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Abstract 
Super-resolution is an important technique in image processing. It overcomes 
some hardware limitations failing to get high-resolution image. After machine 
learning gets involved, the super-resolution technique gets more efficient in 
improving the image quality. In this work, we applied super-resolution to the 
brain MRI images by proposing an enhanced U-Net. Firstly, we used U-Net 
to realize super-resolution on brain Magnetic Resonance Images (MRI). Se-
condly, we expanded the functionality of U-Net to the MRI with different 
contrasts by edge-to-edge training. Finally, we adopted transfer learning and 
employed convolutional kernel loss function to improve the performance of 
the U-Net. Experimental results have shown the superiority of the proposed 
method, e.g., the resolution on rate was boosted from 81.49% by U-Net to 
94.22% by our edge-to-edge training. 
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1. Introduction 

Traditionally, Magnetic Resonance Imaging (MRI) experiments need to optimally 
balance image resolution, Signal-to-Noise Ratio (SNR), and acquisition time. A 
higher resolution image shows clearer details, but typically reduces SNR and re-
quires longer scanning time [1]. Moreover, although the cost of low-field MRI 
(LF-MRI) system is efficient, it does not perform well because the loss of image 
details when using low image resolution and SNR. 

For natural images, Super-Resolution (SR) techniques that improve image 
quality have been widely studied [2] [3]. Conventional methods can be roughly 
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divided into two groups, i.e., model-based methods like interpolation algorithms 
[4] [5], and learning-based methods such as dictionary learning methods [6] [7]. 
In recent years, deep learning has exhibited outstanding performance in image 
super-resolution and has shown great potential for further development [8] [9]. 
The most widely used convolutional neural networks produce superior SR re-
sults with higher sharpness and fewer artifacts [10] [11]. 

Inspired by the great achievements of deep learning in natural image SR [12], 
researchers have greatly explored the application of neural networks in MRI, 
which are expected to improve the quality of MR images without any hardware 
modification costs. 

In this work, the main contributions are four-hold: 
1) Apply model-based methods to get rough Super-Resolution results. 
2) Use U-Net to achieve super-resolution which has better results than model- 

based Super-Resolution on T1 (longitudinal relaxation time) brain MRI. 
3) Remove low-frequency domain, and pick high-frequency parts as the training 

samples, to extend the network’s efficiency to MRI with different contrast. 
4) Adopt transfer learning and convolutional kernel in current network to 

improve the performance. 

2. Problem Definition and Theoretical Basis 
2.1. Definition of the Resolution 

In the image processing, the resolution is sometimes defined as the number of 
pixels in a picture. However, in this work, we defined the resolution as “the in-
fluence range of one unit sample point on the picture”. Here, we give a detailed 
quantitate definition. 

We set the spatial linear length of the object that we try to sample as L, which 
is the linear scale of the object. And we represent the signal as the sum of Fourier 
series [13]: 

( ) 2e j n fx
n

n
s x C π

∞
− ∆

=−∞

= ⋅∑                       (1) 

Here, the f∆  is the sampling frequency in the spatial domain. According to the 
Nyquist requirement, f∆  should satisfy that 2 f Lπ∆ ≤ . Usually, we set  

2f L∆ = π . In the above equation, we just pick one period in the series to re-
construct the original signal. 

When we do the sampling towards the object, the signal we store in the system 
will be represented as the array in the frequency domain ( )S n f∆ . Here, n 
represents the index in the frequency domain. According to the Fourier trans-
form [14]: 

( ) ( )e dj ts s t tωω
∞ −

−∞
= ∫                        (2) 

By applying the discrete form of the formula, we adjust the variable and set: 

( ) ( ) 2e dj n ftS n f s t tπ∞ − ⋅∆

−∞
∆ = ∫                      (3) 
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where the left-hand-side part is what we use to reconstruct the original signal. 
We mark it as ( )S n f∆ . Our goal is to use ( )S n f∆  to form the reflection to-
wards a possible ( )S n f∆ , which represents the spatial signal in the object.  

Now, we start to construct the function: 

( ) ( )ˆ:f S n f s mx∆ →                          (4) 

Using the Fourier series, we know that: 

( ) 2e dj n ft
nC c s t t

∞ − ⋅∆π

−∞
= ∫                         (5) 

And here, 

( ) ( )2e dj n fts t t S n f
∞ − ⋅∆

−∞

π = ∆∫                       (6) 

Thus, 

( )nC c S n f= ⋅ ∆                            (7) 

The variable c is the constant governed by the system and remains still in one 
certain background. 

After applying the result into the expression of ( )s x , we get: 

( ) ( ) 2e j n fx

n
s x c S n f

∞
− ⋅∆

=−∞

π= ⋅ ∆ ⋅∑                     (8) 

Until now, we have declared how to reconstruct the original signal ( )s x  using 
( )S n f∆ . When the sampling point ranges from negative infinity to positive in-

finity, the result of ( )s x  will be accurate without any error. 
However, infinite sampling for computer system is impossible. Thus, we mark 

the amount of the sampling points as N. The expression of ( )s x  becomes: 

( ) ( )
2

2

1
2

ˆ e

N

j n fm x

Nn

s m x c S n f
+

− ⋅∆ ∆

− +

π

=

∆ = ⋅ ∆ ⋅∑                  (9) 

Here, ( )ŝ m x∆  represents that the signal is discrete and has some error value. 
Based on the Nyquist requirement [15], 

1 2
2

N f
x

π⋅ ∆
≤

∆ π
                          (10) 

Usually, we just set: 

1x
N f

∆ =
∆

                            (11) 

Then, apply Equation (11) to (9), we get: 

( ) ( )
22

1
2

ˆ e

N
j mn

N

Nn

s m x c S n f
+

−

= +

π

−

∆ = ⋅ ∆ ⋅∑                   (12) 

This formula is just the expression of the Discrete Fourier Transform (DFT) of 
array ( )S n f∆ , and n ranges from 2 1N− +  to 2N+ . 

In Figure 1, we show the sampling process. The graph is in the frequency do-
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main, and the system just pick the points inside some kind of red box, and the 
points on the blue line outside the red box is not in the range we can sample. 
This is just like applying a box filter in the frequency domain. According to the 
inverse Fourier transform, this process equals to convolve a Sinc function in the 
image domain, where the function shows like: 

Now, we are able to define the resolution in a mathematical way. Figure 2 
shows the effect of one single sampling point on the image. Generally, we use the 
concept “full width at half maxima” (FWHM) to measure the resolution. How-
ever, in this work, we mainly focus on the frequency domain, and use the distri-
bution of the points in frequency domain to measure the resolution of the image. 
We will introduce several parameters in the later sections. 

2.2. Definition of the Problem 

Using the high-resolution image hI , we transform it into k-space to obtain the 
frequency matrix hF  using Fast Fourier Transform (FFT) and shifting. We set 
the size of hI  to be N N× , and the size of hF  is also N N× . 

To construct the low-frequency part, we pick the center part in hF , and set it 
as: 

,
2 2 2 2l h
N M N MF F  = − +  

                       (13) 

This means, we choose M M×  sampling points in frequency domain to con-
struct the low frequency image, lI , using inverse Fourier Transform. 

Our problem is when using lI  to do the Super-Resolution to reconstruct the 

ĥI , it requires to make ĥI  as similar with hI  as possible. 
 

 
Figure 1. Sampling process in the frequency domain. 

 

 
Figure 2. Effect of one single sampling point. 

https://doi.org/10.4236/jcc.2022.1011011


D. L. Jiang et al. 
 

 

DOI: 10.4236/jcc.2022.1011011 158 Journal of Computer and Communications 
 

2.3. Evaluation 
2.3.1. PSNR 
PSNR is a parameter to describe the ratio between the maximum possible power 
of a signal and the power of corrupting noise that affects the fidelity of its repre-
sentation. In this research, we use PSNR both on image domain and frequency 
domain to measure the performance of the network. 

2.3.2. SSIM 
Structural similarity index measure (SSIM) [16], is used to measure the similari-
ty between the structure of two images as 

( )
( )( )

( )( )
1 2

2 2 2 2
1 2

2 2
SSIM , x y xy

x y x y

c c
x y

c c

µ µ σ

µ µ σ σ

+ +
=

+ + + +
            (14) 

2.3.3. The Weighted Sum of the Frequency Domain Point 
This value is used to measure the weighted proportion of points in the frequency 
domain at high frequencies, which will be weighted here in several different ways. 

3. Network and Algorithm 
3.1. U-Net 

U-Net was first proposed by Olaf Ronneberger, et al. [12] in 2015. It is a simple 
and effective convolution neural network (CNN) widely used for biomedical 
image segmentation. The U-Net architecture consists of two symmetric parts, a 
contracting path and an expanding path, as shown in Figure 3. Each path con-
sists of five repeated convolution modules. In the contracting path, the down-
sampling operation will extract the feature information and reduce spatial in-
formation. The downsampling convolution modules consist of one max pooling 
layer and two 3 × 3 convolution layers following the ReLU activation function. 
 

 
Figure 3. U-Net architecture [12]. 
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The upsampling operation will combine the spatial and feature information in 
the expanding path. The upsampling convolution modules consist of one up-con- 
volution layer and two 3 × 3 convolution layers following the ReLU activation 
function. Finally, the output will pass one 1 × 1 convolution layer to map the 
feature vector to the desired number of classes. 

The advantage of U-Net is that it can use very little training data and yield 
precise high-resolution images. We use data augmentation to generate sufficient 
input images from limited sources. For instance, we divide one large image into 
smaller patches and feed them into the model. Then, we combine the output 
patches to generate a high-resolution image. Additionally, during the up-sampling 
operation, the context information is propagated to higher resolution layers. The 
integration of spatial and feature information makes the predicted high-resolution 
output more precise. 

3.2. Experimental Setting  
3.2.1. Adjustment on Structure 
In our implementation of U-Net, we have two modifications. The first is to ig-
nore the 1 × 1 convolution layer in the final output because we use U-Net to 
generate a high-resolution image, not image segmentation. Therefore, we do not 
need to map the output image to class. The second modification is using four 
repeated convolution modules instead of five. Since the input of our model is 
minimal, 64 × 64, over extracting feature information does not further improve 
the super-resolution performance. Our experiments prove that our enhanced 
U-Net model is efficient for brain image super-Resolution. 

3.2.2. Creating the Training Set 
In the training set, original image size is 1760 × 1760. With 1280 of these images, 
we can create sufficient patch sets. The images we have are only high resolution 
images, and to create low resolution images, we transform the image into k-space, 
and truncate the middle parts. Namely, the low resolution’s k-space: 

( ) ( )[ ]792 : 968,792 : 968l hF I F I=                  (15)  

And other entries in ( )lF I  are all zeros. We use the 64 × 64 patches that are 
created from the low-resolution training sets. 

4. Basic Mathematical Background for Convolutional Kernel 
4.1. Instruction for Convolutional Kernel 

In this work, we use convolutional kernel as an extra item to create convolution-
al kernel loss function. We use it as an item in the loss function and explain what 
the convolutional kernel is in signal processing. 

When we pick the center part of the k-space to create the low-resolution im-
age from high resolution image, we are actually applying a 2-D Sinc function to 
each pixel in the image space. As we know, the Sinc function has infinite domain, 
and will produce ripples in the picture. Thus, here we need to create a kernel to 
convolve the original image, making it generate similar images just like what we 
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get by box filter.   

4.2. Visible Function of Convolutional Kernel 

Figure 4 is a high-resolution brain image. When applying the box filter to this 
image, we will get the low-resolution brain image in Figure 5. 

When using the convolution kernel, the ideal result is shown in Figure 6. 
 

 
Figure 4. High-resolution brain image. 

 

 
Figure 5. Low-resolution brain image. 

 

 
Figure 6. Results of using convolution kernel. 
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However, our result of convolution kernel is discrete and is not ideal. To 
create our convolution kernel, we list the major procedures in Figure 7 and the 
linear analysis of convolution kernel is shown in Figure 8. 

 

 
Figure 7. Main procedures of using convolution kernel. 

 

 
Figure 8. Linear analysis of convolution kernel. 
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In conclusion, we need to solve a linear equation to get specific size of convo-
lutional kernel.  

Using the pseudo-inverse, we get the result in Figure 9. 
For example, Figure 10 is the convolutional kernel we get with the size 11 × 

11 and 13 × 13. And the images created by convolution are respectively shown in 
Figure 11 and Figure 12. 

After comparison, we notice that the resulting images for both kernels have 
relatively higher resolutions compared with low resolution but also have relatively  

 

 
Figure 9. Result by using the pseudo-inverse. 

 

 
Figure 10. The convolutional kernel. 
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Figure 11. Image created by 11 × 11 convolution. 

 

 
Figure 12. Image created by 13 × 13 convolution. 

 
lower resolutions compared with high resolution. Both kernels could remove the 
obvious ripples near the edges in the low-resolution image, which should be the 
main duty of this kernel h. Furthermore, the difference images between the re-
sulting images and the low-resolution image are also explored; we subtract the 
low-resolution image from the resulting images and get the two figures of dif-
ferent images above, which shows the rough contour of the ripples. By detailed 
observation, the 13 × 13 kernel performs slightly better in eliminating ripples 
than the 11 × 11 one. Thus, in the further research, we will use the 13 × 13 kernel 
as our sample. 

4.3. Supplement on the Mathematical Basis of Convolution  
Kernels 
4.3.1. Solving Ax = y 
Four situations of y = Ax, suppose m nA R ×∈ : 

Case 1. Given any m dimensional y vector, which means every y in m dimen-
sional space exists a solution. In this case, A needs to make sure that its column 
vectors’ linear combination should cover all m dimensional space, in another 
word, A is non-singular and invertible. If we need all base vectors to be enough 
to form an m dimensional space, so n ≥ m, and the reminded column vectors 
could be dependent on other m column vectors, which cause the solution being 
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non-unique, since the dependent vectors have infinite linear combinations. Also, 
rank(A) = m, because if rank(A) is smaller than m, all base vectors  
{ } ( )rank

1, , A
na a R∈  cannot form an m dimensional space. 

Case 2. For some m dimensional vector y, there exists a unique solution. 
When all m dimensional column vectors cannot form an m dimensional space, it 
indicates that n < m and only can form at most n-dimensional space. 

For example, with m = 3 and n = 2, we have two 3-dimensional column vec-
tors, which cannot form the whole 3-dimensional space but only a plane or a line 
or a point. However, for the y that falls on that specific plane (or line or point), it 
has the corresponding unique solution x. And since this solution is unique, 
rank(A) = n. Because if rank(A) is smaller than n, there should exist custom va-
riables that make the solutions not unique, to be specific, one variable can take 
any value while another variable will change when this variable changes. Only 
when rank(A) = n, there is no custom variable, x is unique. 

Case 3. For every m dimensional vector y, there exists a unique x. This is the 
same situation as case 1, we n m-dimensional base vectors { }1, , na a , only when 
m = n and all the base vectors are independent, it can form an m-dimensional 
space. So, A must be a full rank matrix [17] [18]. That is, rank(A) = m = n, A is 
invertible. 

Case 4. For some m dimensional vector y, there exists a non-unique x. This is 
the same situation as case 2, when rank(A) < n, we have already proved that the 
solution is not unique. 

4.3.2. Pseudoinverse 
Based on the knowledge of linear algebra and our exploration of the four cases 
about the matrix equations, not all matrix equations have a certain solution; they 
may have multiple solutions or have no solution. 

However, we would like to obtain the kernel h that comes from the reverse 
operation of convolution (which could be calculated equivalently with an ap-
proach of matrix multiplication), and thus getting a “solution” of any matrix 
equations is quite significant for the determination process of h. Such a solution 
will be approximate enough such that the least square condition is satisfied. 

2arg minapprox
x

x y Ax= −                       (16) 

For the mostly applied approach to solving matrix equations, the inverse ma-
trix is entailed and plays a crucial role, but the inverse matrix is sometimes un-
available (for the system of no solution) or not so powerful (for the system of 
multiple solutions). In order to deal with these two cases, we take the Moore- 
Penrose pseudoinverse, or pseudoinverse for short, into account. This is a gene-
ralized version of the inverse matrix, and by utilizing it, we are able to get the 
“solution” indicated in the previous paragraph. 

In this part, we mark the pseudoinverse as A+. 
For the case when a matrix equation has no solution for x, we get the most fit-

ting solution that satisfies the least square condition by computing approxx A b= + ⋅ . 
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That is, though such a xapprox is not a solution to the matrix equation, yet it mi-
nimizes approxA x b⋅ − . For the case when a matrix equation has more than one 
solution, we get the one with the smallest magnitude. That is, approxx A b= + ⋅  
has the least approxx  while satisfying approxA x b⋅ = . 

5. Training Result 

In the test, we find that the training will reach the edge of overfitting at approx-
imately 500 rounds of training. Thus, we train for 500 rounds, and change the 
training set, and continue to train. After 6 periods, namely, 3000 rounds in total, 
we terminate the training. 

In summary, we use the following parameters to measure the performance of 
the U-Net: 

1) PSNR for the overall result; 
2) PSNR for the low-resolution part; 
3) PSNR for the high-resolution part; 
4) PSNR for the overall k-space; 
5) the degree of the resolution [19]: 

( ) [ ]
1759 1759

0 0
Hamming-disance , ,

i j
i j K i j

= =

∗∑ ∑                (17) 

where Hamming-distance means the Hamming-distance from the target pixel to 
the center. 

We firstly use the common training to get the result: 
As shown in Table 1, it is obvious that the U-Net has great contribution in 

improving the resolution of the image. Here, the resolution rates mean the rates 
high resolution point in k-space occupying the weighted sum of all the points in 
the k-space. We use the Hamming distance as the weighted value of all the pixels. 
After applying the transfer learning and convolutional kernel, the results get 
even better. We list the result of the resolution rate in Figure 13. 

However, we find that one value may have quite poor performance, image 
PSNR [20]. This may be caused by inappropriate variables. We have good reso-
lution rates, but the image PSNR does not show reasonable values. It means that 
the super-resolution causes some distortion on the images. To analyze it in more 
detail, we turn to the k-space to find the answer. 

We notice that, in the k-space, the value of the PSNR increases compared with 
the low-resolution image as shown in Figure 14. Nevertheless, the PSNR on the 
low frequency part decreases sharply after the training, while the high frequency 
part in rising. It means that our training works. We have increased the images’ 
high-resolution part, and the convolutional kernel has best performance among 
them. Then, the reason why the PSNR decreases appears in the low-frequency 
part. We found that the PSNR of the low-frequency part decreases for about 26 
in all three method results. Which means we have changed the low-frequency 
part greatly while training. To avoid great change to the center part of the image, 
we introduce the edge-to-edge training method. 
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Table 1. Results of the common training. 

Methods 
Resolution 

on rate 
Image PSNR 

Frequency 
PSNR 

Low Frequency 
PSNR 

High Frequency 
PSNR 

Low 18.90 28.86 80.91 90.84 27.56 

U-Net 81.49 26.06 80.07 62.13 29.99 

U-Net & TT 92.25 28.44 83.10 75.83 30.94 

U-Net & CK 92.47 29.51 84.55 79.91 31.33 

 

 
Figure 13. Resolution results of different methods. 

 

 
Figure 14. PSNR in both image domain and k-space. 

6. Edge-to-Edge Training 
6.1. The Importance of Edge Training 

In the experiment, the edge training is quite important in two ways. 
Firstly, in the training process, the low-resolution part will be changed and 

will have a loss rate of approximately 35%. This serious loss in the center part of 
k-space will result in the poor performance in its PSNR value. Thus, actually in 
the practical use, we will use the edge-to-edge training. We dig the center of the 
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k-space and mark it as “CORE”. After training, we put the CORE back to for the 
eventual image. In this way, the center part of the k-space will not be changed 
greatly, and one another benefits is that, if we unpatchify all the patches directly, 
usually the image will have clear seams between different patches. However, if 
we use the edge training, the final result will be quite smooth and without the 
traces of unpatchify.  

We need to propose here that in MRI imaging, we apply strong magnetic 
fields to atoms. When the nucleus returns to its original energy state through 
some relaxation process, we can get some very useful information of energy ra-
dio frequency. Through the different signals emitted by different material prop-
erties of human tissues, we can realize the contrast of MRI images. We can no-
tice that when we apply magnetic fields to different properties, we will get dif-
ferent kinds of “feedback” from different matter. This feedback is usually con-
cluded into two parameters, one is the time constant T1 for the excited protons 
to return to the original energy state, and the other is the transverse relaxation 
time, T2. T2 is used to describe the time of the spin protons to lose phase cohe-
rence. Different human tissues will have different time constants T1, T2. 

When we create MRI images, the different magnetic field strengths, frequen-
cies causes that we cannot apply one set of MRI properties to another MRI im-
ages. That is, the low-frequency signal features of MRI are not shared. It makes 
our training unstable. However, although the feedback signals within the tissue 
are not determined, the boundaries are always fixed, and these fixed features are 
what we call high-frequency signals. 

Due to the different property of the MRI scanning frequency, the training in 
one kind of MRI image may not be efficient in another MRI image with different 
contrast. Thus, by digging the center of the k-space, we will only train the high- 
resolution part of the image. The low frequency part will have different property, 
however, the part with sharp edges will have similar location distributions in all 
kinds of MRI images. It makes that the training in different MRI image will 
share similar properties and make edge-to-edge training a quite useful method 
in super-resolution. In the following experiment, we will use the edge-to-edge 
training to re-train the part we have done previously. 

Some different parts are that, after digging the center of the k-space, the image 
domain will appear complex numbers. In this case, we only train the magnitude 
part of the image, and put the phase part back. Because the phase part will not 
have great error between high resolution and low resolution, we do not need to 
train it.  

To train the real part of the image, we need to change the activate function of 
U-Net. The ReLU function matches all the negative value to zero, but in real part, 
we have many negative values. Thus, we change it to the identity function. By 
contrast, the real-imaginary pair training is not a good choice, since the imagi-
nary parts do not have clear attributes for U-Net to fetch, and the training result 
is not good. Therefore, we choose the magnitude-phase training eventually. 
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Table 2. Results of the edge-to-edge training. 

Methods 
Resolution 

on rate 
Image PSNR 

Frequency 
PSNR 

Low Frequency 
PSNR 

High Frequency 
PSNR 

Low 18.90 28.86 80.91 90.84 27.56 

U-Net 81.49 26.06 80.07 62.13 29.99 

U-Net & TT 92.25 28.44 83.10 75.83 30.94 

U-Net & CK 92.47 29.51 84.55 79.91 31.33 

Edge 94.22 28.96 83.98 91.49 30.63 

6.2. Training Results 

Table 2 shows the results of the edge-to-edge training. Obviously, the edge-to- 
edge training has evolution on the resolution rate. Besides, the rates of the PNSR 
have different improvements. This may be caused by the core part inserting in 
the k-space directly. 

One thing to notice is that, we do not apply transfer learning or convolutional 
kernel. However, some rates have similar values to the rate shown by transfer 
learning or convolutional kernel. Even some rate, such as the image PSNR and 
frequency PSNR has better performance than the transfer learning. In a word, 
edge-to-edge learning has quite great improvements on the performance of the 
U-Net, and can keep reality at the same time. 

7. Conclusions 
7.1. Achievements 

Super-resolution is an important field in computer vision and image signal 
processing. In this work, we adopt the U-Net to achieve the super-resolution on 
MRI image. Firstly, we use the U-Net to do the normal training. The resolution 
of the image has arisen greatly. However, the PSNR of the image domain and 
frequency domain do not have obvious improvement. 

Then, we use the transfer training and convolutional kernel loss function to 
help the U-Net to do the training. The results are that the transfer learning slightly 
improves the net-work result in PSNR value on the image and k-space. One 
thing is more important, and that is it greatly improves the resolution of the im-
age. When we try to use the convolutional kernel, the results get even better, and 
it improves the super-resolution quality by about 5%. However, one thing is in-
fluencing the result. The low frequency part has been changed greatly and it 
causes the distortion in the final images. 

Therefore, we introduce the edge-to-edge training. By applying the digging of 
the k-space, we keep the center part of the k-space unchanged, and only do the 
training on the high-resolution part. In this way, we found that the result gets 
much better, even without the transfer learning and the convolutional kernel. 

7.2. Drawbacks and Further Developments 

Due to the time limitation, we do not achieve significant performance gains on 
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the U-Net. The U-Net should have more powerful performance on super-resolu- 
tion. We have improved the resolution of the image greatly, but the image still 
has serious distortion. This is the direction we need to improve. 

Our next step of the research can be the development of some result processing 
strategies. For example, we find that when we want to apply the convolutional 
kernel loss function item to the edge-to-edge training, we need to create a filter 
which is the combination of two box filters, and then apply a new kind of con-
volutional kernel rather than Sinc function. It needs further mathematical work. 

Besides, in the process of unpatchify the image. We find that if we combine all 
the patches directly, the picture will have seams between the patches. However, if 
we use the average value in the overlapping part between the patches, the resolu-
tion of the image will sharply decrease. Thus, we need to find a better way to re-
construct the image from the patch sets. 
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