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Abstract 
This study maps the academic literature on Stock Price Forecasting with 
Long-Term Memory Artificial Neural Networks—RNA LSTM. The objective 
is to know if it is suitable for time series studies, especially for stock price 
projection. Through bibliometric analysis and systematic literature review, it 
is observed that 333 authors wrote on the topic between 2018 and March 
2022, and the journals Expert Systems with Applications, IEEE Access, Big 
Data Journal and Neural Computing and Applications, published the most 
relevant articles. Of the 99 articles published in this period, 43 are associated 
with Chinese institutions, the most cited being that of Kim and Won, who 
studies the volatility of returns and the market capitalization of South Korean 
stocks. The basis of 65% of the studies is the comparison between the RNN 
LSTM and other artificial neural networks. The daily closing price of shares is 
the most analyzed type of data, and the American (21%) and Chinese (20%) 
stock exchanges are the most studied. 57% of the studies include improve-
ments to existing neural network models and 42% new projection models. 
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1. Introduction 

The financial market is characterized by being a dynamic, complex and 
non-linear system, characterized by data intensity, noise, non-stationary nature, 
unstructured and with a high degree of uncertainty [1]. As so many factors inte-
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ract simultaneously, such as political events, macro and microeconomic condi-
tions and investor expectations, predicting these movements is a very challeng-
ing task. 

The growing role that the stock market plays in the world economy stimulates 
the development of research aimed at building theories, involving the topic of 
stock price prediction, and accurate methods are crucial for the management of 
investor portfolios. 

Assessing expected returns relative to total exposure assumes that portfolio 
managers understand the distribution of the portfolio. Specialists can model the 
influence of tangible assets in relation to market value, but not of intangible as-
sets such as rights, experiences or brand equity. 

An important ally in the quest to minimize risk in relation to exposure, artifi-
cial intelligence and machine learning with their neural networks have provided 
a great balance of quality in recent decades, improving detection, diagnosis, pre-
diction and problem solving [2]; this is because in this market, future events are 
at least partially dependent on past events and data [3], and not entirely random. 

The aim of this study is to map and analyze the published academic literature 
on stock price prediction using artificial neural networks Long-Term Memory 
Artificial Neural Networks—RNA LSTM. To this end, a bibliometric analysis 
and a systematic review of the literature on the subject are carried out, during 
the period from January 1, 2000 to March 31, 2022, with a final sample of 99 
articles. Bibliometric analysis refers to quantitative analysis, which is devel-
oped by counting frequencies and co-citations. The systematic review, a qua-
litative analysis, considers the correlation between the most significant themes, 
but still little studied by the academy. The research base used comes from the 
Web of Science—WoS database, and both the bibliometric analysis and the sys-
tematic review do not dispense with the use of R, RStudio, Biblioshiny and 
VOSViewer software. In the bibliometric analysis, the verification of the main 
laws is adopted: Lotka [4] and Bradford [5]. 

The literature review is presented in item 2, with the identification of theories 
and methods of forecasting stock prices with multilayer perceptron artificial 
neural networks mentioned in the articles of the final sample. The bibliometric 
analysis and systematic review methodologies are described in item 3, and in 
item 4 the results of both methodologies are reported, with descriptive statistics 
of the most relevant characteristics of the articles in the final sample and the 
knowledge gaps on the topic. Item 5 presents the conclusions, paths for future 
studies and limitations of this research. 

2. Literature Review 

The current stock price of a publicly traded company reflects the company’s past 
operation, current timing and future profitability prospects. To obtain a more 
accurate projection of the stock price, several types of studies have already been 
carried out. The most classic ones focus on the financial data of the target com-
panies, added to micro and macroeconomic aspects. However, the non-linear 
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and non-stationary features of financial data sequences make predictions more 
challenging [6]. In 1969, Akaike [7] used the autoregressive (AR) model for pre-
diction. Then, the combination of the autoregressive model (AR) with the mov-
ing average (MA) model was proposed, forming the ARMA model. In 1970, Box 
and Pierce [8] proposed the Autoregressive Integrated Moving Average System 
(ARIMA) model, which remedy some drawbacks of the ARMA model for deal-
ing with non-stationary sequences. In 1982, Engle [9] proposed the autoregres-
sive conditional heteroskedasticity (ARCH) model to process time series volatil-
ity, in 1986 Bollerslev [10] proposed the generalized autoregressive conditional 
heteroscedasticity (GARCH) model. In 1987, Hull and White [11] proposed a 
model to solve the stochastic problem of time series volatility (SV). All these 
methods lay the groundwork for the development of time series forecasts. 

With the development of computer technology, new prediction methods have 
been proposed, such as artificial neural networks [12], whose objective is to rep-
licate the way the human brain works. Recurrent neural networks [13] are a po-
werful set of artificial neural network algorithms, especially useful for processing 
sequential data such as sound, temporal or language. Some recurrent neural 
networks—RNN performed better in predicting financial data and became pop-
ular, such as Long Short-Term Memory [14]. 

Thus, LSTM network is a specific type of RNN that has been widely applied to 
solve supervised learning issues [15]. It has non-linear memory cells and gate 
units [16], capable of processing non-stationary long-term sequences. In addi-
tion, it can extract the characteristics of financial data and reflect the characteris-
tics of the network [17]. It offers good performance in predicting prices in the 
stock market, as it is an algorithm capable of identifying non-linear and hidden 
relationships in the data, that is, it is a supervised learning algorithm, capable of 
learning from a set of data in training (given a dataset, LSTM can learn a nonli-
near function for regression). 

Maknickiene and Maknickas [18] improved the performance of measure-
ments in the foreign exchange market or using TM; Chen, Zhou, and Dai [19] 
used LSTM for Chinese design market returns and performed well. After that, 
several experiments with the modern LSTM network in a literary way in isola-
tion, hybrid or combined methods with classics and financial series studies were 
completed, A indicates that LSTM is quite suitable for time series financial mod-
els [20].  

Concretely, the LSTM network consists of three parts, including an input 
layer, an output layer and several hidden layers between them. The hidden layers 
have memory modules. The core of the memory module is the self-connecting 
memory cell with three ports, input, output, and forgetting. The value of each of 
these ports controls the flow of information in the memory module. 

Information is retained by cells and memory manipulations are done by gates. 
Gateway: where useful information is added. Oblivion Gate: where information 
that is no longer useful is removed. Output Port: the task of extracting useful in-
formation from the current cell state to be displayed as a result. A vector is gen-
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erated, and the information is regulated using the function that filters the values 
to be remembered. Vector values and regulated values are multiplied to be sent 
as output and input to the next cell [21]. 

However, designing a good network architecture for the problem studied is 
not a simplistic task. The model’s architecture directly interferes with its per-
formance. The refinement process can be time consuming, as there is no formal 
method to perform this classification task, this is necessarily through the per-
formance of iterative tests with several parameters, in which only the structure of 
greater assertiveness is maintained. 

The quality of the information that the network is fed, as much or more, is re-
flected in the accuracy of the output layer’s response. The selection of informa-
tion that will be provided to the input layer is a key factor in the design of an in-
telligent decision system, because even if the model is the best, it will perform 
poorly if the features are not well chosen. Specific methods must be used in the 
selection of relevant information. 

3. Methodology 

The aim of this study is to answer the question—using LSTM artificial neural 
networks, can we get reliable predictions of stock prices? For this, the 7 steps 
described in Figure 1, detailed below, are implemented. 

Step 1—Choosing the database. Sample articles come from WoS, the world’s 
leading citation database.  

Step 2—Using WoS Initial Search Parameters for the period from January 1, 
2000 to March 31, 2022. Initially, 276 articles are identified based on variations 
of the keywords stock, market, LSTM, forecast, stock, predictive, regression, su-
pervised, learn, backpropagation, supervised and backpropagation. Subsequent-
ly, exclusions are performed by applying filters in WoS itself, resulting in an in-
termediate sample of 127 articles, as shown in Table 1. 

 

 
Figure 1. Steps of metodology. 

Step 1 - Choosing the database = WoS

Step 2 - Using WoS Initial Search Parameters = 276 papers. 
Exclusions are performed by applying filters in WoS itself = 127 papers

Step 5 - Bibliometric analysis. Through the R, RStudio, Biblioshiny and 
VOSviewer software, objective data from the articles are analyzed

Step 6 - Reading and coding the articles. Identification of the objectives, 
sample, methods and contributions of the articles.

Step 7 - Systematic review.

Step 4 - Creation of a database and collection of articles. 
The 99 articles in the final sample are obtained from the following 

academic research databases: Web of Science

Step 3 - Selection of publications by using exclusion & inclusion 
criteria = 99 papers
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Table 1. Evolution of the sample using WoS’ filters. 

Signal Description 
Number of 

papers 

(+) 

Keywords: equal to “stock* market*” and “LSTM” or “stock*  
market*” and “long short-term memory” or “forecas* stock*” and 
“LSTM” or “forecas* stock*” and “long short-term memory” or 
“predictive regression*” and “LSTM” or “predictive regression*”  
and “long short-term memory” or “supervision *learning*” and 
“long short-term memory” and “backpropagation”. 

276 

(−) 
Document type: other than “article” or “early access” or “data  
document”. 

106 

(−) 

Web of Science categories: equal to “computer science artificial  
intelligence”, “computer science theory methods”, “computer 
science information systems”, “interdisciplinary applications of 
computer science”, “hardware architecture of computer science”, 
“computer science software engineering”, “economics”, “business”, 
“business finance”, “operations research management science”, 
“management”. 

43 

(−) 
Research area: equal to “computer science”, “business economics”, 
“operations research management science”. 

0 

(−) Language: different from “English”. 0 

(=) Intermediate sample. 127 

 
Step 3—Exclusion of 19 of the 127 articles for not being available in the re-

searched sources (Google Scholar, Science Direct and Web of Science) and 
another 09 for not being directly related to the topic of our research, namely: 01 
e-commerce, 02 cryptocurrencies, 01 real estate price bubble detection, 01 hie-
rarchical temporal memory, 01 neuromorphic vision datasets, 01 Gray Wolf- 
Elman optimization, 01 stock movement during the Covid-19 pandemic and 01 
stock price prediction based on in morphological similarity clustering and hie-
rarchical temporal memory. Thus, the final sample is composed of 99 articles 
[15] [20]-[122]. 

Step 4—Creation of a database and collection of articles. The 99 articles in the 
final sample are obtained from the following academic research databases: Web 
of Science, Science Direct, and Google Scholar. From its analysis, the following 
information is collected to capture the general data of the article: title, author 
name, affiliated institution and country of origin of authors/researchers, journal 
name, volume and issue number, homepage and page final, year of publication, 
country of origin of data and number of years of sample data, keywords, Digital 
Object Identifier (DOI), Journal of Economic Literature (JEL) and number of 
citations of articles in the WoS database. 

Step 5—Bibliometric analysis. Through the R, RStudio, Biblioshiny and VOS-
viewer software, objective data from the articles are analyzed—countries, au-
thors, keywords, institutions, etc., for the preparation and analysis of relation-
ship/co-citation tables and maps. The analyzes carried out by both tools are 
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complemented by the verification of the main laws of bibliometrics, namely: 1) 
Bradford’s Law [5]—verification of journals that produce many articles in con-
trast to those that produce few on a given topic, and 2) Law de Lotka [4]—iden- 
tification of researchers with a higher frequency of production in a given area of 
knowledge. 

Step 6—Reading and coding the articles. Identification of the objectives, sam-
ple, methods and contributions of the articles. In addition, they are classified and 
coded into categories and subcategories structured according to Table 2. Each of 
the 08 categories has non-exclusive subcategories. This means that the same ar-
ticle can be classified in more than one subcategory. Thus, the sum of the fre-
quency count of the subcategories—for each category—is what adds up to 100%. 
In the coding process, as many subcategories as necessary per article are as-
signed.  

Step 7—Systematic review. After coding the (sub)categorization matrix in Ta-
ble 2—for the final sample—a frequency count of the subcategories is performed 
to enable the identification of knowledge gaps. Such gaps are then compared 
with the subcategories of category 08—paths for future studies, in order to ob-
tain aspects that can be the object of further studies on the subject. 

 
Table 2. Matrix of (sub) categorization. 

Categories Subcategories Definition 

1. Neural  
networks/ 
algorithms  
used in  
research 

A-LSTM Stock price projection with the—RNN LSTM. 

B-Compared to LSTM 
Stock price prediction with other artificial neural networks and results  
compared to RNN LSTM. 

C-Combined with LSTM Predict stock prices with blended neural networks including LSTM. 

D-Others Other topics unrelated to subcategories 1A to 1C. 

2. Types of 
data  
analyzed 

A-Closing prices Daily stock closing prices. 

B-Opening prices Daily stock opening prices. 

C-Highest and lowest prices Daily highest and lowest stock prices. 

D-Volumes Stock trading volumes. 

E-Index Daily closing of the Stock Price Index. 

F-Others Others not related to subcategories 2A to 2E. 

3. Analysis 
period 

A-Up to 5 years Data from 0 to 5 years. 

B-More than 5 to 10 years Data from 5.1 to 10 years. 

C-More than 10 years More than 10 years. 

D-Not applicable/not informed Studies that do not inform the period of analysis. 

4. Objectives 

A-Tests with new neural networks 
models 

Improved share price accuracy tested with other neural networks algorithms 
and/or hybrid models. 

B-Tests with other assets 
Check whether using price and volatility indices of other assets (except stocks) 
can help predict stock prices. 

C-Sentiment Analysis Improved accuracy in stock price projection with sentiment analysis. 

D-Others Other topics unrelated to subcategories 7A to 7C. 

https://doi.org/10.4236/jcc.2022.1012003


C. O. Fantin, E. Hadad 
 

 

DOI: 10.4236/jcc.2022.1012003 35 Journal of Computer and Communications 
 

Continued 

5. Data origin 

A-NYSE, NASDAQ, DJI, S&P, 
CBOE, FTSE 

US Stock Exchanges. 

B-CSI, SSE, NSE, HS, SH, SZSE China and Hong Kong Stock Exchanges. 

C-B3 Brazil Stock Exchange. 

D-TWSE Thailand Stock Exchange. 

E-IMKB Turkey Stock Exchange. 

F-TSE Tehran Stock Exchange. 

G-GSE Ghana Stock Exchange. 

H-ASX Australia Stock Exchange. 

I-DAX Germany Stock Exchange. 

J-KOSPI, KOSDAQ Korea Stock Exchanges. 

K-NSE India Stock Exchange. 

N-NIKKEI Japan Stock Exchange. 

O-IDX Indonesia Stock Exchange. 

P-FTSE UK Stock Exchange. 

L-Texts News agencies/websites, for sentiment analysis. 

M-No information or other 
There is no identification of information that can be considered as inputs for 
the evaluation models. 

6. Results 

A-Outperforms compared  
methods 

The results of the proposed model surpass the results of the compared  
model(s). 

 

B-Promising model The results of the proposed model are promising.  

C-Others Other results unrelated to subcategories 8A to 8B.  

7. Conclusions 

A-New conclusions 
Presentation of new findings—adjustment to already tested neural networks 
models, improvement in the quality of input information, and other  
innovations to existing models. 

 

B-New perspectives 
Presentation of a new theory, new models of projections, with models of  
isolated, hybrid or combined neural networks. 

 

C-Conclusions similar to works 
presented previously 

Studies that do not present new perspectives or new conclusions.  

D-Others Other results unrelated to subcategories 9A to 9C.  

8. Pathways for 
future studies 

A-Hybrid models with LSTM Studies with other hybrid models using LSMT.  

B-Other ANN Studies with other ANN, pure or hybrid.  

C-Other types of data 
In addition to opening, closing, high, low and trading volume data, sentiment 
analysis tests with other types of news and stock data, in periods such as 
intraday. 

 

D-Data from other sources Study the model’s performance on other Stock Exchanges.  

E-Other analysis periods Study and test data from different periods.  

F-No path commented by the au-
thor(s) 

No future path detailed by author(s).  
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4. Analysis of Results 

Item 4.1 presents the results of the bibliometric analysis, mentioned in Step 5 of 
the Methodology. In turn, item 5.2 contains the results of the systematic review, 
whose steps are described in Steps 6 and 7 of item 3 of this study. 

4.1. Bibliometric Analysis 

The final sample consists of 99 articles, distributed between the years 2000 and 
2021, obtained from the WoS database—see Figure 2. In this period, up to 5 ar-
ticles on stock price forecasting using LSTM per year are identified. 

Figure 3 shows the co-occurrence map of the most used keywords in the ar-
ticles.  

Again, the words model and neural networks stand out, in addition to predic-
tion and time series. 

Table 3 presents the frequency of the 151 main keywords of the study, hig-
hlighting model (18 occurrences), prediction (14 occurrences), neural networks 
(15 occurrences), time series (13 occurrences), index (11 occurrences), machine 
(10 occurrences), LSTM and neural network (with 09 occurrences each).  

As for the authorship of the works, 333 authors were identified. Figure 4 
shows the ranking in descending order of the 26 host countries of the institu-
tions to which these authors are associated. 

 

 
Figure 2. Annual distribution of papers. 

 

 
Figure 3. Keyword co-occurrence map. Source: VOSviewer. Note: The size of the nodes 
represents the relevance of terms in the articles. The thickness of the lines means the 
strength of connection between them. Finally, the colors indicate the number of groups. 
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Table 3. Plus keywords. 

Key words The amount Frequency % 

Model 18 12% 

Neural networks 15 10% 

Prediction 14 9% 

Time series 13 9% 

Index 11 7% 

Machine 10 7% 

LSTM 9 6% 

Neural network 9 6% 

Volatility 7 5% 

Classification 6 4% 

Others 39 26% 

Total 151 100% 

 

 
Figure 4. Publication of articles by country to which authors are associated. 

 
According to the RStudio software, of the 99 articles, 77 (78%) are classified as 

articles written by authors associated with institutions in the same country 
(SCP), and 22 (22%) are articles written by authors associated with institutions 
in different countries. countries (MCP). 

Figure 5 indicates that 653 citations are related to articles written by authors 
associated with institutions located in China. The other citations are from au-
thors linked to institutions of the following in Korea (380), USA (298), Pakistan 
(120), India (69), and the other citations, scattered among 21 other countries. 

Figure 6 shows the co-citation network among journals in the final sample of 
99 articles. The most cited, according to the VOSviewer software, are Expert 
Systems with Applications, Knowledge-Based Systems (503 co-citations), IEEE 
Access (235 co-citations), Neural Computing and Applications (105 co-citations) 
and Soft Computing (42 co-citations).  

Of these, only Expert Systems with Applications stands out below, indicating 
that the journals that publish the most on a given topic are not necessarily the 
most co-cited; this fact is actually due to the relevance of each published article.  

Table 4 indicates the journals in which the 99 articles of the final sample are 
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published, through the application of Bradford’s Law [5]. The law states that 
there are few journals producing many articles and many journals producing few 
articles on a given topic. For Brookes [35], this law estimates the degree of re-
levance of certain academic journals that work in specific areas of knowledge. 
Thus, if the journals are classified in decreasing order of productivity, they can 
be distributed in zones with variation in the proportion 1:n:n2, and so on. 

Zone A is identified as the core of the disciplines, being composed of journals 
with 5 references or more, highlighting Expert Systems with Applications, IEEE 
Access, Big Data Journal and Neural Computing and Applications. Zone B 
presents periodicals with 2 to 4 publications, and Zone C, periodicals with a sin-
gle publication. 

 

 
Figure 5. Frequency of article citations in the countries of the institutions with 
which the authors are associated. 

 

 
Figure 6. Map of co-citations between journals. Source: VOSviewer. Note: The size of the 
nodes represents the relevance of terms in the articles. The thickness of the lines means 
the strength of connection between them. The colors indicate the number of groups. 
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Table 4. Bradford’s law on journals. 

Zone Daily 
Individual 
quantity 

Accumulated 
amount 

Accumulation 
percentage 

Zone A 

Expert Systems with Applications 12 12 12.1% 

IEEE Access 11 23 23.2% 

Big Data Journal 5 28 28.3% 

Neural Computing and Applications 5 33 33.3% 

Zone B 

Applied Smooth Computing 4 37 37.4% 

Multimedia Tools and Applications 4 41 41.4% 

Scientific Programming 4 45 45.5% 

Smooth Computing 4 49 49.5% 

Forecast Diary 3 52 52.5% 

Neurocomputing 3 55 55.6% 

PEERJ Computer Science 3 58 58.6% 

Algorithms 2 60 60.6% 

Big Data 2 62 62.6% 

Computational Economics 2 64 64.6% 

Studies and Research in Economic 
Computing and Economic Cybernetics 

2 66 66.7% 

Quantitative finance 2 68 68.7% 

 
Table 5 presents the ten most cited works on the RNN LSTM topic. Among 

them, the work by Kim and Won [20] stands out, with 235 (20.8%) of the cita-
tions and an annual average of 47.0. The article focuses on predicting the volatil-
ity of the stock price index, using a model that integrates the LSTM with several 
General Autoregressive models conditional Heteroskedasticity—GARCH. The 
second and third places are the articles by Long et al. [22] with 133 citations, an 
average of 33.3 per year, and Kudugunta and Ferrara [24] with 132 citations, an 
average of 26.4 per year. 

In turn, Lotka [4] states that a small number of authors produce many works 
and that the production obtained by this small number of researchers is equal in 
quantity to the performance of the others. This law is called the inverse square 
law—see Equation (1). 

an = a1/n2, n = 1, 2, 3                   (1) 

In which: 
an = number of authors who published n articles; 
a1 = number of authors who published an article; 
n = number of articles published by author. 
For Equation (2), Chung and Cox [23] clarify that the number of authors with 

a single published article, according to Lotka’s Law, would be: 

a1 = 6/π2 = 0.6079 = 60.8%                (2) 
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Table 5. The ten most cited articles. 

References 
Number of  

citations 
Frequency of 
citations % 

Total citations 
per year 

Kim and Won [20] 235 20.8% 47.0 

Long et al. [22] 133 11.7% 33.3 

Kudugunta and Ferrara [24] 132 11.7% 26.4 

Baek and Kim [25] 123 10.9% 24.6 

Bukhari et al. [26] 120 10.6% 40.0 

Pang et al. [27] 120 10.6% 40.0 

Sohangir et al. [28] 93 8.2% 19.6 

Jin et al. [29] 70 6.2% 23.3 

Borovkova and Tsiamas [30] 57 5.0% 14.3 

Xing et al. [31] 49 4.3% 9.8 

Total 1,132 100.0%  

 
Thus, an author with two published articles must have a frequency of 15.2% 

(0.6079/22). For an author with three published articles it would be 6.8% 
(0.6079/32) and an author with four published articles would be 6.8% (0.6079/42).  

It appears that the 99 articles in the final sample are produced by 333 authors, 
with one author publishing 4 articles, six authors publishing 3 articles, twenty 
authors publishing 2 articles and three hundred and thirty-three authors pub-
lishing a single article. 27 authors (08%), including only those who publish the 
most, are responsible for 62 (18.2%) publications. That said, there are not a 
smaller number of researchers matching the performance of the others, making 
it impossible to confirm Lotka’s Law. 

4.2. Systematic Review 

A systematic literature review seeks to identify knowledge gaps related to the topic 
of this study. For this, in Step 6 of Item 3—Methodology, a (sub)categorization 
matrix is defined—see Table 2. Categories and subcategories are identified for 
each of the 99 articles in the final sample. In this way, the frequency count is 
made in relation to the total of the subcategories and not to the total of the 99 
articles. 

The subcategories that have the potential to be prioritized in future research 
are highlighted. In category 1, Neural Networks/Algorithms Used in the Re-
search, the theme “Forecasting stock prices with other artificial neural networks 
and results compared to RNN LSTM” is the most relevant (65%), followed by 
“Forecasting stock prices with blended neural networks, including LSTM” (22%) 
and Share Price Projection with RNN LSTM (23%). 

Regarding category 2 “Type of Data Analyzed”, the closing price was the most 
used data in the surveys, alone (22%) or associated with other data (61%). 

Regarding the period of analysis, category 3, 37% of the articles were concen-
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trated in periods of up to 05 years, 37% in periods of 05 to 10 years, 16% in pe-
riods of more than 10 years, and 09% did not inform.  

In category 4, the objectives of the papers are highlighted. 74% of them project 
the price of shares with LSTM alone or associated with the most varied RNN 
(without relevant concentrations); 19% test hybrid neural networks and senti-
ment analysis models.  

Category 5 indicates that 21% of the papers are exclusively based on data from 
US stock exchanges, 20% exclusively use data from Chinese stock exchanges, 
08% jointly use data from American and Chinese stock exchanges and other as-
sociations. 38% of articles do not use data from the US or Chinese stock ex-
changes, but from the stock exchanges of Brazil, Thailand, Turkey, Tehran, 
Ghana, Australia, Germany, Korea, India, Japan, Indonesia or the United King-
dom, in association or in isolation. Thus, it can be seen that there is plenty of 
room for studies based on Stock Exchanges in other developed and/or develop-
ing countries. 08% perform sentiment analysis, that is, they use texts exposed in 
the media, and not data from Stock Exchanges.  

In turn, category 6 presents the results of the studies carried out. In 57% of 
them, the proposed models outperform the results of the models to which they 
were compared; in 42% the results are defined as promising, indicating that they 
can be improved. 

According to category 7, 57% of the studies present adjustments in already 
tested neural network models, with improvement in the quality of input infor-
mation and/or other innovations in existing models. 42% of the articles present 
new theories or new models of projections, using simple, hybrid or combined 
neural networks. 

Finally, category 8 indicates paths for future studies, that is, knowledge gaps 
according to the authors of the 99 papers in the final sample. In 27% of the pa-
pers, the authors suggest the use of innovative data, such as other news sources 
and/or stock data, in different time periods, such as intraday. 22% suggest stu-
dies with hybrid models of LSTM not yet tested, associated or not with other 
neural networks, other types of data, other sources and other periods. 10% sug-
gest studies with other types of neural networks, pure or hybrid. 

5. Conclusion 

Publications on this topic are concentrated from 2020 onwards. The keywords 
most associated with these studies are model, neural networks, prediction and 
time series. 333 authors wrote on the subject between 2018 and March 2022; 43 
of the 99 articles published in this period are associated with Chinese institu-
tions. The journals that publish the most significant articles on the topic are Ex-
pert Systems with Applications, IEEE Access, Big Data Journal and Neural 
Computing and Applications. The most cited article is by Kim and Won [20], 
Stock Price Index Volatility Prediction: A Hybrid Model Integrating LSTM with 
Various GARCH-Type Models, which studies the volatility of Kospi 200 stock 
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index returns and capitalization of the stock market in South Korea, cited 235 
times. The daily closing price of shares is the most analyzed type of data, and 
studies are still concentrated on American (21%) and Chinese (20%) stock ex-
changes. 57% of the studies present adjustments to already tested neural network 
models and 42% present new theories or new projection models. In 27% of the 
articles, the authors suggest future studies with news sources, other stock data, 
or the use of different time series. 22% suggest studies with hybrid models of 
LSTM not yet tested, associated or not with other neural networks, other data, 
other sources and periods. 
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