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Abstract 
Image denoising is an important step in eliminating any noise impact in any 
image transmission process. Recently we presented two approaches for Biva-
riate based image denoising. They were Double Density Discrete Wavelet 
Transform (DD DWT) and Double Density Dual Tree Complex Wavelet 
Transform (DD CWT). In both techniques we decomposed noisy images with 
either DD DWT or DD CWT decompositions and then applied the Bivariate 
based denoising technique for noise removal. In this paper we propose an 
adaptive hybrid technique for Bivariate based image denoising that is based 
on the synthesis of DD-DWT bands or DD-CWT bands but with different 
weights, to deliver enhanced image features with less denoising impact espe-
cially around image edges, which is the most effected by noisy transmission 
channels. This proposed technique has been also enhanced by edge sharpen-
ing and Eigen analysis, as two separate stages. Simulation result comparisons 
have been performed between the proposed hybrid band adaptive DD-DWT 
and DD-CWT technique and the two primary techniques DD-DWT, DD- 
CWT, as well as other superior literature techniques such the original biva-
riate denoising technique with both original Complex Wavelet Transform 
and Double Density decompositions. This work in specific compares between 
Double Density DWT and Double Density CWT decompositions, proposes 
new filter design that suits each of them and proposes a hybrid technique 
between as will be shown. 
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1. Introduction 

There has always been an amount of unavoidable noise contaminated in any 
communication channel. Eliminating or avoiding this noise amount is inevitable. 
Hence, denoising became crucial to improve quality and eliminate degradations 
of received data in any receiver system. 

Several image denoising algorithms were proposed during the last two dec-
ades. They range from the frequency-based filtering techniques [1] [2], and the 
wavelet transform-based techniques [3]. This is in addition to other transform- 
based techniques that were not competitive enough. 

Typically, in wavelet-based techniques, the signal/image is represented in fre-
quency domain as a few numbers of large coefficients as well as large number of 
almost zero coefficients. The adopted denoising strategy is based on threshold-
ing small coefficients, where the noise effect is high, while keeping or modifying 
large coefficients, where the noise effect is low. In [4] [5], a complete review for 
image denoising was presented. It concluded that superior performance for de-
noising can be achieved with wavelet based denoising, rather than other trans-
form based denoising techniques or convex optimization based denoising ap-
proaches.  

A Bivariate Shrinkage technique was first adopted in wavelet image denoising 
in [6] [7], where the correlation between parent and children was exploited for 
better noise removal performance. This was performed by utilizing the Maxi-
mum Likelihood Estimation between noisy wavelet coefficients and their adja-
cent at the next coarser scale. Complex Wavelet Transform achieved better de-
noising performance for this Bivariate technique as in [7]. In [8], the double 
density discrete wavelet transform filter bank structure was first presented for 
denoising purposes. Performance for image denoising was outstanding due to 
the fact that double density wavelet bands were shift invariant and phase 
oriented. Denoising was also performed by simple thresholding of double densi-
ty bands. The Discrete Wavelet Transform DWT has been historically is known 
for being an efficient time-frequency representation/analysis, however, it has the 
following drawbacks: 1) Shift Variance; 2) Oscillations at edges and sharp cor-
ners. 3) Aliasing; and 4) Lack of orientation identifications [9]. The Complex 
Wavelet Transform CWT [9] [10] [11] [12], was presented to overcome these 
short comings as it provided wavelet functions that have almost single side band 
frequency response. The one dimensional CWT, 1-D CWT, was first presented 
in [10] [11] [12] [13] as two real DWT trees connected in parallel. A complete 
design analysis and review of the filter sets of CWT has been presented in [9] [14] 
[15]. The filter sets also ensured that the upper and lower trees form a Hilbert 
transform pair approximately in all scales. The two-dimensional CWT, 2-D 
CWT is implemented as four 2-D DWT connected in parallel. The Bivariate 
technique was later adopted in image denoising through utilizing CWT, as in 
[7]. One dimensional Double Density DWT, 1-D DD-DWT, was implemented 
using one low pass filter ( )0H z  and two high pass filters ( )1H z  & ( )2H z  
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as shown in Figure 1, [8]. Similarly, 2-D DD-DWT is represented as two 1-D 
DD- DWT in raw and column manners, respectively. The DD-DWT still suf-
fered from directional ambiguity; hence the double density complex wavelet 
transform that is briefly presented in [9], has been recently proposed to over-
come this draw back. In [16], a similar analysis was presented however it did not 
propose any filter design procedure as presented in this work. In this paper, we 
first propose a novel two-dimensional double density Discrete Wavelet Trans-
form 2-D DD-DWT filter structure for denoising purposes, then we propose 
another two-dimensional double density Complex Wavelet Transform 2-D 
DD-CWT filter structure and utilize it in denoising purposes. These filters in 
both techniques satisfy the perfect reconstruction property as well as the alias free 
condition. Next, we utilize these filters in conjunction with the Bivariate Shrin-
kage based denoising technique. We then propose our unique hybrid technique 
that combines both 2-D techniques and produces an enhanced denoising tech-
nique as will be shown in our simulations. We propose two scenarios to enhance 
this hybrid technique first through edge sharpening and then Eigen analysis ma-
nipulation. Simulation comparisons show that these two scenarios can achieve 
sizeable enhancement of the final denoised image. Some early results of this work 
was presented in [9], but at much less scale and scope. The proposed 2-D 
DD-DWT filter structure is presented in section II.A, then the enhanced 2-D 
DD-CWT filter structure is presented in section II.B. The bivariate shrinkage is 
presented in section III, and our final hybrid bivariate technique that combines 
DD-DWT and DD-CWT is presented in section IV, along with two scenarios that 
are proposed for further enhancement. Simulation comparisons for all proposed 
techniques are illustrated in section V. 

2. The Proposed DD DWT CWT Design 
2.1. DD DWT 

Double Density DWT wavelet 
The one-dimensional double-density 1-D DD-DWT, first presented in [8], is 

implemented by recursively applying a three-channel analysis filter bank, instead 
of the historic two-channel analysis filter bank, Figure 1. Also, the Inverse 
double-density DD DWT is obtained by applying the synthesis filter bank for the 
initial three channel analysis set. The 2-D double-density DD-DWT is conse-
quently implemented by applying the filters ( )0H z  & ( )1H z  & ( )2H z  first 
to the rows, then to the columns of an image. This would result in nine 2-D sub 
bands, where one of them is the 2-D lowpass scaling filter, and the other eight 
make up remaining 2-D wavelet filters, Figure 2. 

The proposed design to achieve a 3-channel perfect reconstruction filter bank 
set is detailed as follows: Let ( )0H z  be an N-tap low pass filter with K zeros at 

1z = − . These K zeros are placed to insure smoothness. We then would want to 
construct two N-tap high pass filters ( )1H z  & ( )2H z  that satisfy the follow-
ing perfect reconstruction (PR) and Alias Free (AF) conditions: 
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Figure 1. Double density discrete wavelet transform. 

 

 
Figure 2. Two dimensional 2-D DD-DWT. 

 
PR (condition): 

( ) ( ) ( ) ( ) ( ) ( ) ( )11 1 1
0 0 1 1 2 2

NH z H z H z H z H z H z Cz− −− − −+ + = ,       (1) 

where C is a constant 
AC (condition): 

( ) ( ) ( ) ( ) ( ) ( )1 1 1
0 0 1 1 2 2 0H z H z H z H z H z H z− − −− + − + − =          (2) 

We propose to satisfy these two conditions in two steps: 
In step 1: For a given ( )0H z , assume an arbitrary ( )1H z , then scale ( )1H z  

such that its norm is less than ( ) 22
02 H z− . We then construct ( )2H z  to 

meet AC condition using a root finding technique as follows: 
Let 

( ) ( ) ( ) ( ) ( ) ( ) ( )1 1 1
0 0 1 1 a aY z H z H z H z H z Y z Y z− − −= − + − = − − .      (3) 

This means that ( )Y z  has roots at kz  & ( 1

kz
− ), 1,2, , 1k N= − . 

Let  
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( ) ( ) ( )1 1
2

N
aH z z Y z− − −= − . 

where ( )aY z  is constructed through root grouping, either by maximum phase, 
minimum phase or mixed phase factorization. This would satisfy AC condition. 

In step 2: we update ( )1H z  as follows,  

( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

1
1 1 1

1 1 1
0 0 2 2

2u u

N

H z H z Y z

Cz H z H z H z H z

−

− − − −

==

−

∗

−=
 

This would allow us to obtain ( )1uH z  using a root finding technique of 
( )1Y z  again either using maximum, minimum or mixed phase factorization. 

Then we update ( ) ( )1 1uH z H z=  and reiterate step 1 until conversion is ob-
tained. It is worth mentioning that, while the filter ( )0H z  has K zeros at 

1z = − ; Both ( )1H z  & ( )2H z  must has M zeros at 1z =  where M K≤ . 
Finally, because of the factorization of ( )Y z , the construction of ( )2H z  and 
subsequently ( )1H z  is non-unique. 

Example: In this example, we choose a 6-tap minimal-length Debauches 
low-pass filter ( )0H z  with 4K = . In our simulation, we choose 2M =  to 
construct an arbitrary ( )1H z , length 4. We express ( ) ( ) ( )1

1 11
M

H z z X z−= −  
and similarly for ( )2H z . The unknown parameters ( ) ( )1 2X z X z  proceeds as 
described above. For this arbitrary ( )1H z , ( )Y z  is factorized as in Equation 
(3). Only six iteration steps are needed to obtain the exact solution. Design coef-
ficients of the upper tree 0 1 2, ,H H H  are listed below in Table 1. 

We note here that the 2-D DD-DWT still suffers from phase ambiguities that 
is typical in any basic Discrete wavelet Transform DWT. The next utilized Com-
plex Wavelet Transform CWT has been proposed to overcome this phase ambi-
guity issue. 

2.2. DD CWT  

Double Density CWT Wavelet 
In this section we present our novel 2-D DD-CWT filter bank structure. We 

first note that the design of the regular CWT filter structure bank 0 0,u dH H , 
which is the low pass filter of the upper and lower (down) trees must be a half 
band filter as noted in [9] [12] [13]. This is in addition to another restriction of a 
group delay. The group delay of ( ) ( )0 0d uH z H z  must approximate one sam-
ple for the first level of decomposition and half sample for the succeeding levels 
[9] [12] [13]. Figure 3 shows the CWT system, where filters 0 0,u dH H  are de-
signed as 0 0,h g . Further designed examples are listed in [8] [10].  

It has been shown that to fulfill this Hilbert pair relation; the low-pass filters 
( ) ( ){ }0, 0,,u dh n h n  of the upper and lower tree satisfy the following constraint 

( ) ( ) ( ) ( ){ }0, 0, 0.5d u d uh n h t tn ψ ψ= − ⇒ =  

where ( )u tψ  & ( )d tψ  are the wavelet functions of the upper and lower trees, 
respectively and   denotes Hilbert transform. Moreover, this condition also 
implies ( ) ( )0.5d un nφ φ= −  where ( )nφ  represents the corresponding dis-
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crete scaling functions. This half sample shift implies that in case of multi-level 
decomposition, integer translates of ( )d nφ  should lie midway between integer 
translates ( )u nφ . Thus in order to ensure that the upper and lower wavelet 
functions form a Hilbert pair at every decomposition level 1, , r , the first stage 
and the succeeding stages filters of the upper and lower should be chosen to sa-
tisfy the condition [4] 

( ) ( )1 1
0, 0, 1 ,d uh n h n= −  

( ) ( )0, 0, 0.5 , 2,3, ,j j
d uh n h n j r= − =                  (4) 

where r is no. of decomposition levels and j is the stage index, as the lattice tree 
structure in Figure 4. 

 
Table 1. Design coefficients of proposed DD-DWT. 

H0 H1 H2 
−0.0083 −0.0001 0.0641 
−0.0244 0.0005 −0.0246 
0.2342 −0.0011 −0.0546 
0.7445 −0.0004 −0.0321 
0.6052 0.0049 0.0581 

−0.0402 −0.0036 0.0208 
−0.1440 −0.0031 −0.0456 
0.0341 0.0028 −0.0314 

 

 
Figure 3. CWT Filter bank structure. 

 

 
Figure 4. CWT Filter bank structure-one tree. 

Stage 1 Stage 2 Stage 3

H0 H0H0

H1 H1 H1

H2 H2H2
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In [4] [5] [6], two techniques were described to fulfill this half sample delay 
requirements, namely the maximum flat delay [6] and the quarter phase delay, 
[4]. However, these approaches satisfy the prescribed delay of 1 & 0.5 over the 
whole frequency band irrespective of the magnitude response of { } ( )0,uH z  

For our proposed double density CWT filter structure, the proposed one- 
dimensional DD CWT is designed as follows: 

Construct ( )0uH z  & ( )0dH z  to satisfy the half band property and group 
delay constraints as follows: 

Assume ( )uH z  to be an N-tap FIR, N = even, of the form 

( ) ( )11 2
0 1 2 1

N
u NH z z z zα α α α − −− −

−= + + + +  

where the unknown α’s are determined to satisfy the following two conditions: 
1) The function ( ) ( ) ( )1

u uR z H z H z−=  must be a half band function as in 
PR systems. 

2) The group delay of the rational function ( ) ( )
( )

( ) ( )
( )

1 1N
ud

u u

z H zH z
F z

H z H z

− − −

= =  

should approximate the delay 1τ =  for the first level of the decomposition 
bank and 0.5 for the succeeding stages in a least squares sense over a fraction xr  

of the pass-band of the low pass filter ( )uH z , respectively [15]. 

Then we construct the filters [ ]1 2,u uH H  of the upper tree according to the 
following analysis: 

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

1 1 1
1 1 2 2 0 0

1 1 1
1 1 2 2 0 0

u u u u u u

u u u u u u

H z H z H z H z H z H z

H z H z H z H z H z H z

− − −

− − −

+ = − −

− + − = − −
      (5) 

similar relations are applied for ( )1dH z , ( )2dH z . Hence, the design of 
( ) ( )1 2,u uH z H z  proceeds as follows  

1) Construct ( )0H z , from regular filter design [13], keeping in mind that it 
is a half band filter; 

2) Take an initial ( )1H z , that is scaled such that its frequency response is less 
than that of ( )0H z−  at all z point;  

3) Construct ( )2H z  from the root finding and perfect reconstruction prop-
erty, Equation (4);  

4) Check the alias free property, and update ( )1H z ; 
5) Reiterate until conversion is obtained. 
Design coefficients of ( )0H z  & ( )1H z  & ( )2H z , 0.5τ = , and 1, for the 

upper and lower tree, respectively, are listed. 
This shows that DD-CWT is designed as a double density 3-channel decom-

position for each of 0 0,u dH H , i.e. the low pass filter of the upper and lower 
(down) trees.  

Figure 4 shows the 1-D DD CWT for the upper trees, while Figure 5 shows 
the completer set of upper and lower trees for the 1-D DD CWT structure. 

This design of a 1-D DD-CWT filter along with its coefficients along with the 
1-D DD-DWT design methodology presented in previous section is our primary 
contribution of this work (Table 2). 
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Figure 5. CWT Filter bank structure-two trees. 

 
Table 2. (a) Design coefficients of proposed DD-CWT τ = 1; (b) Design coefficients of 
proposed DD-CWT τ = 0.5. 

(a) 

H0 H1 H2 * 10−3 

0.2318 0.019 0.3722 

−0.095 −0.114 −0.5272 

0.1219 0.2385 0.048 

0.897 −0.2411 0.244 

0.1215 0.187 −0.106 

−0.0949 −0.2504 −0.2397 

0.2319 0.2626 0.139 

−0.0001 −0.1016 0.0696 

(b) 

H0 H1 H2 * 10−3 

−0.0051 0.019 0.5001 

−0.091 −0.114 −0.7084 

0.2196 0.2385 0.0645 

0.8051 −0.2411 0.3279 

0.5476 0.187 −0.1424 

−0.0123 −0.2504 −0.3221 

−0.055 0.2626 0.1868 

0.0052 −0.1016 0.0936 

Stage 1 Stage 2 Stage 3

Stage 1 Stage 2 Stage 3

H0u H0u H0u

H1u H1u H1u

H2u H2u H2u

H0d H0dH0d

H1d H1dH1d

H2d H2d H2d
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The 2-D Double-Density Complex Wavelet Transform i.e. 2-D DD-CWT is 
consequently implemented by applying the filters ( )0H z  & ( )1H z  & ( )2H z  
of 0uH , first to the rows, then to the columns of an image, for every stage. This 
would result in nine 2-D sub bands, for every stage, where one of them is the 
2-D lowpass scaling filter, and the other eight make up remaining 2-D wavelet 
filters. For a 3 stage 2-D DD-CWT decomposition we would have a resulting to-
tal of 25 2-D subbands as will be detailed in the simulation result section. 

3. Double Density Bivariate Denoising Technique 

Classical wavelet based denoising techniques, are based on thresholding wavelet 
coefficients. Different techniques are used to determine these thresholding levels. 
They are mainly based on thresholding the wavelet decomposition of the noisy 
image at every sub band by a specific thresholding parameter. The problem can 
be formulated as: Given the noisy wavelet coefficient nw , it is required to recov-
er the clean wavelet coefficient w where nw w n= + , n is the associated inde-
pendent noise. This is a Maximum Likelihood Estimation (MLE) problem, as 
solution can be found as, 

( )( ) ( ) ( )( )max | maxnw p w w p n p w= = , p is the pdf distribution. In case of 
zero mean Gaussian noise, ( )p n  can be formulated in terms of its variance 

2
nσ . In this case, the variance can be estimated using the empirical formula 

( )2 median 0.6745n nwσ = . 
As far as w, it has been observed that the pdf of the wavelet coefficients of 

natural images approximates Laplacian distribution, [7].  
In [7], it has been observed that there exist strong dependencies between 

neighbor wavelet coefficients, such as between parent coefficients at a coarser 
scale and its adjacent children coefficients at a finer scale. To check this depen-
dence, we construct the CWT system of Lena image using the CWT system of 
section 2. The contour plots suggest the validity of the empirical circular joint 
pdf formula of [7], Figure 6(b) i.e. 

( )
2 2
1 2

3

1 2 2

1, e
2

w w
p w w σ

σ
− +

=
π

 

where 1 2,w w  are the parent and children wavelet coefficients, respectively.  
In this paper, we estimate the variance ( )2 2 2

1 2min ,σ σ σ= , where 2
1σ  and 

2
2σ  are variances of 1w  and 2w , respectively. Thus, in order to de-noise a noisy 

image, and in view of the assumption of near circular joint pdf distribution be-
tween adjacent scale wavelet coefficients, the thresholded children coefficient 

2

th
nw  is given by, [7] 

1 2

2 2

1 2

2
2 2

2 2

3 n
n n

th
n n

n n

w w

w w
w w

σ
σ

+

 
+ −  

 = ⋅
+

 

where the soft thresholding function ( )x x
+
=  if 0x >  and zero otherwise. 
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(a) 

 
(b) 

Figure 6. (a) Histogram of Joint pdf. (b) Contour plot of Joint pdf. 
 

Thus, the proposed de-noising scheme amounts to thresholding the wavelet 
coefficients of the real and imaginary wavelets of the upper and lower trees. In 
this scheme, the noise variance 2

nσ  is accurately estimated through estimating 
the pdf of the detail coefficients of the first level wavelet decomposition of the 
noisy image. The de-noising scheme is summarized as follows: 

1) For a prescribed number of decomposition levels n and a prescribed num-
ber of vanishing moments K, determine the first and succeeding stages filters of 
the upper and lower trees of the dual tree DWT, as described in section 2. 

2) Initially, for the first scale of the upper and lower trees, evaluate the real 
and imaginary parts of the complex wavelets 

2nw  and its adjacent parent 
1nw  

Contour plot of
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at the coarser scale. Interpolate by 2 the parent coefficient 
1nw . 

3) In order to estimate σ , 2
1σ  and 2

2σ  have to be estimated. They are esti-
mated as the peak powers 1 2,E E  of the coefficients 

1 2
,n nw w . Then, 2 2

1 1 nEσ σ= − , 
2 2
2 2 nEσ σ= − , and ( )2 2 2

1 2min ,σ σ σ= . Threshold the children’s coefficients. 
Repeat steps 2,3 until all children coefficients are scanned. In the last scale, 

threshold the parent coefficient 
1nw  as well. 

In this paper, we apply this bivariate shrinkage technique to denoise 2D DD- 
DWT and 2D DD-CWT wavelet packets. Bivariate shrinkage technique is based 
on strong dependency between noisy children wavelet coefficients 1

nx  and their 
corresponding noisy parent coefficients 2

nx  at coarser scale. Figure 6 illustrates 
this joint pdf relation for an image contaminated with AWGN with noise va-
riance 2

nσ . This means that to denoise the image; we have to maximize the joint 
conditional probabilities 

( )1 2 1 2, | ,n n
xp p x x x x=                       (6) 

where 1 2,x x  denote the clean wavelet ceofficients. 
Using Bays rule; it turns out that 

( ) ( )1 2 1 2, ,xp p n n p x x= ∗                     (7) 

where 1 1 1 2 2 2,n nn x x n x x= − = −  are two independent Gaussian noise with va-
riance 2

nσ . 
In order to obtain a closed form solution for 1 2,x x  we express the joint 
( )1 2,p x x  using the empirical formulation as in [7] 

( )
2 2
1 2

3

1 2 2

3, e
2

x x
p x x σ

σ
− +

= ∗
π

                  (8)  

where 2 2 2
1 2σ σ σ= ∗ ; 2 2

1 2,σ σ  denote the variances of 1 2,x x  respectively. 
This is verified by the near circular performance of the noiseless joint pdf dis-
tribution shown in Figure (3). Maximization of Equation (7) yields 

( ) ( )
22 2

1

2 2
1

3n n n
k k

n
k k

k k

x x

x x
x x

σ
σ+

+

+

 
+ −  

 = ⋅
+

              (9) 

We note here that all DD-CWT or DD-DWT decompositions presented in the 
work adopts this bivariate denoising scheme between its parent and children 
bands. 

4. Enhanced Scenarios for the Proposed Hybrid Bivariate  
DD-DWT and DD-CWT Denoising 

In this section we propose two scenarios to enhance the performance of denois-
ing, then we summarize how to achieve the highest performance by fusing dif-
ferent bands from different decompositions structures, i.e. CWT, DWT, and 
combine them with optimized factors to synthesize an enhanced denoising im-
age. 
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4.1. Edge Sharpening  

We here propose to enhance the noisy image edges by processing it through a 
Laplacian 2-D filter with an optimized factor and add the result to the original 
noisy image. This Laplacian 2-D filter would have a sharpening factor that is also 
optimized. The output image from this Edge sharpening stage would be as the 
following equation: 

( )updatedw Lap w wα= +  

where w is original noisy CWT or DWT wavelet band, updatedw  represents the 
final band coefficients, and α  is the optimization factor. 

4.2. Eigen Analysis 

We here propose to decompose the noisy image DD-CWT or DD-DWT with a 
singular value decomposition. In this decomposition we produce a diagonal ma-
trix D, with nonnegative diagonal elements in decreasing order, and unitary ma-
trices U and V, all of the same size of the input image band, according to fol-
lowing equation 

( )tU D V SVD w ⋅ ⋅ =   

where w is original noisy CWT or DWT wavelet band, D is the diagonal matrix 
that will be rescaled in decreasing order, and updatedw  is reconstructed according 
to the following synthesis equation 

updated
tU DV w=  

We then select the highest D matrix diagonal element and scale it to an up-
dated denoised value and then reconstruct the wavelet band. This updated de-
noised value is obtained through some empirical analysis and also by denoised 
learning scenarios.  

4.3. Hybrid DD-DWT and DD-CWT Denoising 

Finally in this section we proposed to decompose the denoised enhanced images 
with either DD-CWT or DD-DWT by a further DD-CWT structure for each 
image, where each band in each denoised image is multiplied by an optimized 
factor and then synthesize this CWT decomposition. This optimization process 
that is performed for all the CWT bank factors and is aimed at reducing edge 
energy in the final output denoised image. CWT optimization is performed ac-
cording to the following equation. 

hybrid optimized 1 1 2 2 last lasti iw w w w wα α α α= + + + ++   

where hybrid optimizedw  is final hybrid optimized wavelet band and each i original 
band is multiplied with an iα  multiplication factor. 

We note here that this further denoising enhancement by a factorized opti-
mized DD-CWT structure would represent a hybrid denoising technique that 
combines merits of both DD-DWT and DD-CWT in a fusion manner, especially 
if it was originally denoised with DD-DWT. The iα  factors would make this 
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factor adaptive as we can select some high density bands to get higher weight in 
the final denoised image. This fusion hybrid technique would achieve significant 
improvement in the final PSNR or SSIM values as will be shown in next section. 
We justify this improvement to the optimization process that selects the highest 
energy bands. 

5. Simulation Examples 

In this section we first show the performance of 2D DD-DWT denoising after 
explaining its experimental procedure. We then show the performance of 2D 
DD-CWT that in some circumstances achieves better PSNR results. Then we 
show how each of our proposed two enhancement scenarios, Edge sharpening 
and Eigen Analysis, would enhance the final denoised image. We finally illu-
strate how our proposed hybrid DWT and CWT fusion denoising methodology 
would achieve the most enhancement performance.  

We note here that the enhancement in denoising is measured in terms of re-
duced energy around edges. This was also compared with PSNR values of the 
output denoised image compared with original clean image, before any noise at-
tack. This PSNR calculation with the clean image could be unpractical in many 
denoising applications where the clean image is not available for comparisons, 
but it is only mentioned just to verify that enhancement in PSNR values is con-
sistent with edge energies minimizations that is performed in all proposed tech-
niques. 

In these simulations; 2
nσ  is estimated using the pdf technique of the first 

wavelet detail coefficient as described in [17]. Simulations of several noisy im-
ages verify that this choice yields the highest denoised image 

The proposed filter design ( )0H z  has 4K =  zeros at 1z = − ; ( )1H z  is 
constructed with 2M =  zeros at 1z =  using the maximum phase technique. 

For space limitations, we have two 256 × 256 Cameraman & Lena images 
contaminated with zero mean Gaussian noise AWGN with different variance 

2
nσ . The number of decomposition levels is 3 for either DWT or CWT. Figures 

7-10 shows samples of our Denoising results, with a noisy image example 
2 0.1nσ = , 0.05, or 0.2.  

 

 
Figure 7. Example of Noisy image 
and before Denoising, 2 0.05nσ = . 

Noisy Image
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Figure 8. Denoising performance from [7] and then proposed. 
 

 

Figure 9. Example of Noisy image 
and before Denoising, 2 0.01nσ = . 

 

 

Figure 10. Denoising performance from [7] and then proposed. 
 

The proposed 2D-DD DWT Bivariate denoising technique is implemented on 
2D noisy images as follows: 

1) Given the 2D-DD-DWT filters ( )0H z , ( )1H z  and ( )2H z  as in section 
2; decompose the noisy image nI  through wavelet packet structure using these 
filters. 

2) For each of the 8 decomposed wavelet coefficients in all sub bands levels 
n
kx , 1,2, ,k J=   levels; apply Bivariate shrinkage technique between n

kx  and 
its corresponding at coarse scale 1

n
kx + . Expand 1

n
kx +  by 2 to have the same size 

as n
kx . Estimate 2 2

1 2,σ σ  for both 1,k kx x + . 
3) Reconstruct the denoised image Î  as in section 2. 
The proposed 2D-DD CWT Bivariate denoising technique is implemented on 

2D noisy images as follows: 

Noisy Image
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4) Decompose the input Noisy image by its rows through the proposed 2-D 
DD CWT decomposition structure in Figure 5 for 3 stages, for each stage we 
would have 1 lowpass scaling subband and 8 bandpass higher frequency bands. 
The scaling subband is the only subband that gets further decomposed to the 
next stage in a wavelet lattice structure. This would result in total of 25 2-D sub-
bands. 

5) Repeat step one but through columns of the Noisy image. 
6) The Bivariate shrinkage technique proposed in section 3 is applied between 

each scaling subband and its children for all stages. 
7) Reconstruct the denoised image by rows and columns in a reverse manner 

of the decomposition. 
Table 3 & Table 4 tabulate the denoising PSNR results when the noisy images 

are processed through our two proposed enhancing stages of Edge Sharpening 
and Eigen Analysis. 

Results with Edge sharpening 
 

Table 3. PSNR performance in dB for cameraman. 

 Noisy 
DD DWT 
proposed 

DD DWT after 
Sharpening 

DD CWT 
proposed 

DD CWT after 
Sharpening 

2 0.25nσ =  9.1025 17.70 17.90 15.95 17.65 
2 0.2nσ =  9.588 18.36 18.12 16.41 17.31 

2 0.15nσ =  10.345 19.12 19.85 17.18 19.01 
2 0.1nσ =  11.530 20.45 20.83 18.29 19.2 

 
Results with Eigen Analysis 

 
Table 4. PSNR performance in dB for cameraman. 

 Noisy 
DD DWT 
proposed 

DD DWT after 
Eigen Analysis 

DD CWT 
proposed 

DD CWT after 
Eigen Analysis 

2 0.25nσ =  9.1025 17.70 17.35 15.95 16.31 
2 0.2nσ =  9.588 18.36 19.34 16.41 17.01 

2 0.15nσ =  10.345 19.12 19.87 17.18 17.75 
2 0.1nσ =  11.530 20.45 20.99 18.29 18.98 

 
Table 5 & Table 6 tabulate the denoising PSNR results when the noisy images 

are contaminated with different 2
nσ . These results show the superiority of the 

proposed denoising technique DD-DWT, underlined over other DD-DWT [8], 
DD-CWT proposed, CWT [7] technique. 

In our final hybrid DD-DWT and DD-CWT fusion technique we decomposed 
the image first through either DD-DWT or DD-CWT decomposition for denois-
ing, then we further enhance the denoising by a factorized optimized DD-CWT 
process. Subband multiplication factors are our main optimization variables in 
our simulation results as in Table 7, for Cameraman. 
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Table 5. PSNR performance in dB for cameraman. 

 Noisy 
DD DWT  
proposed 

DD DWT [8] 
DD CWT  
proposed 

CWT [7] 

2 0.25nσ =  9.1025 17.70 16.90 15.95 15.65 
2 0.2nσ =  9.588 18.36 17.12 16.41 16.31 

2 0.15nσ =  10.345 19.12 17.85 17.18 17.01 
2 0.1nσ =  11.530 20.45 18.83 18.29 18.2 

 
Table 6. PSNR performance in dB for Lena image. 

 Noisy 
DD DWT  
proposed 

DD DWT [8] 
DD CWT  
proposed 

CWT [7] 

2 0.25nσ =  9.126 18.34 16.68 16.04 16.55 
2 0.2nσ =  9.598 18.95 17.20 16.34 16.44 

2 0.15nσ =  10.332 19.83 17.96 17.30 17.24 
2 0.1nσ =  11.541 20.89 18.56 17.98 17.67 

 
Table 7. Results from Hybrid DD-DWT/CWT denoising. 

 Noisy 
DD DWT 
proposed 

DD DWT after  
Hybrid optimization 

DD 

CWT proposed 
DD CWT after  

Hybrid optimization 
2 0.25nσ =  9.1025 17.70 18.01 15.95 16.13 
2 0.2nσ =  9.588 18.36 19.98 16.41 17.91 

2 0.15nσ =  10.345 19.12 20.77 17.18 18.01 
2 0.1nσ =  11.530 20.45 20.83 18.29 19.23 

6. Discussion and Conclusion 

In this paper, we proposed in more details the usage of DWT or CWT decompo-
sitions in image denoising with the adoption of Double density analysis. We 
proposed two methodologies to enhance these decompositions for either DWT 
or CWT scenarios. We also presented an adaptive hybrid technique for Bivariate 
based image denoising that is based on the synthesis of DD-DWT bands or 
DD-CWT bands but with different weights, to deliver enhanced image features 
with less denoising impacts. Simulation results have shown that the DD_DWT 
bivariate shrinkage achieves the best performance of all the denoising schemes 
considered. From Equations (3), (4) it is clear that there is a plenty of solutions 
for H2(z) that satisfy the alias free conditions, yet simulations have shown that 
the maximum phase solution yields the optimum denoising performance. 
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