
Journal of Computer and Communications, 2023, 11, 172-193
https://www.scirp.org/journal/jcc

ISSN Online: 2327-5227
ISSN Print: 2327-5219

DOI: 10.4236/jcc.2023.112012 Feb. 28, 2023 172 Journal of Computer and Communications

GatherTweet: A Python Package for Collecting
Social Media Data on Online Events

Claudia Kann1, Sarah Hashash1, Zachary Steinert-Threlkeld2, R. Michael Alvarez1

1Department of Humanities and Social Sciences, California Institute of Technology, Pasadena, California
2Luskin School of Public Affairs, University of California Los Angeles, Los Angeles, California

Abstract
Social media plays a crucial role in the organization of massive social move-
ments. However, the sheer quantity of data generated by the events as well as
the data collection restrictions that researchers encounter, leads to a series of
challenges for researchers who want to analyze dynamic public discourse and
opinion in response to and in the creation of world events. In this paper we
present gatherTweet, a Python package that helps researchers efficiently col-
lect social media data for events that are composed of many decentralized ac-
tions (across both space and time). The package is useful for studies that re-
quire analysis of the organizational or baseline messaging before an action,
the action itself, and the effects of the action on subsequent public discourse.
By capturing these aspects of world events gatherTweet enables the study of
events and actions like protests, natural disasters, and elections.

Keywords
Data Science, Movements, Social Media Data, Twitter, Network Science, Data
Mining, Python

1. Introduction

The spread of social media has transformed the world in recent years. Individu-
als are now able to easily connect to others who are thousands of miles away,
creating online enclaves separated from their physical location. While this in-
terconnectedness creates online communities based on shared discourse, many
events such as protests, natural disasters, and elections maintain clear geograph-
ic foci. Moreover, these geographic foci are dynamic: a protest movement
spreads, a hurricane travels, and presidential primaries occur across the country.
This paper introduces the package gatherTweet to follow the temporal and geo-

How to cite this paper: Kann, C., Hashash,
S., Steinert-Threlkeld, Z. and Alvarez, R.M.
(2023) GatherTweet: A Python Package for
Collecting Social Media Data on Online
Events. Journal of Computer and Commu-
nications, 11, 172-193.
https://doi.org/10.4236/jcc.2023.112012

Received: December 7, 2022
Accepted: February 25, 2023
Published: February 28, 2023

Copyright © 2023 by author(s) and
Scientific Research Publishing Inc.
This work is licensed under the Creative
Commons Attribution International
License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

Open Access

https://www.scirp.org/journal/jcc
https://doi.org/10.4236/jcc.2023.112012
https://www.scirp.org/
https://doi.org/10.4236/jcc.2023.112012
http://creativecommons.org/licenses/by/4.0/

C. Kann et al.

DOI: 10.4236/jcc.2023.112012 173 Journal of Computer and Communications

graphic progression of offline events made up of discrete activities (a particular
protest march, cities the hurricane hits, or election days). Many individuals still
use their social media to report on, publicize and organize the offline events they
participate in. Thus gatherTweet provides efficient data collection to determine
individuals’ broader event-related online community as well as the subset of
those in their geographic vicinity. These data enable researchers to gain insight
into the evolution of both the discourse network structure and content as an
event progresses.

The package gatherTweet addresses a series of challenges facing researchers
collecting social media data. Every collection effort must heed rate limits, man-
age storage space, and make choices about how to identify relevant users and
conversations. The implementation of these choices is time consuming and re-
quires advanced programming knowledge. This package circumvents many of
these challenges, by enabling the user to:

1) Create data structures that represent events that are geographically and
temporally dispersed. Specifically, gatherTweet creates codex “TwitterEvent”
and codex “TwitterActivity” objects which can be populated manually, through
importing a specialized .csv, or by reading existing directory structures.

2) Identify individuals1 on Twitter who participated physically in event activi-
ties.

3) Identify individuals who echoed the sentiments of and influenced individu-
als around the event.

4) Analyze the Twitter presence of these groups of individuals over time.
The rest of the paper proceeds as follows. First, we present a brief literature,

with a focus on how our approach differs from existing packages and ap-
proaches. The general use case of gatherTweet is then discussed in conjunction
with the methodology it employs. This is followed with an illustrative example
using gatherTweet to track the evolution of the Black Lives Matter discourse in
three separate cities during the summer of 2020. The use of Twitter as a plat-
form is then discussed, in terms of the limitations it imposes, how gatherTweet
circumvents them, and the potential to use similar methods on different social
media applications. This is followed by suggestions of ways in which gatherT-
weet could be deployed and an explanation of the contribution gatherTweet
makes to the overall Twitter-related software suite in Python.

2. Literature Review

Social media data serve as the foundation for many studies of public discourse
because they provide researchers with an inexpensive, immediate, and accessi-
ble way to gather large swaths of information. They have proved especially fer-
tile for studying the interaction of offline and online activity [1] [2] [3] [4]. Yet,

1Here we refer to each Twitter account that gatherTweet collects as an individual. The package
makes no attempt to differential accounts based on whether they are individual entities, organiza-
tions, or bots. Rather we leave it to users who may want to differential individuals, organizations or
bots to further investigate the accounts found to sort them into account types, or to use bot classifi-
ers to detect potential bot accounts.

https://doi.org/10.4236/jcc.2023.112012

C. Kann et al.

DOI: 10.4236/jcc.2023.112012 174 Journal of Computer and Communications

projects’ data collection methods are usually tailored to their precise event,
forcing subsequent researchers to spend effort building the same tool instead of
analyzing data and writing. Few of these papers present user-friendly packages
or tools to enable the replication of their analysis methods for applications other
than the particular one in the study. Packages that do exist, mostly Twitter API
wrappers, tend to be extremely versatile. This versatility, however, leads to an
increased required programming knowledge to take advantage of them. ga-
therTweet straddles the space between Twitter API wrappers and individual use
case code.

The package develops a general methodology and implements that metho-
dology in the package. Previous work in this area has heavily emphasized me-
thods which can be used to inform data collection from Twitter. These include
building keyword or hashtag searching pipelines [5] [6] or approaches using
keyword expansion [7] [8]. Other social media data collection efforts prioritize
the streamlining the data collection process and storage [9] [10]. In general,
these methods have not been implemented in easy-to-use packages and re-
searchers who are not comfortable with complex programming may be unable to
take advantage of the knowledge shared. The methodology presented in ga-
therTweet uses geographic information as a tool to pinpoint relevant actors as
well as reduce the quantity of data collected for movements that have prolific
online discussions. Thus, gatherTweet implements a generalizable methodology
that takes into account geographic information, filters the data to a tractable size,
and is easy to use.

There are numerous Python packages such as tweepy [11], twitterAPI [12],
and python-twitter [13], all of which provide helpful wrappers for the Twitter
API. These packages are versatile and have been used widely in other studies; in
fact, gatherTweet is an implementation using codex TwitterAPI. However, their
implementation is difficult for many users because each requires detailed know-
ledge of Python and the Twitter APIs. We have designed gatherTweet to be
easy-to-use for a wider range of researchers, and have implemented it as a data
collection method that has broad applicability in social media analysis.

3. Method

While various steps of this methodology can be done independently, both using
gatherTweet as well as replicated for other social media platforms, in this paper
we assume that the user will be implementing the package using all of its capa-
bilities. As a broad overview, gatherTweet first identifies the most central and
active participants in each activity within the event (users who are part of the
core). This is accomplished by identifying individuals who are both discussing
the event online and whose geo-location suggests their involvement in the phys-
ical activity. A directed one-step crawl is then implemented to find users who
retweet the core. These users are labelled echos as they propagate the online
content of the core. In addition, the users whom the core retweets are found in a

https://doi.org/10.4236/jcc.2023.112012

C. Kann et al.

DOI: 10.4236/jcc.2023.112012 175 Journal of Computer and Communications

similar manner. These users, influences, create content that the core disperses.
These three groups of individuals make up the discourse network. In general,

the discourse network does not invite the use of typical network analysis tools, as
the connections between echos and influences are unknown. However, there are
studies that can be done more generally on the discourse network’s structure.
For example, structural knowledge can answer research questions like whether
individuals participate in multiple activities, if their roles (core, echo, or influ-
ence) are consistent over activities, and whether individuals associated with dif-
ferent activities have similar tweeting behaviors. The content of conversation
could also change across an event’s activities [14] [15]. Following the initial dis-
course network collection, gatherTweet can access the full timeline of individuals
who are part of the activity. This creates a panel study for each individual, it is
similar to each of them filling out multiple surveys over the period, so the re-
searcher can search for individual level patterns. Individuals’ tweet history can
help answer questions about how they act over time (previous to, during, and
following the activity they are associated with) and whether individuals partici-
pate in multiple offline activities, for example if individuals participate in mul-
tiple protests, are impacted by weather events at multiple stages or vote in mul-
tiple election [16] [17].

The full methodology can be seen in Figure 1. During preliminary event spe-
cification, the researcher determines the activities of an event. The next step, in-
dividual level identification, has three components, one for each type of individ-
ual. First, individuals participating in the event activities both online and offline

Figure 1. Proposed data collection workflow.

https://doi.org/10.4236/jcc.2023.112012

C. Kann et al.

DOI: 10.4236/jcc.2023.112012 176 Journal of Computer and Communications

are identified. These individuals are the core for each event activity. An individual
could belong to the core of multiple activities within an event, however these core
groups are kept separate by activity. Such users are recorded multiple times, with
each instance considered a unique user. In the second component of individual
level identification, individuals who members of the core retweet are found and
labeled as influences, because they likely influence the views and tweets of the
core. In the third component, a list of users who retweet the core is created, and
these users are labeled echos since they echo the tweets of the core. These three
groups make up the discourse network of Twitter users associated with each
event. Finally, in timeline tweet collection, the full timeline is collected for all
three types of individuals. The researcher must specify a start time and end time
for the event as a whole, the period for which the timelines will be collected.

The start time should precede the start of the actual event and the end time
come after the event is over in order to include pre- and post-event information
as a baseline. Researchers can also add distinct timeline spans for each activity.
This may be useful in the case when the activities cover a large time span. If an
individual shows up in multiple activities or plays multiple roles within an activ-
ity, each instance is viewed as an independent observation and the timeline is
collected for each situation. This duplication ensures that individuals are
counted in every role and activity in which they appear. These panel data pro-
vide researchers a complete understanding of each individual’s Twitter discourse
surrounding an activity or the event.

In the remainder of this section the details of applying the methodology using
gatherTweet will be covered. For each of the functions used, the full specification
of them can be found in the supplemental materials as well as in the github re-
pository.

3.1. Preliminary Event Specification

The current version of gatherTweet uses Twitter API v2. To access the API users
must have a developer account2. The specific limitations referenced in this paper
assume that researchers have Academic Researcher level access3. The application
and acceptance process can take a few days.

To use gatherTweet, an empty event object must first be created; this object is
then filled with the relevant information and activity objects. This event object is
instantiated as:

import gatherTweet as tw
event = tw.TwitterEvent (name, base_directory = " ", separator = “CityTown”)
This code creates a codex TwitterEvent object which can then be populated.

The object has a name, a path, and a grouping factor which defaults to the “Ci-
tyTown” in which the activity takes place. The details regarding the inputs of

2Application instructions can be found at
https://developer.twitter.com/en/support/twitter-api/developer-account.
3More information on Academic Researcher credentials and applications can be found at
https://developer.twitter.com/en/products/twitter-api/academic-research.

https://doi.org/10.4236/jcc.2023.112012
https://developer.twitter.com/en/support/twitter-api/developer-account
https://developer.twitter.com/en/products/twitter-api/academic-research

C. Kann et al.

DOI: 10.4236/jcc.2023.112012 177 Journal of Computer and Communications

these functions are listed in Table 1. Once created, the codex TwitterEvent ob-
ject is ready to be populated by a series of codex TwitterActivity objects as well
as event specific data like the keywords and the event period. Each of the three
processes used to populate the event with activities are outlined in the next sec-
tion: from an Excel sheet, manually in Python, or from an existing data struc-
ture. Each of the processes requires the same researcher-defined information.
The difference between the processes is how the researcher puts that information
in the object—the final result is the same.

The researcher must compose an event consisting of discrete activities. For
each activity, the researcher must specify a time-frame and geographic bounda-
ries for where it occurred. The geographic boundaries are a bounding box con-
sisting of North and South latitudes and East and West longitudes. They must
then determine a list of keywords pertinent to the discourse surrounding the
event. To construct this list, it is best to look at Twitter itself as well as other stu-
dies that analyze the frequency of usage of certain key terms and hashtags. Key-
words are not only restricted to hashtags but also include words and phrases
used in the tweets. This information is then added to the codex TwitterEvent
object in one of the three processes that follows.

3.1.1. From Excel
The first process discussed is using an Excel document to populate the event.
This approach is the easiest, particularly for those with less experience in Py-
thon. A template Excel sheet is provided in the gatherTweet repository on Gi-
tHub. The researcher must add the information provided in Table 2 to the tem-
plate. The bolded arguments are optional. Alternatively, the researcher can
create their own Excel sheet where the italisized values are the sheet names and
the Input column represents the columns of the sheet. Once the sheet is com-
pleted, it should be saved in the codex base_directory specified in the event. It
can then be populated through the function:

event.upload_from_excel(path = “event_template.xlsx”)
The details of this function can be found in Table 3.
Once populating the Excel sheet is complete, the user can begin using the co-

dex TwitterEvent object codex event to collect data.

3.1.2. From Python
The researcher can also input activity information directly in Python. In order to
do this, each individual activity must be created. Each codex TwitterActivity ob-
ject is created as:

activity = tw.TwitterActivity(ID, starting_date, ending_date, CityTown,
StateTerritory, Date, BestGuess)
If, for a given activity, the timeline time span is different than that for the

event in general, this independent timing can be added using:
activity.add_timing(period_start, period_end). Details for the function can be

seen in Table 4.

https://doi.org/10.4236/jcc.2023.112012

C. Kann et al.

DOI: 10.4236/jcc.2023.112012 178 Journal of Computer and Communications

This activity is then added to the event through the function (Table 5).
event.add_activity(activity)

Table 1. TwitterEvent inputs.

Name Name for the event.

base_directory Path to where all of the data will be stored.

separator
Describes how the activities are split in the data saving structure, it can be any of the activity objects.
For geographical differences “CityTown” makes the most sense.

Table 2. Pages and fields to be filled out in event_template.xlsx to import Event from Excel. Bold arguments are optional.

Input Description

Activities

ID Unique identification string.

starting_date Beginning date of the activity within the event in the format dd mm yyyy hh:mm:ss.

ending_date Ending date of the activity within the event in the format. dd mm yyyy hh:mm:ss.

CityTown City or town where you want to search for individuals in the core.

StateTerritory State or territory where you want to search for individuals in the core.

Date Date of the activity in dd mm yyyy format.

BestGuess Best guess of the size of the activity, if unknown, write 0.

period_start
Start of the event (when you want the timeline gathering to start) if different from the rest of the activities in
the event. In the format dd mm yyyy hh:mm:ss.

period_end
End of the event (when you want the timeline gathering to end) if different from the rest of the activities in the
event. In the format dd mm yyyy hh:mm:ss.

Keywords

Keywords

List of keywords you want to use to identify the core. Can be written individually or in Twitter accepted
format. For example, it is equivalent to have:
George Floyd
George Floyd
vs.
(GeorgeFloyd OR (George Floyd)).

Time span

Start time Beginning of the timeline gathering period in dd mm yyyy hh:mm:ss format.

End time End of the timeline gathering period in dd mm yyyy hh:mm:ss format.

Keys

Key Twitter keys, make sure not to share these with other people.

Secret Twitter secret keys, make sure not to share these with other people.

Location

CityTown The city or town with which the coordinates are associated.

StateTerritory The state or territory abbreviation with which the coordinates are associated.

Coordinates
West longitude, south latitude, east longitude, north latitude to find bounding box for each location, a row
needs to be added for each unique CityTown-StateTerritory pair found in the activities table.

https://doi.org/10.4236/jcc.2023.112012

C. Kann et al.

DOI: 10.4236/jcc.2023.112012 179 Journal of Computer and Communications

Table 3. Upload_from_excel inputs.

Path
The path to the Excel file. If the path given is not an .xlsx file it will replace it with base_directory + “event_template.xlsx”.
If the path is “event_template.xlsx”, it also assumes its in the base_directory.

Table 4. TwitterActivity inputs.

ID Unique identification string.

starting_date Beginning date of the activity within the event in the format dd mm yyyy hh:mm:ss.

ending_date Ending date of the activity within the event in the format dd mm yyyy hh:mm:ss.

CityTown
City or town where activity occurs. This value does not correspond to the Twitter API, but is used for the
researcher to link with instantiation of the bounding box, and thus simply must be consistent throughout the use.

StateTerritory
State or territory where activity occurs. This value does not correspond to the Twitter API but serves as a method
of grouping activities for the researcher.

Date Date of the activity in any format—this is a string for the user.

BestGuess Best guess of the size of the activity. If unknown, write 0.

Table 5. TwitterActivity.add_timing inputs.

period_start
Start of the event (when the timeline starts) if different from the rest of the activities in the event. In the format
dd mm yyyy hh:mm:ss.

period_end
End of the event (when the timeline ends) if different from the rest of the activities in the event. In the format dd
mm yyyy hh:mm:ss.

To finish creating the event, the researcher’s Twitter keys must be added. In

addition the keywords and general location bounding boxes must be included.
First, each set of keys must be converted into a codex TwitterKeyPair object.

key_j = tw.TwitterKeyPair(key, secret). Details for this function can be found
in Table 6.

These keys, the keywords, the timing, and the location must then be added to
the event object by the researcher through the series of functions listed in Table
7. The order in which each of these four items is added does not matter, but all
must be provided to create a full codex TwitterEvent object.

After completing the codex TwitterEvent object, the user must apply a quick
check in which gatherTweet both ensures internal consistency and produces an
easily readable object that the user can examine. The command is codex pro-
test_ids = event.print_protests() and the output is a dataframe of the activities
with the relevant information. The event object is now ready for use.

3.1.3. From Data Structure
The TwitterEvent objects populated using the previous two methods are needed
to pull the Twitter data associated with each activity. In order to run the check-
ing and analysis functions explained later in the paper a codex TwitterEvent ob-
ject is still needed. However, a sparser version of the object is sufficient. Once
the data are found, the file structure encodes the information necessary to create
this sparser version. In this case, building codex TwitterEvent objects from the

https://doi.org/10.4236/jcc.2023.112012

C. Kann et al.

DOI: 10.4236/jcc.2023.112012 180 Journal of Computer and Communications

existing data structure may be simpler. The function codex upl-
oad_from_file_structure is used to do this. It loops through the file system,
building up the codex TwitterEvent object. Specifically, the application is:

event.upload_from_file_structure()
The function has no inputs and assumes that the codex base_directory used in

the creation of the event is the same as was originally used and thus is the direc-
tory in which the data is stored. Following this command, the codex TwitterE-
vent object codex event is ready to be used to collect timelines and analyze data.

3.2. Individual Level Identification

Individuals in the event core are identified after the creation of the event object.
From there, the echo and influence accounts are found. While on the back end
these are similar processes, small differences in the commands sent to the Twit-
ter API result in substantial differences in data collected.

Table 6. TwitterKeyPair inputs.

Key Twitter developer key as a string

Secret Twitter developer secret key as a string

Table 7. Completing event functions and inputs.

event.add_key(key_j)

Key Twitter developer key as a string

Secret Twitter developer secret key as a string

event.add_keyWords(words)

Words List of keywords to use to identify the core. Can be written individually or in Twitter accepted format.
For example, it is equivalent to have:
George Floyd
GeorgeFloyd
vs.
(GeorgeFloyd OR (George Floyd))

event.add_timing(start, end)

Start Beginning of the timeline gathering period in dd mm yyyy hh:mm:ss format.

End End of the timeline gathering period in dd mm yyyy hh:mm:ss format.

event.add_location(CityTown, StateTerritory, west, south, east, north)

CityTown List of CityTown entries that occur in the activities.

StateTerritory List of StateTerritories associate with CityTown list.

West List of West longitude for bounding box of CityTowns.

South List of South latitude for bounding box of CityTowns.

East List of East longitude for bounding box of CityTowns.

North List of North latitude for bounding box of CityTowns.

https://doi.org/10.4236/jcc.2023.112012

C. Kann et al.

DOI: 10.4236/jcc.2023.112012 181 Journal of Computer and Communications

Figure 2 presents a schematic for the core identification for each activity. Be-
ginning with an activity from the codex TwitterEvent object, the keywords, ac-
tivity timeframe, and location are queried. For each keyword in the keywords
object, tweets are found that are published within the bounding box during the
timespan with that keyword. The API returns a maximum of 500 tweets per
query. In cases when there are more than 500 tweets in the timeline, the code
paginates through the API results until all tweets with that keyword are down-
loaded4. At the end of each keyword search, the collected tweets are saved as a
JSON file in a folder called “Core” within an activity-specific folder in the speci-
fied codex base_directory.

Figure 3 shows that the collection of echo and influence users follows a similar
process. A list of the individuals belonging to the core is created. Their tweets are
then examined from two days proceeding the start of the activity until two days
after. Echos are designated as individuals who retweet any of the tweets during
that period, while influences are the original creators of core user’s retweets. The
user IDs of these users are then stored in the Echo (Influence) folders within the
Activity folder in the base directory as text files names echo (influence)-ids.txt.

In order to run any tweet or user identification processes using gatherTweet,
the researcher uses the codex get_tweets command; Table 8 shows its argu-
ments. This function has the ability to retrieve the core, echos, and influences
user ID numbers as well as each of their timelines. This command, which in its
default form is

event.pull.get_tweets(event, types = [], max_results = 500,
tweets_per_file = 1000, expansions = [“author_id”,
“in_reply_to_user_id”], tweetfields = [“author_id”,
“created_at”, “geo”, “entities”, “public_metrics”,
“text”, “referenced_tweets”]),

Table 8. Get_tweets inputs.

Event TwitterEvent object

Types

a list of the types of Tweets and users you want to collect, options are: [Core, CoreTimeline, Echos,
EchosTimeline, Influences, InfluencesTimeline]. If left as an empty list, all will be evaluated. In order to run the
Timeline versions, all activities are checked to make sure they have the base version. For Echos and Influences it
checks that a core exists. Everything but the Core can restart after being interrupted with minimal redundancy.

max_results Number of tweets to attempt to pull in each query, must be an integer between 1 and 500.
tweets_per _file Number of tweets to save per file before beginning a new file.

Expansions

A list of tweetfields the researcher would like more information on, taken from
https://developer.twitter.com/en/docs/twitter-api/expansions, options are:
author_id, referenced_tweets.id, in_reply_to_user_id, attachments.media_keys, attachments.poll_ids,
geo.place_id, entities.mentions.username, referenced_tweets. id.author_id

twEetfields

A list of values within each tweet to be returned from each call are taken from
https://developer.twitter.com/en/docs/twitter-api/data-dictionary/object-model/tweet:
id (default), text (default), attachments, author_id, context_annotations, conversation_id, created_at, entities,
geo, in_reply_to_user_id, lang, non_public_metrics, organic_metrics, possibly_sensitive, promoted_metrics,
public_metrics, referenced_tweets, reply_settings, source, withheld)

4500 is accurate for Academic Researcher developer keys on the Twitter API v2 as of October 2022.

https://doi.org/10.4236/jcc.2023.112012
https://developer.twitter.com/en/docs/twitter-api/expansions
https://developer.twitter.com/en/docs/twitter-api/data-dictionary/object-model/tweet

C. Kann et al.

DOI: 10.4236/jcc.2023.112012 182 Journal of Computer and Communications

Figure 2. Core Identification.

Figure 3. Echo and Influence Identification.

is flexible and customizable. If “codex Core” is not in the codex types input and
has not already been pulled for the event, the process stops and issues an error.
gatherTweet checks for other dependencies and issues errors as appropriate.
Additional examples of such dependencies include finding the echo or influence
timeline before having found the echo or influence accounts.

3.3. Timeline Tweet Collection

The timeline tweet collection process is the same for all three groups of individu-
als. Given a list of Twitter user IDs, all tweets from the users during the event pe-
riod are accessed. While timeline tweet collection is programmatically simple, it
can be the most time intensive part of gatherTweet as it has to collect the largest
number of tweets. To do this collection, the function codex event.pull.get_tweets()
must be run with codex types = [CoreTimeline, EchosTimeline, InfluencesTime-
line]. This function is the same one that identifies individuals who belong to the
core, echos, or influences; the difference is in the codex type declaration. Full
details can be seen in Table 8. If the individuals for each type have not been
pulled gatherTweet will notify the researcher with the warning message

At least one activity does not have a list of “type” and the function will exit.

4. Parsing

It is useful to provide the researcher a sense of the size of an activity or activities’
data. This can be used as a check as the method is applied to get a sense of the

https://doi.org/10.4236/jcc.2023.112012

C. Kann et al.

DOI: 10.4236/jcc.2023.112012 183 Journal of Computer and Communications

size of the final dataset. The function codex check.number_of_tweets estimates
the numbers of tweets in each activity and type, and Table 9 shows its inputs.

The package gatherTweet generates a series of JSON files in an informative file
structure. The file structure is such that the location of the file clearly informs
the researcher of which information is in the JSON file. This structure, however,
keeps information separate and therefore requires the user to individually load
numerous files into a processor to access the raw data. To aid the researcher in
circumventing this process, gatherTweet also includes functions for merging the
individual JSON files into a usable and accessible format.

Two functions, codex read.read_tweets and codex read.read_tweets_basic,
combine all of the tweets from an activity into one file within the activity’s codex
analysis folder. The functions transform the JSON files into one comma-separated
values (.csv) file. The difference between the two functions is in the form which
each outputs. The former includes all of the information in the original file,
while the later includes only the text, author ID, tweet ID, created at date, and a
string indicating which activity the tweet is associated with.

The information provided in codex read.read_tweets_basic lowers the storage
requirements and in many cases provides sufficient data for analysis. For most
purposes, this function is the appropriate one for placing the data within activi-
ty-specific files. If the researcher wants to further simplify their storage structure
and have all of the event data in one location, the functions codex read.wrap_csv
and codex read.wrap_csv_basic can be used. These functions further combine
the results into a singular file within the codex analysis folder of each group of
activities (a directory for each value of the separator variable). The four func-
tions have the same input options (as seen in Table 10) and the original and ba-
sic versions can be used interchangeably.

Table 9. Check.number_of_tweets inputs.

Activities A list of the activities in which to estimate tweets.

Users The types of users to count tweets from, options are [Core, Echo, Influence].

base_directory Where to begin searching for the data.

Separator
Describes how the activities are split in the data saving structure, it can be any of the activity objects.
For geographical differences “CityTown” makes the most sense.

Timeline
Boolean of whether to count tweets in the timeline or not, if not, only the original tweets of the core will be
counted.

Table 10. Read.read_tweets(_basic) and read.wrap_csv(_basic) inputs.

Event The name of the TwitterEvent object.

Users
A list of the types of Tweets and users you want to aggregate the data for options are any subset of: [Core, CoreTimeline,
Echos, EchosTimeline, Influences, InfluencesTimeline].

https://doi.org/10.4236/jcc.2023.112012

C. Kann et al.

DOI: 10.4236/jcc.2023.112012 184 Journal of Computer and Communications

5. Research Results
5.1. 2020 Black Lives Matter Protests

This section demonstrates usage of gatherTweet to aid in the analysis of Twitter
discourse about the Summer 2020 Black Lives Matter (BLM) protests. Between
May 26th and August 22nd, 2020, approximately 7750 BLM demonstrations oc-
curred in over 2440 locations in all 50 US states [18]. These protests were some
of the most well attended and longest lasting in American history [19]. With the
sheer number of individuals and tweets involved in the protests, collecting every
tweet that used relevant keywords would overwhelm most systems. By restricting
analysis to specific cities, gatherTweet significantly reduces the strain of this col-
lection.

5.1.1. Preliminary Event Specification
We first choose which cities and protests to include as well as the event time
span. We focus on Los Angeles, Chicago, and Houston—the second through
fourth largest cities in the United States—and choose activities (protests) starting
immediately after the murder of George Floyd. The timeline collection occurs
from the 20th of May 2020 until the 1st of October. This span is 6 days before
the first recorded activity until 5 days after the final one. The location, date, es-
timated size, and overall statistics from the process can be seen in Tables 11-13.
The resulting data encompasses 13 activities in Los Angeles, 24 in Chicago and 7
in Houston.

Table 11. Overview of Data: Los Angeles.

City Protest Date
CCC

Estimated
Size

Core # Influence # Echo
Avg Core
Timeline

Size

Los Angeles 05-27-2020 250 351 47,506 62,978 1593

Los Angeles 05-28-2020 750 604 0 184,151 1582

Los Angeles 05-29-2020 2000 516 48,301 136,280 1286

Los Angeles 06-06-2020 3000 325 46,197 86,181 1473

Los Angeles 06-13-2020 200 326 38,583 59,360 1785

Los Angeles 06-27-2020 100 143 35,151 50,522 2396

Los Angeles 07-14-2020 50 79 7450 8977 4773

Los Angeles 07-25-2020 150 88 14,634 8735 2673

Los Angeles 07-26-2020 500 78 13,818 23,805 4499

Los Angeles 08-24-2020 112 112 12,274 13,560 4346

Los Angeles 08-25-2020 200 111 29,268 26,568 3537

Los Angeles 08-26-2020 300 156 10,734 5297 4200

Los Angeles 09-23-2020 500 196 21,585 47551 4055

https://doi.org/10.4236/jcc.2023.112012

C. Kann et al.

DOI: 10.4236/jcc.2023.112012 185 Journal of Computer and Communications

Table 12. Overview of Data: Chicago.

City Protest Date
CCC

Estimated
Size

Core # Influence # Echo
Avg Core
Timeline

Size

Chicago 05-29-2020 300 13 99 17 2350

Chicago 05-30-2020 1750 35 2639 3386 1210

Chicago 05-31-2020 200 44 2624 938 395

Chicago 06-05-2020 2000 48 11,534 12,616 466

Chicago 06-06-2020 2500 69 18,611 3299 476

Chicago 06-08-2020 200 22 2832 133 535

Chicago 06-12-2020 1400 13 2348 32 802

Chicago 06-13-2020 200 18 74 6 238

Chicago 06-14-2020 2500 16 2277 69 520

Chicago 06-17-2020 200 12 13 11 219

Chicago 06-19-2020 2000 28 4306 999 161

Chicago 06-24-2020 500 7 353 47 1324

Chicago 06-28-2020 2000 5 11 2 212

Chicago 07-02-2020 200 9 58 46 409

Chicago 07-17-2020 1000 9 728 11 545

Chicago 07-20-2020 100 3 162 77 308

Chicago 07-24-2020 200 3 0 0 113

Chicago 07-25-2020 300 5 652 319 1709

Chicago 08-08-2020 100 3 1 3 267

Chicago 08-18-2020 135 3 0 2 174

Chicago 08-29-2020 200 5 45 65 280

Chicago 09-23-2020 24 10 2428 0 607

Chicago 09-24-2020 500 11 3650 6271 4174

Chicago 09-26-2020 200 7 518 47 5755

Table 13. Overview of Data: Houston.

City Protest Date
CCC

Estimated
Size

Core # Influence # Echo
Avg Core
Timeline

Size

Houston 05-26-2020 200 2 281 54 116

Houston 05-29-2020 200 36 16,193 14,953 772

Houston 05-30-2020 200 24 7997 7846 441

Houston 06-02-2020 200 180 25,426 0 637

Houston 06-08-2020 40 26 5448 12,923 700

Houston 06-13-2020 50 4 23 1 1026

Houston 07-04-2020 2000 8 752 259 647

https://doi.org/10.4236/jcc.2023.112012

C. Kann et al.

DOI: 10.4236/jcc.2023.112012 186 Journal of Computer and Communications

The keywords used are listed in Table 14. They fall into three different cate-
gories: 1) calls to mobilize others to actively join protests, 2) names of the indi-
viduals who were victims of injustice, and 3) phrases that are commonly chanted
during protests. They are designed to capture the organizational period imme-
diately before the protests, the protest itself, and the topics most likely discussed
during the protests.

Having created keywords, we then populate the package’s Excel template;
these values are in the template in the GitHub repository. To generate the event,
the following code is used:

import gatherTweet as tw
dirr = “directory”
BLM = tw.TwitterEvent(“BLM”, base_directory = dirr)
BLM.upload_from_excel(dirr+“event_template.xlsx”).

5.1.2. Individual Identification and Timeline Tweet Collection
Once the codex TwitterEvent object is set up, the collection can begin. One
command accomplishes all of the user and tweet collection:

BLM.pull.get_tweets(BLM, base_directory = dirr)
The default of this function sets:
types = [codex Core, codex CoreTimeline, codex Echos, codex EchosTimeline,

codex Influences, InfluencesTimeline].
Thus, it executes both of the major data collection steps of the method. This

function signifies the main contribution of gatherTweet; in one call, given ap-
propriate setup, researchers are able to collect all of the Twitter data for their
purpose.

Table 14. Keywords for protesters.

Keywords

Black Lives Matter

BLM

George Floyd

Justice for Floyd

Walk with Us

Kneel with Us

March with Us

I Can’t Breathe

March for Peace

Take a Knee

Breonna Taylor

No Justice No Peace

Say Their Names

Ahmaud Aubrey

https://doi.org/10.4236/jcc.2023.112012

C. Kann et al.

DOI: 10.4236/jcc.2023.112012 187 Journal of Computer and Communications

5.1.3. Analysis
Parsing and analysis follow data collection. First, we populated Tables 11-13
using the codex check.number_of_tweets command for each activity and group.
These tables present summary statistics for each event. Los Angeles has the most
tweets and accounts for all three types.

The rest of this application focuses on the actions of the core. In order to place
all of the tweets related to the core users in one place, we run the following four
commands.

BLM.read.read_tweets(BLM, users = “Core”)
BLM.read.wrap_csv(BLM, users = “Core”)
BLM.read.read_tweets_basic(BLM, users = “CoreTimeline”)
BLM.read.wrap_csv_basic(BLM, users = “CoreTimeline”).
Despite descriptive differences, the events are similar when it comes to their

discussion frequency. Figure 4 plots the percent of tweets from individuals in
the core of activities taking place in each city each day. It shows that despite dif-
ferences in each city’s design, size of protests, and local events, the discourse
pattern is remarkably similar. These individuals had a large increase in Twitter
chatter in the days following the murder of George Floyd with similar patterns
in the months following.

In addition to proportional tweeting frequency, we see that very few individu-
als appear in the core more than once. We believe that individuals who are in the
core are at the physical protests since their location places them in the city, and
prior work has found that this assumption accurately measures protest size vari-
ation [20]. The lack of repeating individuals suggests that the group protesters
may not have been consistent over time [21] [22]. The statistics regarding repeat
members of the cores can be seen in Table 15. Most of the members of the core
of each city only go to one protest. The number of people who attend multiple
protests is significantly fewer, and the numbers continue to decrease as the
number of protests increases. Results like these can give researchers insights into
protest behavior and help categorize the protests.

5.1.4. Data Collection Time Estimate
Given the large amounts of data that events can generate, it is important to esti-
mate runtime associated with gatherTweet. The exact time required for the col-
lection of core users cannot be determined a priori. Depending on the event and
activities within it, there is no precise way of estimating the size of the core.
However, once the core has been collected it is possible to estimate the time re-
quired to collect the echo and influence users. A directed search for a five day
period takes on average 6 seconds per user5. To collect the echo and influence
users, this search must be run for each member of the core. Therefore, a time es-
timate for the collection of all echo and influence users can be approximated by:

#coreusers 2 6 seconds× × (1)

5This value was taken by running the directed search for 180 individuals, found in the Black Lives
Matter core, locally on a standard machine. The total time (1108.4092 seconds) to find the echos was
then divided by 180 to obtain the average.

https://doi.org/10.4236/jcc.2023.112012

C. Kann et al.

DOI: 10.4236/jcc.2023.112012 188 Journal of Computer and Communications

Figure 4. Discussion of BLM over time by protesters (members of the core).

Table 15. Percent BLM repeat protesters by city.

Protests Houston Chicago Los Angeles

1 100.00 87.38 92.37

2 0.00 9.23 7.38

3 0.00 1.85 0.24

4 0.00 0.92 0.00

7 0.00 0.31 0.00

17 0.00 0.31 0.00

A similar process was applied to find the time taken for timeline collection.

Again, the specific individuals being queried can change these values, especially
if the event being sampled is made up of prolific or reserved individuals. Our es-
timate for timeline collection is 0.1 seconds per day6. When the timeline gets
shorter the time per day may increase. This is a result of the way Tweets are
pulled. The program can receive 500 tweets per query, therefore, if the time is
short enough that fewer than 500 tweets are found in each query the time to ac-
complish the task will remain constant. To find a rough estimate, the following
equation may be followed:

#users #days 0.1 seconds× × (2)

We emphasize that the time required to collect tweets is heavily dependent on
the subject matter the researcher is exploring as the frequency of tweeting is
highly dependent on the type event.

5.2. Other Applications

This paper’s methodology can be applied to other social media platforms and
other activities. This subsection discusses examples where gatherTweet and the
associated methodology would be useful.

6This estimate was taken from measuring the time it took to collect 180 timelines over our 134 day
period from May 20, 2020 until October 1, 2020 and estimating the individual daily average time.
The total time for this sample was 2400.3108 seconds.

https://doi.org/10.4236/jcc.2023.112012

C. Kann et al.

DOI: 10.4236/jcc.2023.112012 189 Journal of Computer and Communications

One obvious application would be mass-mobilization events such as the Yel-
low Vest protests in France [23], the Black Lives Matter protests [24], or the
Women’s March [25]. Such protests are ideally suited because they involve a
large following and spread out over time and space. Collecting all of the relevant
social media data for events of these magnitudes would overwhelm many com-
puter systems. Instead, for gatherTweet, the researcher would choose a set of
geographic and time combinations to focus on. With such criteria, the monitor
will identity the core and then expands out to find the rest of their network at
the time of the activity.

A second application includes phenomena that move over time, such as heat
waves or hurricanes, or epidemics like COVID-19. They require a slightly dif-
ferent approach than mass-mobilization events because the timing and geo-
graphic locations have to be well-specified. For weather episodes, the researcher
has to discretize locations and timings to create the core. The researcher could
choose a time increment, such as a number of hours or days, and pick a corres-
ponding geographical area large enough to encompass the entire activity. That
approach makes the most sense for events that move over time, such as a hurri-
cane. For other natural activities, such as disease, where the geographic path is
obscured, or there are jumps, or the presence of the activity is unclear, a thre-
shold approach makes sense. Examples would be beginning the spread of
COVID-19 when cases in a city surpass a per capita threshold.

Other examples of possible applications are elections and pop culture activi-
ties, such as performer’s tours or sports teams’ games. With these, there is a clear
point when the activity occurs in a location. For example, elections, specifically
U.S. presidential primaries, occur at different times in different locations. Sports
teams, musicians, and comedians perform in different locations on certain dates
and times. In each case, the approach is similar to the mass-mobilization since
the location and timing of the core detection is often obvious. A main drawback
is that these events may be smaller so the method may only pick up a small
number of individuals.

6. Social Media Data Collection Restrictions

The collection process of Twitter data for research purposes are subject to the
restrictions of its representational state transfer (REST) APIs7. While the docu-
mentation for the usage of the APIs is relatively straightforward, there are spe-
cific limitations pertinent to the implementation of gatherTweet. Perhaps the
most binding limitation is rate limits that very by endpoint. Table 16 provides
common rate limits encountered.

7Here we discuss the technical uses of the Twitter APIs that are available for academic research.
Twitter’s developer terms of service also restricts how data collected can be used. For example, geo-
located data cannot be used to track Twitter users spatially and can only be used in association with
information in their tweets in aggregated form. Also, academic users are restricted in how they use
data like these by their institutional review boards (IRBs); the data collection methodology in this
paper was reviewed and approved by Caltech’s IRB (Caltech IRB No. 21-1148).

https://doi.org/10.4236/jcc.2023.112012

C. Kann et al.

DOI: 10.4236/jcc.2023.112012 190 Journal of Computer and Communications

Table 16. Summary of Twitter rate limits.

Endpoint Per App (15 min window) Per User (15 min window)

User tweet timeline 1500 900

User mention timeline 450 180

Full-archive search 300 180

To maximize the number of requests, gatherTweet sends 1 query per second

to prevent errors and to avoid sending bad requests that count towards the rate
limit. The 1 query per second is an explicit one for the full-archive search, how-
ever sometimes it may be helpful to slow down the query rate to prevent too
many endpoint requests. For example the user mention timeline can be re-
quested 450 times per 15 minute window, and by spacing the 450 requests to be
within a 15 minute time window (sending a request every 2 seconds rather than
1) prevents querying after the rate limit is reached.

Compounded with the rate limit issue is the 10 million tweet per month per
key restriction. While the only solution to the monthly cap is the utilization of
multiple sets of keys, the data methodology presented in this paper seeks to
maximize the 10 million tweets by gathering the most central information to the
event.

The data collection process gets more complex as the time span studied in-
creases. Therefore, to identify the core of the event we utilize keywords that are
associated with the topics most discussed during the event. When querying uti-
lizing keywords it is important to use every possible version of the phrase in re-
gards to spelling and spacing. In addition to the keyword search, our method
specifies a location and time component. Approximately 1% - 2% of all tweets
are geotagged which means the creation of geographic restrictions on the core
allows us to maximize the 10 million tweets as well as insure with a higher like-
lihood that the tweets collected belong to users involved in the event. Our
second measure is to restrict the collection to users who tweet during the day of
the activity, increasing the likelihood we collect users physically present during
an activity.

The data collection process is designed to be versatile with regards to re-
searchers’ access to resources. The package gatherTweet can be run on university
servers, in the cloud, or locally. The storage method of this data can also been
done on a server or locally. By reducing the amount of post-processing required
of the data it is extremely easy for the researchers to use the tweets in any type of
natural language processing methodology.

7. Conclusions

Social media provides a wealth of information for researchers. gatherTweet, an
easy-to-use Python package that requires very little prior programming know-
ledge, can aid researchers in the collection and analysis of large scale social me-
dia events. Since large events can produce more data than most researchers can

https://doi.org/10.4236/jcc.2023.112012

C. Kann et al.

DOI: 10.4236/jcc.2023.112012 191 Journal of Computer and Communications

feasibly acquire, store, and analyze, gatherTweet’s data methodology provides a
solution by targeting the main participants in an event.

The methodology presented in this paper instructs researchers on a clear way
to conceptualize massive physical events which have discrete geographic and
temporal activities. In addition, it creates a non-random approach to limiting the
data collected, while accounting for exogenous trends such as location and time.
Finally, in collecting the individuals who echo and influence the participants, the
network surrounding participants is included. Thus, the process can be used to
easily find social media users who both participate in offline event activities and
are in the same sphere as each other.

This method is all the more relevant in an increasingly interconnected world.
Events such as protests have a dispersion of geographic loci, and isolating them
individually enables researchers to better pinpoint time spans and geographies.
In creating a standardized method for data collection of large scale social media
data of events, gatherTweet also enables comparison across future research
projects. gatherTweet helps researchers directly collect the data most relevant to
their cause.

Acknowledgements

We thank the Google Cloud Research Credits Program for providing credits for
our use of the Google Cloud Platform for data collection and analysis. Related
research was presented at the 2022 MPSA Annual Meetings, we thank partici-
pants for their comments. Thanks as well to Jian Cao and Danny Ebanks for
their help with our research.

Conflicts of Interest

The authors declare no conflicts of interest regarding the publication of this pa-
per.

References
[1] Tillery, A.B. (2019) What Kind of Movement Is Black Lives Matter? The View from

Twitter. Journal of Race, Ethnicity, and Politics, 4, 297-323.
https://doi.org/10.1017/rep.2019.17

[2] Theocharis, Y., Lowe, W., Van Deth, J.W. and Garcıa-Albacete, G. (2015) Using
Twitter to Mobilize Protest Action: Online Mobilization Patterns and Action Re-
pertoires in the Occupy Wall Street, Indignados, and Aganaktismenoi Movements.
Information, Communication & Society, 18, 202-220.
https://doi.org/10.1080/1369118X.2014.948035

[3] Conover, M.D., Ferrara, E., Menczer, F. and Flammini, A. (2013) The Digital Evolu-
tion of Occupy Wall Street. PLOS ONE, 8, e64679.
https://doi.org/10.1080/1369118X.2014.948035

[4] Kann, C., Hashash, S., Steinert-Threlkeld, Z. and Alvarez, R.M. (2021) Collective
Identity in Collective Action: Evidence from the 2020 Summer Blm Protests. The
2021 Annual Meetings of the Midwest Political Science Association, Chicago, April
9, 2022.

https://doi.org/10.4236/jcc.2023.112012
https://doi.org/10.1017/rep.2019.17
https://doi.org/10.1080/1369118X.2014.948035
https://doi.org/10.1080/1369118X.2014.948035

C. Kann et al.

DOI: 10.4236/jcc.2023.112012 192 Journal of Computer and Communications

[5] Bruns, A. and Liang, Y.E. (2012) Tools and Methods for Capturing Twitter Data
during Natural Disasters. First Monday, 17, 1-8.
https://doi.org/10.5210/fm.v17i4.3937

[6] Cao, J., Adams-Cohen, N. and Alvarez, R.M. (2021) Reliable and Efficient
Long-Term Social Media Monitoring. Journal of Computer and Communications,
9, 97-109. https://doi.org/10.4236/jcc.2021.910006

[7] Bozarth, L. and Budak, C. (2022) Keyword Expansion Techniques for Mining Social
Movement Data on Social Media. EPJ Data Science, 11, 30.
https://doi.org/10.1140/epjds/s13688-022-00343-9

[8] Zheng, X. and Sun, A.X. (2019) Collecting Event-Related Tweets from Twitter
Stream. Journal of the Association for Information Science and Technology, 70,
176-186. https://doi.org/10.1002/asi.24096

[9] McCormick, T.H., Lee, H., et al. (2017) Using Twitter for Demographic and Social
Science Research: Tools for Data Collection and Processing. Sociological Methods &
Research, 46, 390-421. https://doi.org/10.1177/0049124115605339

[10] Barbera, P. and Steinert-Threlkeld, Z.C. (2020) How to Use Social Media Data for
Political Science Research. SAGE Publications, Thousand Oaks.
https://doi.org/10.4135/9781526486387.n26

[11] Roesslein, J. (2009) Tweepy. https://github.com/tweepy/tweepy

[12] Gedulig, J. (2021) Twitterapi. https://github.com/geduldig/TwitterAPI

[13] Taylor, M. (2007) Python-Twitter. https://github.com/bear/python-twitter

[14] Gonzalez-Bailon, S., Borge-Holthoefer, J. and Moreno, Y. (2013) Broadcasters and
Hidden Influentials in Online Protest Diffusion. American Behavioral Scientist, 57,
943-965. https://doi.org/10.1177/0002764213479371

[15] Eubank, N. and Kronick, D. (2021) Friends Don’t Let Friends Free Ride. Quarterly
Journal of Political Science, 16, 533-557. https://doi.org/10.1561/100.00020143

[16] Rudig, W. and Karyotis, G. (2013) Beyond the Usual Suspects? New Participants in
Anti-Austerity Protests in Greece. Mobilization, 18, 313-330.
https://doi.org/10.17813/maiq.18.3.r3377266074133w5

[17] Kryvasheyeu, Y., Chen, H.H., Obradovich, N., et al. (2016) Rapid Assessment of
Disaster Damage Using Social Media Activity. Science Advances, 2, e1500779.
https://doi.org/10.1126/sciadv.1500779

[18] Raleigh, C., Linke, A., Hegre, H. and Karlsen, J. (2010) Introducing Acled-Armed
Conflict Location and Event Data. Journal of Peace Research, 47, 651-660.
https://doi.org/10.1177/0022343310378914

[19] Putnam, L., Chenoweth, E. and Pressman, J. (2020) The Floyd Protests Are the
Broadest in U.S. History—And Are Spreading to White, Small-Town America.

[20] Sobolev, A., Joo, J., Chen, K. and Steinert-Threlkeld, Z.C. (2020) News and Geolo-
cated Social Media Accurately Measure Protest Size Variation. American Political
Science Review, 114, 1343-1351. https://doi.org/10.1017/S0003055420000295

[21] Saunders, C., Grasso, M., et al. (2012) Explaining Differential Protest Participation:
Novices, Returners, Repeaters, and Stalwarts. Mobilization, 17, 263-280.
https://doi.org/10.17813/maiq.17.3.bqm553573058t478

[22] Saunders, C. and Shlomo, N. (2021) A New Approach to Assess the Normalization
of Differential Rates of Protest Participation. Quality and Quantity, 55, 79-102.
https://doi.org/10.1007/s11135-020-00995-7

[23] Smith, S. (2018) Who Are France’s “Yellow Jacket” Protesters and What Do They

https://doi.org/10.4236/jcc.2023.112012
https://doi.org/10.5210/fm.v17i4.3937
https://doi.org/10.4236/jcc.2021.910006
https://doi.org/10.1140/epjds/s13688-022-00343-9
https://doi.org/10.1002/asi.24096
https://doi.org/10.1177/0049124115605339
https://doi.org/10.4135/9781526486387.n26
https://github.com/tweepy/tweepy
https://github.com/geduldig/TwitterAPI
https://github.com/bear/python-twitter
https://doi.org/10.1177/0002764213479371
https://doi.org/10.1561/100.00020143
https://doi.org/10.17813/maiq.18.3.r3377266074133w5
https://doi.org/10.1126/sciadv.1500779
https://doi.org/10.1177/0022343310378914
https://doi.org/10.1017/S0003055420000295
https://doi.org/10.17813/maiq.17.3.bqm553573058t478
https://doi.org/10.1007/s11135-020-00995-7

C. Kann et al.

DOI: 10.4236/jcc.2023.112012 193 Journal of Computer and Communications

Want? NBC News.

[24] Buchanan, L., Bui, Q. and Patel, J.K. (2020) Black Lives Matter May Be the Largest
Movement in U.S. History. The New York Times.

[25] Stein, P., Hendrix, S. and Hausiohner, A. (2017) Women’s Marches: More than One
Million Protesters Vow to Resist President Trump. The Washington Post.

https://doi.org/10.4236/jcc.2023.112012

	GatherTweet: A Python Package for Collecting Social Media Data on Online Events
	Abstract
	Keywords
	1. Introduction
	2. Literature Review
	3. Method
	3.1. Preliminary Event Specification
	3.1.1. From Excel
	3.1.2. From Python
	3.1.3. From Data Structure

	3.2. Individual Level Identification
	3.3. Timeline Tweet Collection

	4. Parsing
	5. Research Results
	5.1. 2020 Black Lives Matter Protests
	5.1.1. Preliminary Event Specification
	5.1.2. Individual Identification and Timeline Tweet Collection
	5.1.3. Analysis
	5.1.4. Data Collection Time Estimate

	5.2. Other Applications

	6. Social Media Data Collection Restrictions
	7. Conclusions
	Acknowledgements
	Conflicts of Interest
	References

