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Abstract 
Social media plays a crucial role in the organization of massive social move-
ments. However, the sheer quantity of data generated by the events as well as 
the data collection restrictions that researchers encounter, leads to a series of 
challenges for researchers who want to analyze dynamic public discourse and 
opinion in response to and in the creation of world events. In this paper we 
present gatherTweet, a Python package that helps researchers efficiently col-
lect social media data for events that are composed of many decentralized ac-
tions (across both space and time). The package is useful for studies that re-
quire analysis of the organizational or baseline messaging before an action, 
the action itself, and the effects of the action on subsequent public discourse. 
By capturing these aspects of world events gatherTweet enables the study of 
events and actions like protests, natural disasters, and elections. 
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1. Introduction 

The spread of social media has transformed the world in recent years. Individu-
als are now able to easily connect to others who are thousands of miles away, 
creating online enclaves separated from their physical location. While this in-
terconnectedness creates online communities based on shared discourse, many 
events such as protests, natural disasters, and elections maintain clear geograph-
ic foci. Moreover, these geographic foci are dynamic: a protest movement 
spreads, a hurricane travels, and presidential primaries occur across the country. 
This paper introduces the package gatherTweet to follow the temporal and geo-
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graphic progression of offline events made up of discrete activities (a particular 
protest march, cities the hurricane hits, or election days). Many individuals still 
use their social media to report on, publicize and organize the offline events they 
participate in. Thus gatherTweet provides efficient data collection to determine 
individuals’ broader event-related online community as well as the subset of 
those in their geographic vicinity. These data enable researchers to gain insight 
into the evolution of both the discourse network structure and content as an 
event progresses. 

The package gatherTweet addresses a series of challenges facing researchers 
collecting social media data. Every collection effort must heed rate limits, man-
age storage space, and make choices about how to identify relevant users and 
conversations. The implementation of these choices is time consuming and re-
quires advanced programming knowledge. This package circumvents many of 
these challenges, by enabling the user to: 

1) Create data structures that represent events that are geographically and 
temporally dispersed. Specifically, gatherTweet creates codex “TwitterEvent” 
and codex “TwitterActivity” objects which can be populated manually, through 
importing a specialized .csv, or by reading existing directory structures.  

2) Identify individuals1 on Twitter who participated physically in event activi-
ties.  

3) Identify individuals who echoed the sentiments of and influenced individu-
als around the event.  

4) Analyze the Twitter presence of these groups of individuals over time.  
The rest of the paper proceeds as follows. First, we present a brief literature, 

with a focus on how our approach differs from existing packages and ap-
proaches. The general use case of gatherTweet is then discussed in conjunction 
with the methodology it employs. This is followed with an illustrative example 
using gatherTweet to track the evolution of the Black Lives Matter discourse in 
three separate cities during the summer of 2020. The use of Twitter as a plat-
form is then discussed, in terms of the limitations it imposes, how gatherTweet 
circumvents them, and the potential to use similar methods on different social 
media applications. This is followed by suggestions of ways in which gatherT-
weet could be deployed and an explanation of the contribution gatherTweet 
makes to the overall Twitter-related software suite in Python.  

2. Literature Review 

Social media data serve as the foundation for many studies of public discourse 
because they provide researchers with an inexpensive, immediate, and accessi-
ble way to gather large swaths of information. They have proved especially fer-
tile for studying the interaction of offline and online activity [1] [2] [3] [4]. Yet, 

 

 

1Here we refer to each Twitter account that gatherTweet collects as an individual. The package 
makes no attempt to differential accounts based on whether they are individual entities, organiza-
tions, or bots. Rather we leave it to users who may want to differential individuals, organizations or 
bots to further investigate the accounts found to sort them into account types, or to use bot classifi-
ers to detect potential bot accounts. 
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projects’ data collection methods are usually tailored to their precise event, 
forcing subsequent researchers to spend effort building the same tool instead of 
analyzing data and writing. Few of these papers present user-friendly packages 
or tools to enable the replication of their analysis methods for applications other 
than the particular one in the study. Packages that do exist, mostly Twitter API 
wrappers, tend to be extremely versatile. This versatility, however, leads to an 
increased required programming knowledge to take advantage of them. ga-
therTweet straddles the space between Twitter API wrappers and individual use 
case code. 

The package develops a general methodology and implements that metho-
dology in the package. Previous work in this area has heavily emphasized me-
thods which can be used to inform data collection from Twitter. These include 
building keyword or hashtag searching pipelines [5] [6] or approaches using 
keyword expansion [7] [8]. Other social media data collection efforts prioritize 
the streamlining the data collection process and storage [9] [10]. In general, 
these methods have not been implemented in easy-to-use packages and re-
searchers who are not comfortable with complex programming may be unable to 
take advantage of the knowledge shared. The methodology presented in ga-
therTweet uses geographic information as a tool to pinpoint relevant actors as 
well as reduce the quantity of data collected for movements that have prolific 
online discussions. Thus, gatherTweet implements a generalizable methodology 
that takes into account geographic information, filters the data to a tractable size, 
and is easy to use. 

There are numerous Python packages such as tweepy [11], twitterAPI [12], 
and python-twitter [13], all of which provide helpful wrappers for the Twitter 
API. These packages are versatile and have been used widely in other studies; in 
fact, gatherTweet is an implementation using codex TwitterAPI. However, their 
implementation is difficult for many users because each requires detailed know-
ledge of Python and the Twitter APIs. We have designed gatherTweet to be 
easy-to-use for a wider range of researchers, and have implemented it as a data 
collection method that has broad applicability in social media analysis. 

3. Method 

While various steps of this methodology can be done independently, both using 
gatherTweet as well as replicated for other social media platforms, in this paper 
we assume that the user will be implementing the package using all of its capa-
bilities. As a broad overview, gatherTweet first identifies the most central and 
active participants in each activity within the event (users who are part of the 
core). This is accomplished by identifying individuals who are both discussing 
the event online and whose geo-location suggests their involvement in the phys-
ical activity. A directed one-step crawl is then implemented to find users who 
retweet the core. These users are labelled echos as they propagate the online 
content of the core. In addition, the users whom the core retweets are found in a 

https://doi.org/10.4236/jcc.2023.112012


C. Kann et al. 
 

 

DOI: 10.4236/jcc.2023.112012 175 Journal of Computer and Communications 
 

similar manner. These users, influences, create content that the core disperses. 
These three groups of individuals make up the discourse network. In general, 

the discourse network does not invite the use of typical network analysis tools, as 
the connections between echos and influences are unknown. However, there are 
studies that can be done more generally on the discourse network’s structure. 
For example, structural knowledge can answer research questions like whether 
individuals participate in multiple activities, if their roles (core, echo, or influ-
ence) are consistent over activities, and whether individuals associated with dif-
ferent activities have similar tweeting behaviors. The content of conversation 
could also change across an event’s activities [14] [15]. Following the initial dis-
course network collection, gatherTweet can access the full timeline of individuals 
who are part of the activity. This creates a panel study for each individual, it is 
similar to each of them filling out multiple surveys over the period, so the re-
searcher can search for individual level patterns. Individuals’ tweet history can 
help answer questions about how they act over time (previous to, during, and 
following the activity they are associated with) and whether individuals partici-
pate in multiple offline activities, for example if individuals participate in mul-
tiple protests, are impacted by weather events at multiple stages or vote in mul-
tiple election [16] [17]. 

The full methodology can be seen in Figure 1. During preliminary event spe-
cification, the researcher determines the activities of an event. The next step, in-
dividual level identification, has three components, one for each type of individ-
ual. First, individuals participating in the event activities both online and offline  
 

 
Figure 1. Proposed data collection workflow. 
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are identified. These individuals are the core for each event activity. An individual 
could belong to the core of multiple activities within an event, however these core 
groups are kept separate by activity. Such users are recorded multiple times, with 
each instance considered a unique user. In the second component of individual 
level identification, individuals who members of the core retweet are found and 
labeled as influences, because they likely influence the views and tweets of the 
core. In the third component, a list of users who retweet the core is created, and 
these users are labeled echos since they echo the tweets of the core. These three 
groups make up the discourse network of Twitter users associated with each 
event. Finally, in timeline tweet collection, the full timeline is collected for all 
three types of individuals. The researcher must specify a start time and end time 
for the event as a whole, the period for which the timelines will be collected. 

The start time should precede the start of the actual event and the end time 
come after the event is over in order to include pre- and post-event information 
as a baseline. Researchers can also add distinct timeline spans for each activity. 
This may be useful in the case when the activities cover a large time span. If an 
individual shows up in multiple activities or plays multiple roles within an activ-
ity, each instance is viewed as an independent observation and the timeline is 
collected for each situation. This duplication ensures that individuals are 
counted in every role and activity in which they appear. These panel data pro-
vide researchers a complete understanding of each individual’s Twitter discourse 
surrounding an activity or the event. 

In the remainder of this section the details of applying the methodology using 
gatherTweet will be covered. For each of the functions used, the full specification 
of them can be found in the supplemental materials as well as in the github re-
pository. 

3.1. Preliminary Event Specification 

The current version of gatherTweet uses Twitter API v2. To access the API users 
must have a developer account2. The specific limitations referenced in this paper 
assume that researchers have Academic Researcher level access3. The application 
and acceptance process can take a few days. 

To use gatherTweet, an empty event object must first be created; this object is 
then filled with the relevant information and activity objects. This event object is 
instantiated as: 

import gatherTweet as tw 
event = tw.TwitterEvent (name, base_directory = " ", separator = “CityTown”) 
This code creates a codex TwitterEvent object which can then be populated. 

The object has a name, a path, and a grouping factor which defaults to the “Ci-
tyTown” in which the activity takes place. The details regarding the inputs of 

 

 

2Application instructions can be found at  
https://developer.twitter.com/en/support/twitter-api/developer-account. 
3More information on Academic Researcher credentials and applications can be found at  
https://developer.twitter.com/en/products/twitter-api/academic-research. 
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these functions are listed in Table 1. Once created, the codex TwitterEvent ob-
ject is ready to be populated by a series of codex TwitterActivity objects as well 
as event specific data like the keywords and the event period. Each of the three 
processes used to populate the event with activities are outlined in the next sec-
tion: from an Excel sheet, manually in Python, or from an existing data struc-
ture. Each of the processes requires the same researcher-defined information. 
The difference between the processes is how the researcher puts that information 
in the object—the final result is the same. 

The researcher must compose an event consisting of discrete activities. For 
each activity, the researcher must specify a time-frame and geographic bounda-
ries for where it occurred. The geographic boundaries are a bounding box con-
sisting of North and South latitudes and East and West longitudes. They must 
then determine a list of keywords pertinent to the discourse surrounding the 
event. To construct this list, it is best to look at Twitter itself as well as other stu-
dies that analyze the frequency of usage of certain key terms and hashtags. Key-
words are not only restricted to hashtags but also include words and phrases 
used in the tweets. This information is then added to the codex TwitterEvent 
object in one of the three processes that follows. 

3.1.1. From Excel 
The first process discussed is using an Excel document to populate the event. 
This approach is the easiest, particularly for those with less experience in Py-
thon. A template Excel sheet is provided in the gatherTweet repository on Gi-
tHub. The researcher must add the information provided in Table 2 to the tem-
plate. The bolded arguments are optional. Alternatively, the researcher can 
create their own Excel sheet where the italisized values are the sheet names and 
the Input column represents the columns of the sheet. Once the sheet is com-
pleted, it should be saved in the codex base_directory specified in the event. It 
can then be populated through the function: 

event.upload_from_excel(path = “event_template.xlsx”) 
The details of this function can be found in Table 3. 
Once populating the Excel sheet is complete, the user can begin using the co-

dex TwitterEvent object codex event to collect data. 

3.1.2. From Python 
The researcher can also input activity information directly in Python. In order to 
do this, each individual activity must be created. Each codex TwitterActivity ob-
ject is created as: 

activity = tw.TwitterActivity(ID, starting_date, ending_date, CityTown, 
StateTerritory, Date, BestGuess) 
If, for a given activity, the timeline time span is different than that for the 

event in general, this independent timing can be added using: 
activity.add_timing(period_start, period_end). Details for the function can be 

seen in Table 4. 
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This activity is then added to the event through the function (Table 5). 
event.add_activity(activity) 

 
Table 1. TwitterEvent inputs. 

Name Name for the event. 

base_directory Path to where all of the data will be stored. 

separator 
Describes how the activities are split in the data saving structure, it can be any of the activity objects.  
For geographical differences “CityTown” makes the most sense. 

 
Table 2. Pages and fields to be filled out in event_template.xlsx to import Event from Excel. Bold arguments are optional. 

Input Description 

Activities  

ID Unique identification string. 

starting_date Beginning date of the activity within the event in the format dd mm yyyy hh:mm:ss. 

ending_date Ending date of the activity within the event in the format. dd mm yyyy hh:mm:ss. 

CityTown City or town where you want to search for individuals in the core. 

StateTerritory State or territory where you want to search for individuals in the core. 

Date Date of the activity in dd mm yyyy format. 

BestGuess Best guess of the size of the activity, if unknown, write 0. 

period_start 
Start of the event (when you want the timeline gathering to start) if different from the rest of the activities in 
the event. In the format dd mm yyyy hh:mm:ss. 

period_end 
End of the event (when you want the timeline gathering to end) if different from the rest of the activities in the 
event. In the format dd mm yyyy hh:mm:ss. 

Keywords  

Keywords 

List of keywords you want to use to identify the core. Can be written individually or in Twitter accepted  
format. For example, it is equivalent to have: 
George Floyd 
George Floyd 
vs. 
(GeorgeFloyd OR (George Floyd)). 

Time span  

Start time Beginning of the timeline gathering period in dd mm yyyy hh:mm:ss format. 

End time End of the timeline gathering period in dd mm yyyy hh:mm:ss format. 

Keys  

Key Twitter keys, make sure not to share these with other people. 

Secret Twitter secret keys, make sure not to share these with other people. 

Location  

CityTown The city or town with which the coordinates are associated. 

StateTerritory The state or territory abbreviation with which the coordinates are associated. 

Coordinates 
West longitude, south latitude, east longitude, north latitude to find bounding box for each location, a row 
needs to be added for each unique CityTown-StateTerritory pair found in the activities table. 
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Table 3. Upload_from_excel inputs. 

Path 
The path to the Excel file. If the path given is not an .xlsx file it will replace it with base_directory + “event_template.xlsx”. 
If the path is “event_template.xlsx”, it also assumes its in the base_directory. 

 
Table 4. TwitterActivity inputs. 

ID Unique identification string. 

starting_date Beginning date of the activity within the event in the format dd mm yyyy hh:mm:ss. 

ending_date Ending date of the activity within the event in the format dd mm yyyy hh:mm:ss. 

CityTown 
City or town where activity occurs. This value does not correspond to the Twitter API, but is used for the  
researcher to link with instantiation of the bounding box, and thus simply must be consistent throughout the use. 

StateTerritory 
State or territory where activity occurs. This value does not correspond to the Twitter API but serves as a method 
of grouping activities for the researcher. 

Date Date of the activity in any format—this is a string for the user. 

BestGuess Best guess of the size of the activity. If unknown, write 0. 

 
Table 5. TwitterActivity.add_timing inputs. 

period_start 
Start of the event (when the timeline starts) if different from the rest of the activities in the event. In the format 
dd mm yyyy hh:mm:ss. 

period_end 
End of the event (when the timeline ends) if different from the rest of the activities in the event. In the format dd 
mm yyyy hh:mm:ss. 

 
To finish creating the event, the researcher’s Twitter keys must be added. In 

addition the keywords and general location bounding boxes must be included. 
First, each set of keys must be converted into a codex TwitterKeyPair object. 

key_j = tw.TwitterKeyPair(key, secret). Details for this function can be found 
in Table 6. 

These keys, the keywords, the timing, and the location must then be added to 
the event object by the researcher through the series of functions listed in Table 
7. The order in which each of these four items is added does not matter, but all 
must be provided to create a full codex TwitterEvent object. 

After completing the codex TwitterEvent object, the user must apply a quick 
check in which gatherTweet both ensures internal consistency and produces an 
easily readable object that the user can examine. The command is codex pro-
test_ids = event.print_protests() and the output is a dataframe of the activities 
with the relevant information. The event object is now ready for use. 

3.1.3. From Data Structure 
The TwitterEvent objects populated using the previous two methods are needed 
to pull the Twitter data associated with each activity. In order to run the check-
ing and analysis functions explained later in the paper a codex TwitterEvent ob-
ject is still needed. However, a sparser version of the object is sufficient. Once 
the data are found, the file structure encodes the information necessary to create 
this sparser version. In this case, building codex TwitterEvent objects from the 
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existing data structure may be simpler. The function codex upl-
oad_from_file_structure is used to do this. It loops through the file system, 
building up the codex TwitterEvent object. Specifically, the application is: 

event.upload_from_file_structure() 
The function has no inputs and assumes that the codex base_directory used in 

the creation of the event is the same as was originally used and thus is the direc-
tory in which the data is stored. Following this command, the codex TwitterE-
vent object codex event is ready to be used to collect timelines and analyze data. 

3.2. Individual Level Identification  

Individuals in the event core are identified after the creation of the event object. 
From there, the echo and influence accounts are found. While on the back end 
these are similar processes, small differences in the commands sent to the Twit-
ter API result in substantial differences in data collected. 
 

Table 6. TwitterKeyPair inputs. 

Key Twitter developer key as a string 

Secret Twitter developer secret key as a string 

 
Table 7. Completing event functions and inputs. 

event.add_key(key_j) 

Key Twitter developer key as a string 

Secret Twitter developer secret key as a string 

event.add_keyWords(words) 

Words List of keywords to use to identify the core. Can be written individually or in Twitter accepted format. 
For example, it is equivalent to have: 
George Floyd 
GeorgeFloyd 
vs. 
(GeorgeFloyd OR (George Floyd)) 

 

 

 

 

event.add_timing(start, end) 

Start Beginning of the timeline gathering period in dd mm yyyy hh:mm:ss format. 

End End of the timeline gathering period in dd mm yyyy hh:mm:ss format. 

event.add_location(CityTown, StateTerritory, west, south, east, north) 

CityTown List of CityTown entries that occur in the activities. 

StateTerritory List of StateTerritories associate with CityTown list. 

West List of West longitude for bounding box of CityTowns. 

South List of South latitude for bounding box of CityTowns. 

East List of East longitude for bounding box of CityTowns. 

North List of North latitude for bounding box of CityTowns. 
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Figure 2 presents a schematic for the core identification for each activity. Be-
ginning with an activity from the codex TwitterEvent object, the keywords, ac-
tivity timeframe, and location are queried. For each keyword in the keywords 
object, tweets are found that are published within the bounding box during the 
timespan with that keyword. The API returns a maximum of 500 tweets per 
query. In cases when there are more than 500 tweets in the timeline, the code 
paginates through the API results until all tweets with that keyword are down-
loaded4. At the end of each keyword search, the collected tweets are saved as a 
JSON file in a folder called “Core” within an activity-specific folder in the speci-
fied codex base_directory. 

Figure 3 shows that the collection of echo and influence users follows a similar 
process. A list of the individuals belonging to the core is created. Their tweets are 
then examined from two days proceeding the start of the activity until two days 
after. Echos are designated as individuals who retweet any of the tweets during 
that period, while influences are the original creators of core user’s retweets. The 
user IDs of these users are then stored in the Echo (Influence) folders within the 
Activity folder in the base directory as text files names echo (influence)-ids.txt. 

In order to run any tweet or user identification processes using gatherTweet, 
the researcher uses the codex get_tweets command; Table 8 shows its argu-
ments. This function has the ability to retrieve the core, echos, and influences 
user ID numbers as well as each of their timelines. This command, which in its 
default form is 

event.pull.get_tweets(event, types = [], max_results = 500, 
tweets_per_file = 1000, expansions = [“author_id”, 
“in_reply_to_user_id”], tweetfields = [“author_id”, 
“created_at”, “geo”, “entities”, “public_metrics”,  
“text”, “referenced_tweets”]), 

 
Table 8. Get_tweets inputs. 

Event TwitterEvent object 

Types 

a list of the types of Tweets and users you want to collect, options are: [Core, CoreTimeline, Echos,  
EchosTimeline, Influences, InfluencesTimeline]. If left as an empty list, all will be evaluated. In order to run the 
Timeline versions, all activities are checked to make sure they have the base version. For Echos and Influences it 
checks that a core exists. Everything but the Core can restart after being interrupted with minimal redundancy. 

max_results Number of tweets to attempt to pull in each query, must be an integer between 1 and 500. 
tweets_per _file Number of tweets to save per file before beginning a new file. 

Expansions 

A list of tweetfields the researcher would like more information on, taken from 
https://developer.twitter.com/en/docs/twitter-api/expansions, options are: 
author_id, referenced_tweets.id, in_reply_to_user_id, attachments.media_keys, attachments.poll_ids, 
geo.place_id, entities.mentions.username, referenced_tweets. id.author_id 

twEetfields 

A list of values within each tweet to be returned from each call are taken from 
https://developer.twitter.com/en/docs/twitter-api/data-dictionary/object-model/tweet:  
id (default), text (default), attachments, author_id, context_annotations, conversation_id, created_at, entities, 
geo, in_reply_to_user_id, lang, non_public_metrics, organic_metrics, possibly_sensitive, promoted_metrics, 
public_metrics, referenced_tweets, reply_settings, source, withheld) 

 

 

4500 is accurate for Academic Researcher developer keys on the Twitter API v2 as of October 2022. 
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Figure 2. Core Identification. 

 

 
Figure 3. Echo and Influence Identification. 

 
is flexible and customizable. If “codex Core” is not in the codex types input and 
has not already been pulled for the event, the process stops and issues an error. 
gatherTweet checks for other dependencies and issues errors as appropriate. 
Additional examples of such dependencies include finding the echo or influence 
timeline before having found the echo or influence accounts. 

3.3. Timeline Tweet Collection  

The timeline tweet collection process is the same for all three groups of individu-
als. Given a list of Twitter user IDs, all tweets from the users during the event pe-
riod are accessed. While timeline tweet collection is programmatically simple, it 
can be the most time intensive part of gatherTweet as it has to collect the largest 
number of tweets. To do this collection, the function codex event.pull.get_tweets() 
must be run with codex types = [CoreTimeline, EchosTimeline, InfluencesTime-
line]. This function is the same one that identifies individuals who belong to the 
core, echos, or influences; the difference is in the codex type declaration. Full 
details can be seen in Table 8. If the individuals for each type have not been 
pulled gatherTweet will notify the researcher with the warning message 

At least one activity does not have a list of “type” and the function will exit. 

4. Parsing  

It is useful to provide the researcher a sense of the size of an activity or activities’ 
data. This can be used as a check as the method is applied to get a sense of the 
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size of the final dataset. The function codex check.number_of_tweets estimates 
the numbers of tweets in each activity and type, and Table 9 shows its inputs.  

The package gatherTweet generates a series of JSON files in an informative file 
structure. The file structure is such that the location of the file clearly informs 
the researcher of which information is in the JSON file. This structure, however, 
keeps information separate and therefore requires the user to individually load 
numerous files into a processor to access the raw data. To aid the researcher in 
circumventing this process, gatherTweet also includes functions for merging the 
individual JSON files into a usable and accessible format. 

Two functions, codex read.read_tweets and codex read.read_tweets_basic, 
combine all of the tweets from an activity into one file within the activity’s codex 
analysis folder. The functions transform the JSON files into one comma-separated 
values (.csv) file. The difference between the two functions is in the form which 
each outputs. The former includes all of the information in the original file, 
while the later includes only the text, author ID, tweet ID, created at date, and a 
string indicating which activity the tweet is associated with.  

The information provided in codex read.read_tweets_basic lowers the storage 
requirements and in many cases provides sufficient data for analysis. For most 
purposes, this function is the appropriate one for placing the data within activi-
ty-specific files. If the researcher wants to further simplify their storage structure 
and have all of the event data in one location, the functions codex read.wrap_csv 
and codex read.wrap_csv_basic can be used. These functions further combine 
the results into a singular file within the codex analysis folder of each group of 
activities (a directory for each value of the separator variable). The four func-
tions have the same input options (as seen in Table 10) and the original and ba-
sic versions can be used interchangeably. 

 
Table 9. Check.number_of_tweets inputs. 

Activities A list of the activities in which to estimate tweets. 

Users The types of users to count tweets from, options are [Core, Echo, Influence]. 

base_directory Where to begin searching for the data. 

Separator 
Describes how the activities are split in the data saving structure, it can be any of the activity objects.  
For geographical differences “CityTown” makes the most sense. 

Timeline 
Boolean of whether to count tweets in the timeline or not, if not, only the original tweets of the core will be 
counted. 

 
Table 10. Read.read_tweets(_basic) and read.wrap_csv(_basic) inputs. 

Event The name of the TwitterEvent object. 

Users 
A list of the types of Tweets and users you want to aggregate the data for options are any subset of: [Core, CoreTimeline, 
Echos, EchosTimeline, Influences, InfluencesTimeline]. 
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5. Research Results  
5.1. 2020 Black Lives Matter Protests  

This section demonstrates usage of gatherTweet to aid in the analysis of Twitter 
discourse about the Summer 2020 Black Lives Matter (BLM) protests. Between 
May 26th and August 22nd, 2020, approximately 7750 BLM demonstrations oc-
curred in over 2440 locations in all 50 US states [18]. These protests were some 
of the most well attended and longest lasting in American history [19]. With the 
sheer number of individuals and tweets involved in the protests, collecting every 
tweet that used relevant keywords would overwhelm most systems. By restricting 
analysis to specific cities, gatherTweet significantly reduces the strain of this col-
lection. 

5.1.1. Preliminary Event Specification 
We first choose which cities and protests to include as well as the event time 
span. We focus on Los Angeles, Chicago, and Houston—the second through 
fourth largest cities in the United States—and choose activities (protests) starting 
immediately after the murder of George Floyd. The timeline collection occurs 
from the 20th of May 2020 until the 1st of October. This span is 6 days before 
the first recorded activity until 5 days after the final one. The location, date, es-
timated size, and overall statistics from the process can be seen in Tables 11-13. 
The resulting data encompasses 13 activities in Los Angeles, 24 in Chicago and 7 
in Houston. 
 
Table 11. Overview of Data: Los Angeles. 

City Protest Date 
CCC  

Estimated 
Size 

# Core # Influence # Echo 
Avg Core 
Timeline 

Size 

Los Angeles 05-27-2020 250 351 47,506 62,978 1593 

Los Angeles 05-28-2020 750 604 0 184,151 1582 

Los Angeles 05-29-2020 2000 516 48,301 136,280 1286 

Los Angeles 06-06-2020 3000 325 46,197 86,181 1473 

Los Angeles 06-13-2020 200 326 38,583 59,360 1785 

Los Angeles 06-27-2020 100 143 35,151 50,522 2396 

Los Angeles 07-14-2020 50 79 7450 8977 4773 

Los Angeles 07-25-2020 150 88 14,634 8735 2673 

Los Angeles 07-26-2020 500 78 13,818 23,805 4499 

Los Angeles 08-24-2020 112 112 12,274 13,560 4346 

Los Angeles 08-25-2020 200 111 29,268 26,568 3537 

Los Angeles 08-26-2020 300 156 10,734 5297 4200 

Los Angeles 09-23-2020 500 196 21,585 47551 4055 
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Table 12. Overview of Data: Chicago. 

City Protest Date 
CCC  

Estimated 
Size 

# Core # Influence # Echo 
Avg Core 
Timeline 

Size 

Chicago 05-29-2020 300 13 99 17 2350 

Chicago 05-30-2020 1750 35 2639 3386 1210 

Chicago 05-31-2020 200 44 2624 938 395 

Chicago 06-05-2020 2000 48 11,534 12,616 466 

Chicago 06-06-2020 2500 69 18,611 3299 476 

Chicago 06-08-2020 200 22 2832 133 535 

Chicago 06-12-2020 1400 13 2348 32 802 

Chicago 06-13-2020 200 18 74 6 238 

Chicago 06-14-2020 2500 16 2277 69 520 

Chicago 06-17-2020 200 12 13 11 219 

Chicago 06-19-2020 2000 28 4306 999 161 

Chicago 06-24-2020 500 7 353 47 1324 

Chicago 06-28-2020 2000 5 11 2 212 

Chicago 07-02-2020 200 9 58 46 409 

Chicago 07-17-2020 1000 9 728 11 545 

Chicago 07-20-2020 100 3 162 77 308 

Chicago 07-24-2020 200 3 0 0 113 

Chicago 07-25-2020 300 5 652 319 1709 

Chicago 08-08-2020 100 3 1 3 267 

Chicago 08-18-2020 135 3 0 2 174 

Chicago 08-29-2020 200 5 45 65 280 

Chicago 09-23-2020 24 10 2428 0 607 

Chicago 09-24-2020 500 11 3650 6271 4174 

Chicago 09-26-2020 200 7 518 47 5755 

 
Table 13. Overview of Data: Houston. 

City Protest Date 
CCC  

Estimated 
Size 

# Core # Influence # Echo 
Avg Core 
Timeline 

Size 

Houston 05-26-2020 200 2 281 54 116 

Houston 05-29-2020 200 36 16,193 14,953 772 

Houston 05-30-2020 200 24 7997 7846 441 

Houston 06-02-2020 200 180 25,426 0 637 

Houston 06-08-2020 40 26 5448 12,923 700 

Houston 06-13-2020 50 4 23 1 1026 

Houston 07-04-2020 2000 8 752 259 647 
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The keywords used are listed in Table 14. They fall into three different cate-
gories: 1) calls to mobilize others to actively join protests, 2) names of the indi-
viduals who were victims of injustice, and 3) phrases that are commonly chanted 
during protests. They are designed to capture the organizational period imme-
diately before the protests, the protest itself, and the topics most likely discussed 
during the protests. 

Having created keywords, we then populate the package’s Excel template; 
these values are in the template in the GitHub repository. To generate the event, 
the following code is used: 

import gatherTweet as tw 
dirr = “directory” 
BLM = tw.TwitterEvent(“BLM”, base_directory = dirr) 
BLM.upload_from_excel(dirr+“event_template.xlsx”). 

5.1.2. Individual Identification and Timeline Tweet Collection 
Once the codex TwitterEvent object is set up, the collection can begin. One 
command accomplishes all of the user and tweet collection: 

BLM.pull.get_tweets(BLM, base_directory = dirr) 
The default of this function sets: 
types = [codex Core, codex CoreTimeline, codex Echos, codex EchosTimeline, 

codex Influences, InfluencesTimeline]. 
Thus, it executes both of the major data collection steps of the method. This 

function signifies the main contribution of gatherTweet; in one call, given ap-
propriate setup, researchers are able to collect all of the Twitter data for their 
purpose. 

 
Table 14. Keywords for protesters. 

Keywords 

Black Lives Matter 

BLM 

George Floyd 

Justice for Floyd 

Walk with Us 

Kneel with Us 

March with Us 

I Can’t Breathe 

March for Peace 

Take a Knee 

Breonna Taylor 

No Justice No Peace 

Say Their Names 

Ahmaud Aubrey 
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5.1.3. Analysis 
Parsing and analysis follow data collection. First, we populated Tables 11-13 
using the codex check.number_of_tweets command for each activity and group. 
These tables present summary statistics for each event. Los Angeles has the most 
tweets and accounts for all three types. 

The rest of this application focuses on the actions of the core. In order to place 
all of the tweets related to the core users in one place, we run the following four 
commands. 

BLM.read.read_tweets(BLM, users = “Core”) 
BLM.read.wrap_csv(BLM, users = “Core”) 
BLM.read.read_tweets_basic(BLM, users = “CoreTimeline”) 
BLM.read.wrap_csv_basic(BLM, users = “CoreTimeline”). 
Despite descriptive differences, the events are similar when it comes to their 

discussion frequency. Figure 4 plots the percent of tweets from individuals in 
the core of activities taking place in each city each day. It shows that despite dif-
ferences in each city’s design, size of protests, and local events, the discourse 
pattern is remarkably similar. These individuals had a large increase in Twitter 
chatter in the days following the murder of George Floyd with similar patterns 
in the months following. 

In addition to proportional tweeting frequency, we see that very few individu-
als appear in the core more than once. We believe that individuals who are in the 
core are at the physical protests since their location places them in the city, and 
prior work has found that this assumption accurately measures protest size vari-
ation [20]. The lack of repeating individuals suggests that the group protesters 
may not have been consistent over time [21] [22]. The statistics regarding repeat 
members of the cores can be seen in Table 15. Most of the members of the core 
of each city only go to one protest. The number of people who attend multiple 
protests is significantly fewer, and the numbers continue to decrease as the 
number of protests increases. Results like these can give researchers insights into 
protest behavior and help categorize the protests. 

5.1.4. Data Collection Time Estimate 
Given the large amounts of data that events can generate, it is important to esti-
mate runtime associated with gatherTweet. The exact time required for the col-
lection of core users cannot be determined a priori. Depending on the event and 
activities within it, there is no precise way of estimating the size of the core. 
However, once the core has been collected it is possible to estimate the time re-
quired to collect the echo and influence users. A directed search for a five day 
period takes on average 6 seconds per user5. To collect the echo and influence 
users, this search must be run for each member of the core. Therefore, a time es-
timate for the collection of all echo and influence users can be approximated by: 

#coreusers 2 6 seconds× ×                     (1) 

 

 

5This value was taken by running the directed search for 180 individuals, found in the Black Lives 
Matter core, locally on a standard machine. The total time (1108.4092 seconds) to find the echos was 
then divided by 180 to obtain the average. 
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Figure 4. Discussion of BLM over time by protesters (members of the core). 
 

Table 15. Percent BLM repeat protesters by city. 

Protests Houston Chicago Los Angeles 

1 100.00 87.38 92.37 

2 0.00 9.23 7.38 

3 0.00 1.85 0.24 

4 0.00 0.92 0.00 

7 0.00 0.31 0.00 

17 0.00 0.31 0.00 

 
A similar process was applied to find the time taken for timeline collection. 

Again, the specific individuals being queried can change these values, especially 
if the event being sampled is made up of prolific or reserved individuals. Our es-
timate for timeline collection is 0.1 seconds per day6. When the timeline gets 
shorter the time per day may increase. This is a result of the way Tweets are 
pulled. The program can receive 500 tweets per query, therefore, if the time is 
short enough that fewer than 500 tweets are found in each query the time to ac-
complish the task will remain constant. To find a rough estimate, the following 
equation may be followed: 

#users #days 0.1 seconds× ×                     (2) 

We emphasize that the time required to collect tweets is heavily dependent on 
the subject matter the researcher is exploring as the frequency of tweeting is 
highly dependent on the type event. 

5.2. Other Applications  

This paper’s methodology can be applied to other social media platforms and 
other activities. This subsection discusses examples where gatherTweet and the 
associated methodology would be useful. 

 

 

6This estimate was taken from measuring the time it took to collect 180 timelines over our 134 day 
period from May 20, 2020 until October 1, 2020 and estimating the individual daily average time. 
The total time for this sample was 2400.3108 seconds. 
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One obvious application would be mass-mobilization events such as the Yel-
low Vest protests in France [23], the Black Lives Matter protests [24], or the 
Women’s March [25]. Such protests are ideally suited because they involve a 
large following and spread out over time and space. Collecting all of the relevant 
social media data for events of these magnitudes would overwhelm many com-
puter systems. Instead, for gatherTweet, the researcher would choose a set of 
geographic and time combinations to focus on. With such criteria, the monitor 
will identity the core and then expands out to find the rest of their network at 
the time of the activity. 

A second application includes phenomena that move over time, such as heat 
waves or hurricanes, or epidemics like COVID-19. They require a slightly dif-
ferent approach than mass-mobilization events because the timing and geo-
graphic locations have to be well-specified. For weather episodes, the researcher 
has to discretize locations and timings to create the core. The researcher could 
choose a time increment, such as a number of hours or days, and pick a corres-
ponding geographical area large enough to encompass the entire activity. That 
approach makes the most sense for events that move over time, such as a hurri-
cane. For other natural activities, such as disease, where the geographic path is 
obscured, or there are jumps, or the presence of the activity is unclear, a thre-
shold approach makes sense. Examples would be beginning the spread of 
COVID-19 when cases in a city surpass a per capita threshold. 

Other examples of possible applications are elections and pop culture activi-
ties, such as performer’s tours or sports teams’ games. With these, there is a clear 
point when the activity occurs in a location. For example, elections, specifically 
U.S. presidential primaries, occur at different times in different locations. Sports 
teams, musicians, and comedians perform in different locations on certain dates 
and times. In each case, the approach is similar to the mass-mobilization since 
the location and timing of the core detection is often obvious. A main drawback 
is that these events may be smaller so the method may only pick up a small 
number of individuals. 

6. Social Media Data Collection Restrictions  

The collection process of Twitter data for research purposes are subject to the 
restrictions of its representational state transfer (REST) APIs7. While the docu-
mentation for the usage of the APIs is relatively straightforward, there are spe-
cific limitations pertinent to the implementation of gatherTweet. Perhaps the 
most binding limitation is rate limits that very by endpoint. Table 16 provides 
common rate limits encountered. 

 

 

7Here we discuss the technical uses of the Twitter APIs that are available for academic research. 
Twitter’s developer terms of service also restricts how data collected can be used. For example, geo-
located data cannot be used to track Twitter users spatially and can only be used in association with 
information in their tweets in aggregated form. Also, academic users are restricted in how they use 
data like these by their institutional review boards (IRBs); the data collection methodology in this 
paper was reviewed and approved by Caltech’s IRB (Caltech IRB No. 21-1148). 
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Table 16. Summary of Twitter rate limits.  

Endpoint Per App (15 min window) Per User (15 min window) 

User tweet timeline 1500 900 

User mention timeline 450 180 

Full-archive search 300 180 

 
To maximize the number of requests, gatherTweet sends 1 query per second 

to prevent errors and to avoid sending bad requests that count towards the rate 
limit. The 1 query per second is an explicit one for the full-archive search, how-
ever sometimes it may be helpful to slow down the query rate to prevent too 
many endpoint requests. For example the user mention timeline can be re-
quested 450 times per 15 minute window, and by spacing the 450 requests to be 
within a 15 minute time window (sending a request every 2 seconds rather than 
1) prevents querying after the rate limit is reached. 

Compounded with the rate limit issue is the 10 million tweet per month per 
key restriction. While the only solution to the monthly cap is the utilization of 
multiple sets of keys, the data methodology presented in this paper seeks to 
maximize the 10 million tweets by gathering the most central information to the 
event. 

The data collection process gets more complex as the time span studied in-
creases. Therefore, to identify the core of the event we utilize keywords that are 
associated with the topics most discussed during the event. When querying uti-
lizing keywords it is important to use every possible version of the phrase in re-
gards to spelling and spacing. In addition to the keyword search, our method 
specifies a location and time component. Approximately 1% - 2% of all tweets 
are geotagged which means the creation of geographic restrictions on the core 
allows us to maximize the 10 million tweets as well as insure with a higher like-
lihood that the tweets collected belong to users involved in the event. Our 
second measure is to restrict the collection to users who tweet during the day of 
the activity, increasing the likelihood we collect users physically present during 
an activity. 

The data collection process is designed to be versatile with regards to re-
searchers’ access to resources. The package gatherTweet can be run on university 
servers, in the cloud, or locally. The storage method of this data can also been 
done on a server or locally. By reducing the amount of post-processing required 
of the data it is extremely easy for the researchers to use the tweets in any type of 
natural language processing methodology. 

7. Conclusions  

Social media provides a wealth of information for researchers. gatherTweet, an 
easy-to-use Python package that requires very little prior programming know-
ledge, can aid researchers in the collection and analysis of large scale social me-
dia events. Since large events can produce more data than most researchers can 
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feasibly acquire, store, and analyze, gatherTweet’s data methodology provides a 
solution by targeting the main participants in an event. 

The methodology presented in this paper instructs researchers on a clear way 
to conceptualize massive physical events which have discrete geographic and 
temporal activities. In addition, it creates a non-random approach to limiting the 
data collected, while accounting for exogenous trends such as location and time. 
Finally, in collecting the individuals who echo and influence the participants, the 
network surrounding participants is included. Thus, the process can be used to 
easily find social media users who both participate in offline event activities and 
are in the same sphere as each other. 

This method is all the more relevant in an increasingly interconnected world. 
Events such as protests have a dispersion of geographic loci, and isolating them 
individually enables researchers to better pinpoint time spans and geographies. 
In creating a standardized method for data collection of large scale social media 
data of events, gatherTweet also enables comparison across future research 
projects. gatherTweet helps researchers directly collect the data most relevant to 
their cause. 
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