaller the above three 
indicators, the better the model, so this paper chooses to establish the relation-
ship between process parameters and thickness and porosity using multiple linear 
regression model, and the relationship between process parameters and compres-
sion resilience using polynomial regression. Among them, the prediction equation 
of process parameters and thickness is 

1 1 2ˆ 0.001 0.593 0.403 .y x x′ ′ ′= − + +                   (3) 

The prediction equation for the process parameters and porosity is 

2 1 2ˆ 0.197 0.475 0.339 .y x x′ ′ ′= + +                   (4) 

The prediction equation for the process parameters and the compression resi-
lience rate is 

2 2
3 1 2 1 1 2 2ˆ 1.328 0.738 1.611 0.032 0.967 .y x x x x x x′ ′ ′ ′ ′ ′ ′= + − + −         (5) 

where 1x′  is the normalized receiving distance, and 2x′  is the normalized hot  
 

Table 2. Regression model results of process parameters with thickness and porosity. 

Structure Variables  
Multiple linear 

regression 
Ridge 

regression 
Lasso 

regression 

Normalized 
thickness 1y′  

MSE 0.002 0.002 0.002 

AIC −476.429 −476.096 −476.425 

BIC −469.476 −469.144 −469.472 

Normalized  
porosity 2y′  

MSE 0.010 0.010 0.010 

AIC −337.319 −337.285 −337.100 

BIC −330.367 −330.332 −330.148 

 
Table 3. Regression model results of process parameters and compression resilience. 

Structure 
Variables 

 
Multiple linear 

regression 
Ridge 

regression 
Lasso 

regression 
Polynomial 
regression 

Normalized 
compressional 
resilience 3y′  

MSE 0.041 0.041 0.055 0.002 

AIC −234.314 −234.064 −211.256 −453.925 

BIC −227.361 −227.111 −204.303 −437.703 
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air velocity. 
The established model is predicted for the real data and the predicted struc-

tural variable values are plotted in Figure 5. 
The blue points in Figure 5 are the results of the experimental data, and the 

brown points are the predicted values of the eight sets of structural variables, 
from which it can be seen that there are no outlier points in the predicted varia-
ble values and the fit is good. 

3.4. Multi-Objective Process Parameter Optimization Based on 
NSGA-II 

3.4.1. Stepwise Regression Analysis 
In the study of the relationship between the filtration efficiency of the product and 
the process parameters, this paper uses the stepwise regression method to analyze 
the specific influence of the relationship and finally find the setting of the process 
parameters when the filtration efficiency of the product is the highest. 

Stepwise regression is a regression method for feature extraction based on the 
explanatory variables. The basic idea is to introduce independent variables one 
by one, and the condition of introduction is that their partial regression sum of 
squares is tested to be significant. At the same time, after each new independent 
variable is introduced, the old independent variables are tested one by one, and 
the independent variables with insignificant partial regression sum of squares 
are eliminated. In this way, new variables are introduced and removed again un-
til no new variables are introduced and no old variables are removed. After 
stepwise regression, the regression equation with the best results is obtained. 

 

 
Figure 5. Scatter plot of predicted structural variables. 
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The relationship between the process parameters and the filtration efficiency 
of the product is modeled in which the dependent variable is the filtration effi-
ciency and the independent variables are the process parameters (receiving dis-
tance and hot air velocity) and the structural variables (thickness, porosity, com-
pressive resilience). 

Table 4 shows that the receiving distance and compression resilience rate are 
significantly correlated with the filtration efficiency of the material, and the 
model can explain the reason for 55.4% variation in filtration efficiency, and the 
model F values passed the test and the model was considered valid. And the va-
riance expansion factor of each explanatory variable VIF are less than 10, the 
model is considered to have no serious covariance, and the model equation is 

2 1 30.786 0.546 0.341 .z x y′ ′ ′= − −                   (6) 

where 2z′  denotes the normalized filtration efficiency. 

3.4.2. Building Multi-Objective Constrained Problem 
In order to construct a suitable multi-objective constrained optimization model 
so as to solve for the appropriate values of process parameters. In this paper, the 
regression model established for the filtration efficiency is firstly used as the first 
objective, and the model corresponding to the second objective is obtained using 
the same method. 

Stepwise regression analysis was performed on filter resistance and process 
parameters and structural variables, where the dependent variable was filter re-
sistance and the independent variables were structural variables (thickness, po-
rosity, compression resilience) and process parameters (acceptance distance and 
hot air velocity). 

Table 5 shows that the thickness of the material is significantly correlated 
with the filtration resistance, and the model can explain 63.2% of the reason for 
the variation of the filtration resistance, and the model F value passed the test 
and the model was considered valid. Meanwhile, the variance expansion factor of 
thickness variable VIF value is equal to 1 and less than 10, then the model is con-
sidered to have no covariance, and the model equation is 

 
Table 4. Results of stepwise regression analysis. 

 Regression coefficient p R2 VIF F 

Constants 0.786 0.000** 

0.554 

− 
( )2,72 44.794F = , 

0.000p =  
1x′  −0.546 0.000** 1.193 

3y′  −0.341 0.000** 1.193 

 
Table 5. Results of stepwise regression analysis. 

 Regression coefficient p R2 VIF F 

Constants 0.805 0.000** 
0.632 

− ( )1,73 125.562F = , 

0.000p =  1y′  −0.641 0.000** 1.000 
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1 10.805 0.641 .z y′ ′= −                       (7) 

Equation (7) is used as the second objective of the multi-objective constrained 
optimization problem in this paper. 

Secondly, the numerical requirements of the structural variables are taken as 
the constraints for the solution, and the range of values of the decision variables 
is set according to the constraints of the process parameters. By the above me-
thod, a multi-objective constrained optimization model is constructed, in which 
the objective function and constraint function are respectively expressed by Eq-
uations (8) and (9) 

( ) 2

1

max
min

z
F x

z


= 


                        (8) 

1

2

1

2

0 100
0 2000

s.t.
0 3
85 100

x
x
y
y

< <
 < <
 < <
 < <

                       (9) 

3.4.3. Optimization Results 
The NSGA-II algorithm is used to solve the multi-objective constrained optimi-
zation problem constructed in this paper. The population size of the algorithm is 
set to 10 and the number of iterations is set to 50. 10 approximate solutions are 
obtained after solving the algorithm, and these solutions are further analyzed. 

Considering that parameter optimization of intercalated meltblown nonwo-
vens is a bi-objective constrained optimization problem, the scatter plot of the 
approximate solution of NSGA-II solving problem model is drawn in this paper  

 

 
Figure 6. Scatter plot of the approximate solution of NSGA-II solving the parameter op-
timization. 
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to determine the optimal solution of the model. The approximate solution indi-
cated by the arrow in Figure 6 is the finalized optimal solution, which takes into 
account the filtration efficiency and filtration resistance, and tries to reduce the 
filtration resistance of the product under the premise of ensuring the filtration 
efficiency. The solution is back-normalized to obtain the final result, which is 
considered to be optimal when the acceptance distance is 2.892 cm and the hot 
air speed is 2000 r/min. 

4. Conclusion 

The intercalation technique helps to improve the product properties of meltblown 
nonwoven materials. There is a highly significant and moderate negative corre-
lation between the intercalation rate and the compression resilience. By ex-
amining the complex relationship between process parameters, structural va-
riables, and product performance, this study provides insights into optimizing 
the production of interleaved meltblown nonwoven materials for better perfor-
mance. As a result, the product performance reached the highest when the ac-
ceptance distance was 2.892 cm and the hot air speed was 2000 r/min. 
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