
Journal of Computer and Communications, 2022, 10, 34-49
https://www.scirp.org/journal/jcc

ISSN Online: 2327-5227
ISSN Print: 2327-5219

DOI: 10.4236/jcc.2022.1010003 Oct. 20, 2022 34 Journal of Computer and Communications

Reduce Malicious Activity in Trusted Programs

Elliot Ito, Depeng Li

Department of Information and Computer Sciences, University of Hawaii at Manoa, Honolulu, USA

Abstract
The malicious activity comes in many forms, but many can come through
trusted applications that we commonly use. Current systems have the capa-
bility to reduce damages, but implementations for the reduction are either
outside of the system or are implemented in a manner that is unintuitive or
confusing to users. In this paper, an access control method has been proposed
that focuses on the alleviation of damage caused by such applications through
the interactions between the user, application, and computer system. In de-
tails, the proposed model would work as a module or an interceptor to dele-
gate permissions to applications through user input by using existing system
calls. The evaluation about the proposed model as well as the first step im-
plementation can show better security protection than existing systems.

Keywords
Malicious Activity

1. Introduction

Computer users often deploy security software on their computer to protect them-
selves from malware. This software uses varying techniques to identify potential
malicious activity and prevent such actions from occurring on the user’s system
[1]. However, the problem often lies with the access control model that has been
implemented in the system. These models that the systems run allow the mal-
ware to execute on the system.

There are three major problems that access control models face:
• Implementation
• Deployment
• Effectiveness

Liang et al. proposed a play and rewind feature for unknown applications
through process isolation. However, in this system, it assumes user understand-

How to cite this paper: Ito, E. and Li, D.P.
(2022) Reduce Malicious Activity in Trusted
Programs. Journal of Computer and Com-
munications, 10, 34-49.
https://doi.org/10.4236/jcc.2022.1010003

Received: September 14, 2022
Accepted: October 17, 2022
Published: October 20, 2022

Copyright © 2022 by author(s) and
Scientific Research Publishing Inc.
This work is licensed under the Creative
Commons Attribution International
License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

Open Access

https://www.scirp.org/journal/jcc
https://doi.org/10.4236/jcc.2022.1010003
https://www.scirp.org/
https://doi.org/10.4236/jcc.2022.1010003
http://creativecommons.org/licenses/by/4.0/

E. Ito, D. P. Li

DOI: 10.4236/jcc.2022.1010003 35 Journal of Computer and Communications

ing what each file modification implies and the impact of such modifications. In
addition this proposal required a custom Linux system for its implementation
[2].

Zeldovich et al. proposed a confined information flow model that would mi-
nimize the amount of trusted code to only kernel. The user would then be able to
specify data access policies. This proposal also required a custom Linux system
for implementation and usage [3].

ZBAC (authoriZation Based Access Control) was proposed as a distributed au-
thorization model, but it was designed for “enterprise architecture” and not for
general computing systems [4].

Roesner et al. proposed a usage based access control to limit program access
to user data through user’s interactions with applications. The model was limited
when it left what the application as accessing to information flow models despite
the same data being able to compromise the application. The proposal was im-
plemented on a modified OS system from a previous work [5] [6].

For these models, while effectiveness may be met, there is a problem with the
implementation and deployment of these models due to the usage of customized
systems or kernels.

In this paper, we propose a model that would alleviate malicious intent on
trusted applications using existing systems. The model would limit its modifica-
tion at the kernel level to that of a module, making the implementation and
deployment of the model much easier. This is due to the lower entry barrier for
the implementation of this model on current systems and improving current
system security without the need for modifications to the kernel itself. However
there are limitations on the model’s effectiveness due to it’s inherent nature of
user interaction.

In this paper, Section 2 will go over the background of this problem with re-
lated work, Section 3 will cover current system implementations of security, Sec-
tion 4 will go over the proposed model and how it would reduce damage, Section
5 will go over the attempt to implement the system with Section 6 covering the
limitations and issues with the implementation. Section 7 will compare how the
current solutions as compared to the proposed solution. Section 8 will cover what
could be done for improvements to the proposed model and areas of future re-
search. Section 9 will conclude the paper.

2. Background and Related Work

Access control is often based on what a user or application can access based on
policies and mechanisms. However, it is common for access control measures to
fall short of protecting users in the event that the user is compromised. This can
occur though different means such as to incentivize users to run potentially ma-
licious programs [7], to trick users through social engineering [8], compromised
or stolen user credentials, and compromised or malicious applications.

There are three areas that are often not considered or alleviated by access con-

https://doi.org/10.4236/jcc.2022.1010003

E. Ito, D. P. Li

DOI: 10.4236/jcc.2022.1010003 36 Journal of Computer and Communications

trol models.
1) Blanket Authorization: When a program runs at the permission level of the

the user who initiated or granted the application permission to run. This goes
against the principle of least privilege due to the program having access to any
content that the user has permission to access. An example of this is the Win-
dows UAC prompt and Linux sudo command providing the program high-level
permissions without knowing how or where it would be used.

2) Trusted Application Compromise: When a program that is trusted by the
user has a vulnerability that allows rogue commands to be executed through the
program that could run at the user’s permission level. An example of this is a
backdoor being included with the program as an update.

3) Trusted Application Usage Compromise: When a program that is trusted
by the user is used in a manner where malicious commands can be executed at a
user’s permission level from using the program. An example of this would be
opening malicious documents that run scripts that would install malware on the
user’s computer.

Traditional access control models like that of Role Based Access Control (RBAC)
[9], Attribute Based Access Control (ABAC) [10] and implementation methods
like Access Control Lists (ACL) [11] do not consider these problems as they are
out-of-scope, as these models fall under the first area. Once the user or applica-
tion obtains the permission level, it would be allowed access to everything at that
level.

Moving beyond traditional access control models, there have been proposed
access control models that attempt to solve the problem of least privilege. The
primary problem is the need to implement a least privilege approach to applica-
tions that the user would normally trust. This is counter-intuitive because the
user already trusts the application with certain permissions.

Liang et al. proposal had process isolation to present users what operations
were done on files and to allow the user the option to allow the modifications for
each file. There is one main problem with the proposal. It is the requirement for
the user to check each change and verify that these changes are satisfactory. Even
if there was a method of generalizing the file changes to lessen the number of
prompts a user would be presented, the user would still have to go through the
process each time an application is ran for the first time. This burden is on top
of the user being able to understand what modification are and are not trust-
worthy. In addition to this, it has the problem with the second and third area
where a trusted application would not undergo such screening [2].

Zeldovich et al. proposal was unique as they proposed a different form of in-
formation flow control to restrict access of data that applications can access. This
was done through the usage of labels to resources from the kernel. However, the
limitation of the model comes from the need for the user themselves designating
what permissions a file. While there may be defaults for permission delegation, it
would require users to always ensure that the settings on each file are set to what
they want [3].

https://doi.org/10.4236/jcc.2022.1010003

E. Ito, D. P. Li

DOI: 10.4236/jcc.2022.1010003 37 Journal of Computer and Communications

ZBAC (authoriZation Based Access Control) was an approach for “sharing in-
formation across traditional domain boundaries” that had a test use case in a
NAVY Limited Technical Evaluation (LTE). Being a distributed model, it al-
lowed the enforcement of least privilege for users and programs in addition to
better control and delegation of permissions between users and programs. De-
spite it being a distributed system, it presents the notion of user delegated per-
missions. Users would designate to the system what access a program would
have to a file and the system would only allow the application access to just that
file with the specified permission. Later access control papers like Roesner et al.
[6] have this concept. In addition, it presents a model that can be used to limit
damage caused by application compromise, but it does not provide a measurable
implementation for standard programs like word processing programs [4].

The usage-based approach taken by Roesner et al. showed a novel means of
permission delegation through the user’s interaction and intent with application.
However, its assumptions present a problem when it looked at what data appli-
cations were accessing. Considering one aspect of data being accessed by appli-
cations as invalid data that could contain malicious content to be protected
through input validation does not consider the cases where malicious content is
valid input [6]. A prime example of this would be word processing macros that
would download and install malware. Macros would use valid syntax to down-
load and execute the downloaded content.

3. Current Systems

Current systems have generally four different types of permission delegation to
applications.

1) No Permission Required. Resources that are available to the application like
user documents or application required (renderer to draw an image on a smart-
phone) have no permission requirements.

2) Permission at Install time. Systems like Android use manifest files that dic-
tate what applications are allowed to access to inform the user what the applica-
tion would need when the user installs the application. Once the application is
installed, the application would be able to utilize any of the granted permissions
that were in the manifest file.

3) Permission at Runtime. Often done through a user prompt, systems would
notify the user asking the user to grant the application permission to do an ac-
tion.

4) No Permission Granted. For system specific resources, it may not be possi-
ble for the application to be granted access. This would also include systems where
applications are not granted any permission at all.

Each type of permission delegation presents security implications and usabili-
ty problems. It is inherently possible for malicious applications to abuse the re-
sources that are allowed without any permission. For permissions at install time
and runtime, the user may not know what it means for them to grant permis-

https://doi.org/10.4236/jcc.2022.1010003

E. Ito, D. P. Li

DOI: 10.4236/jcc.2022.1010003 38 Journal of Computer and Communications

sions to said application. For systems that have no permission delegation, it may
be unusable in some cases where users would want to use local system resources.

4. Model Proposal
4.1. Goal

The goal of the security model is to alleviate the damage that a trusted applica-
tion could do. In order to do this with current systems, there are assumptions
about the system and attack surface that is available to adversaries.

4.2. Assumptions

Secure method of updating: Base Operating System (OS) and OS related pro-
grams have a secure method of updating.

Proper system configurations—The base OS have properly secured system
configurations for the OS (i.e. No remote access for the root account for UNIX
or UNIX-Like OS.).

Hardware compromise: Devices that run the base OS have hardware that has
not been compromised by either the seller of the devices or manufacturer of the
hardware.

Secure base Operating System: Devices that use this security model have a se-
cure OS that does not have vulnerabilities that could bypass the proposed secu-
rity model.

No User Compromise: For this model, it will be assumed that users them-
selves are not compromised where the adversary would obtain the user’s creden-
tials.

Memory Protection: Programs would not be able to have direct access to the
system’s memory where other application’s run time stack.

Network Whitelist: It is assumed that the system has a whitelist to control the
domains that can be accessed.

4.3. Available System Features

Windows and Linux systems already have methods that can keep track and mon-
itor application usage of system resources. This would include Window’s Re-
source Monitor that would allow the user to see what files are being accessed
from a particular application and Linux’s comparable lsof command that shows
currently opened files. In addition to file information, both Resource Monitor
and lsof can show current network activity on the system. Lastly Windows can
suspend processes with Resource Monitor and Linux has a comparable kill com-
mand that would suspend processes with the kill command’s-STOP flag. This
model can be seen as an additional feature to these existing systems to provide
the user more control over their application.

4.4. Model

The primary way to reduce damage done by compromised program is limit what

https://doi.org/10.4236/jcc.2022.1010003

E. Ito, D. P. Li

DOI: 10.4236/jcc.2022.1010003 39 Journal of Computer and Communications

the program can do or access. Even if a program is trusted, we should not nec-
essarily grant it access to anything accessible with the user’s permission level.
The proposed model would be used as a system service that would delegate and
verify application requests. Figure 1 shows how the service would interact with
the system and the user.

In order for the model to keep track of permissions, programs would have
permission metadata that describe what the program can do when running. This
would be similar to the manifest files in the Android and other systems described
in Section 3. In the event of no metadata being available, the program is de-
faulted to having no access permissions. Irregardless, the program is initially not
allowed any access rights. This is to ensure that it is the user that allows the ac-
tions and not a third-party. It is assumed that the user or third-party would not
be able to access this metadata information. This metadata would be stored in a
directory in the system where there would be an ACL or similar mechanism to
prevent tampering.

Actions taken by a program are split into different four different categories:
1) Network. When a program attempts to access the internet.
2) Application. When a program attempts to call another program or applica-

tion.
3) Kernel. When a program tries to access system level resources.
4) File System. When a program tries to access a file or folder outside of the

allowed directories or a file whose file type is not allowed.
For network connections, the user would need to specify if the program is a

browser or non-browser application. This is due to the issue of having a whitelist
for network connections. While it would make a browser more secure, it would
cause a usability problem for users.

Allowed directories are described as meeting the following criterion:

Figure 1. Proposed model using existing system calls,
the proposed model would work as a module or an
interceptor to delegate permissions to applications
through user input.

https://doi.org/10.4236/jcc.2022.1010003

E. Ito, D. P. Li

DOI: 10.4236/jcc.2022.1010003 40 Journal of Computer and Communications

1) Directories that the user allows at install time
a) Install Directory
b) Standard temporary directories that program requests at install time
2) Directories that the user allows after install time
A limitation to this is the user cannot allow the program to have directory

access to all directories in the drive or drives.
Allowed file types are described as meeting the following criterion:
1) File types that the user allows at install time
2) File types that the user allows after install time
Similar to directories, the user cannot allow the application to open any and

all file types.
Upon first time attempt of an action, (i.e. program accessing internet), the

program would be granted explicit access by the user. This would be something
similar to prompts may be seen from a security software for the application ac-
cessing the internet for the first time. Once this is granted, the program would
have access limited by any domain limitations placed by the system via the whi-
telist. In the scenario that the application attempts to access a domain that is not
on the whitelist, the user is prompted with a notification requesting if the user
wants to access the domain and if the user wants add the domain to the whitelist
for future access. This action for network connections is only for non-browser
applications. This is to reduce the user having security fatigue while using the
system. For application specific events like directory or filetype access, the model
would update the metadata of the application on the user’s choice from the noti-
fication.

Once permissions are granted to a program, the system would not repeatedly
prompt the user. A prompt would not occur unless the program attempts to do
something that wasn’t done before.

Let us assume a scenario of a common malicious infection. An infected doc-
ument is loaded with macros that would load malicious data onto the computer.
The system would prompt the user if the document reader program attempts to
access a domain that is not on the whitelist. Even if the user accepts the network
connection, the user would then get prompted for an application execution. The
document reader program tried to run the unknown malicious program without
having the permissions to do so. From this point, even if the user allows the
program permission to run the downloaded program, the system would still not
allow the malicious program to run at the same permission levels as that of the
document reader program. Each program has a separate permission scheme. As
such, the next prompt would be dependent on the malicious application. If the
program is ransomware, the user would be prompted for file access to the direc-
tory that the ransomware would want to encrypt. If the program is something
like a botnet client, the user would get prompts about application usage (de-
pending on the botnet) and network connections (to the command and control
server or peers).

https://doi.org/10.4236/jcc.2022.1010003

E. Ito, D. P. Li

DOI: 10.4236/jcc.2022.1010003 41 Journal of Computer and Communications

However, this is not the only method of getting malicious content to the end
user. Drive-by-downloads is another method, using ads or compromised sites to
install rootkits on a user’s computer. Even if browser programs are not affected
by the whitelist requirement, the system is still able to reduce infections. Let us
assume a different scenario where the user visits a compromised site or mali-
cious advertisement on a web browser. There is no whitelist check, but the ex-
ecution of any malicious program would present a prompt for any resource ac-
tion, as the program was not granted any prior permissions.

Despite it’s flexibility, there are limitations and usage issues in this model that
are mentioned Section 6.

4.5. Implementation

To implement this model and show it’s functionality in different systems, a
Windows and Linux system was selected to have the model to be implemented.
However, problems arose when the implementation was attempted. This shall be
explained in Section 5.

5. Experiment Attempt

The model was attempted to be implemented in both a Linux and Windows en-
vironment. However due to time restraints and other issues creating the model,
the experiment did not go as planned. The Linux experiment was to be done on
a mobile system with a i5-5200U with 8GBs of RAM. The Windows experiment
was to be run on a desktop system with a i5-4570 with 16GB of RAM.

5.1. Linux

The Linux implementation was not attempted due to time restraints, instead re-
search into similar programs which were open source or had source-code availa-
ble was done. From available findings on available source code, it appears to be
possible to have a kernel module implementation that would intercept system
calls [12] [13]. The alternative to this is if a program is compiled with a shared
library or injected with a shared library and use the shared library to intercept
function calls [14] [15].

For an implementation for the domain checker, the flow of the model would
be as follows:

1) Check syscalls for connect() or calls from a similar function from a shared
library injection for a domain request

2) Check requested domain against a hostfile like whitelist file for allowed
domains

3) Notify user if the domain is not on the whitelist
4) User selection would determine allowance of
a) No access
b) Temporary access (session)
c) Permanent access (adding domain to whitelist)

https://doi.org/10.4236/jcc.2022.1010003

E. Ito, D. P. Li

DOI: 10.4236/jcc.2022.1010003 42 Journal of Computer and Communications

5) System would proceed according to user selection
File System events can be seen in the model as follows:
1) Check syscalls for open(),write(), and read(), or calls from a similar func-

tion from a shared library injection for a file request
2) Notify user if call does not match the directory listing provided
3) User selection would determine allowance of
a) No access
b) Temporary access (session)
c) Permanent access (adding domain to whitelist)
4) System would proceed according to user selection
From provided examples of this implementation, it is possible to intercept

standard system calls (syscalls) from processes and hijack/replace the syscalls with
custom ones [13] or use as shared library to hook system calls. [15] Further in-
vestigation is needed to verify feasibility of shared library injection to hijack or
hook non-syscalls.

5.2. Windows

The main problem that arose when attempting to create a Windows implemen-
tation was the time needed for research into creating a system application that
would allow the model’s feature of request interception.

The interception of system calls can fall under three forms. One would be in-
terception via injection through specific calls [16], hooking of specific system
calls through the Windows API [17] [18] [19], or something different—the me-
thods by which security software prevent malicious executables from running. In
this case there are two possible methods, one is the hooking being done through
the kernel32 or the application specific dlls for command. The second option
would be using injection methods [20]. The latter would be more effective for
multiple applications whereas the former would specialize for particular applica-
tions.

For an implementation for the domain checker, the flow of the model would
be the same to that of Linux except for the first step, where it would go as fol-
lows:

1) Check system calls in either kernel32 or custom dlls for a domain request
2) Check requested domain against a hostfile like whitelist file for allowed do-

mains
3) Notify user if the domain is not on the whitelist
4) User selection would determine allowance of
a) No access
b) Temporary access (session)
c) Permanent access (adding domain to whitelist)
5) System would proceed according to user selection
Other than this, documentation that was found was primarily for monitoring

and not interception of resource calls. An example provided in the File System
Watcher Class page on the Microsoft Developer Network (MSDN) website with

https://doi.org/10.4236/jcc.2022.1010003

E. Ito, D. P. Li

DOI: 10.4236/jcc.2022.1010003 43 Journal of Computer and Communications

a slight modification allowed for the viewing of files being modified, but not
which applications modifying said files [21]. The reason behind this is due to the
events that the watcher captures are only the files that have been changed, created,
deleted, disposed, error, or renamed [22].

For a commonly used Windows utility suite SysInternals, the developers no
longer provide source code to their applications suite. Within their application
suite there is a program that would monitor process activity [23]. It appears that
lower or custom dlls (Dynamically Linked Libraries) may be needed for the in-
terception. The time needed to create custom system files to do this exceeded the
available time for the project.

6. Limitations and Issues
6.1. Limitations

Due to the assumptions placed on the model, real-world effectiveness would be
lower than expected. Some of these limitations are out-of-scope, but impact the
mitigation that the model provides to users.

Depending on the implementation on how the OS and programs update, there
may be no secure method of updating devices. Even if there is a method of doing
so, it is at risk of being denied by adversaries from interception, rerouting, jam-
ming or other means. The proposal is for a security model based on the usage of
programs from a local or remote user, and as such the issue of denial of updating
the OS or programs through external means is considered out-of-scope of the
model.

Preventing and finding hardware compromise is a difficult problem to solve.
With the exception of in-house production it is difficult to control the security
protocols and procedures that manufacture that produce the different hardware
components. Even if the supply chain is secure, computer manufactures may in-
clude their own software or firmware for hardware that can be exploited [24].
While the proposal is on access control for programs and this problem being
out-of-scope of the model, it is important to note this limitation.

In addition to this, assuming that the base operating system is secure can be
naive as it may prove difficult to have a secure base OS for devices due to bugs
that may exist within the core OS or any later updates to an OS. Software bugs
have been seen with open source projects [25], and Android [26] show the diffi-
culty of ensuring non-exploitable code in production software. However, there
are times when an OS feature can be exploited maliciously. Microsoft’s atom
tables were found to be vulnerable to malicious code injection [27]. What makes
it difficult to minimize this threat is due to this being a feature in the OS, which
was recently exploited by one of the newest iterations of the banking trojan Dri-
dex [28]. While it may be possible to reduce damage, problems like this make it
difficult for the model to be effective.

Memory protection is something that can be difficult to achieve in both old
and new systems. RAM scrapers are an issue that can circumvent and eliminate

https://doi.org/10.4236/jcc.2022.1010003

E. Ito, D. P. Li

DOI: 10.4236/jcc.2022.1010003 44 Journal of Computer and Communications

the protections provided by the proposed model by obtaining information from
memory without user interaction or knowledge.

By having proper system configuration, it requires that additional steps are
required to ensure that the OS is properly setup before it is released or updated.
Despite ensuring improved and proper protection against attacks, it may provide
additional overhead to deployment. While this can impact the implementation
of the system, this is a cost that is outside the scope of the model as it should be
assumed that distributors should be focusing on security when it comes to
development of devices. However, as noted with the hardware compromise as-
sumption, Original Equipment Manufacturers (OEM) have faced problems with
their installation and usage of custom software that is vulnerable or compro-
mised. Both of these problems are considered out-of-scope, but the instances of
these events occurring present yet another limitation on the model’s effective-
ness.

Aside from these limitations from assumptions, the real-world attack threats
have capabilities that are not necessarily covered by the model. Fileless malware
present a problem for system security. The problem with fileless malware in the
scope of the model is how the model would interpret the execution of code. If
the model does not see the fileless malware execution as a separate entity, the
malware would be able to run without the model notifying the user that the pro-
gram is executing a different executable.

The model itself is hindered from the usage of current systems. Current sys-
tems may not provide who did the system call, the program vs user, like that of
Roesnen et al. [6]. This information provides a level of detail that would make
the model more secure, but would require changes to the kernel and applica-
tions. Without this information the model has to attempt least privilege in sys-
tems that do not provide detailed information.

6.2. Issues

The model itself has issues with its compatibility with security software and com-
puter policies. While not available to regular Window users, Windows has op-
tions for professionals, and users in business and education to control what ap-
plications can be ran. Despite this feature requiring user interaction and selection,
this limitation feature presents a redundancy for capabilities [29]. Depending on
its implementation, the model may conflict with security software as security
software do similar actions by preventing execution of malicious code.

In addition to compatibility issues, both Linux and Windows models may face
stability issue. Due to the implementation not being implemented, it is unknown
the impact that the model would have with security software and kernel. If a Li-
nux kernel module is used as the interceptor, it presents a problem of ensuring
robustness in the program to prevent a kernel panic or other kernel related er-
rors when intercepting system calls. A similar problem is possible with the crea-
tion of custom system files for system call interception in the Windows model.

https://doi.org/10.4236/jcc.2022.1010003

E. Ito, D. P. Li

DOI: 10.4236/jcc.2022.1010003 45 Journal of Computer and Communications

The injection of code itself in any program presents a security problem in it-
self due to the intrusive nature of the model. Secure applications may not as-
sume such level of interception with its system calls. An example of security im-
pacts from intrusive security models is the interception of HTTPS. The issue
from this has presented issues which have resulted in a recent US-CERT advi-
sory [30].

Programing implementation issues aside, the User Interface for notification
presents a different issue. If users are to be prompted needlessly or without prop-
er information, the notification system would face the same problem with Win-
dows UAC prompts [31]. The prompts need to be efficient and understandable
where the user would want to read the message and choose the best option. The
problem here is if the user already wanted to take the action and the prompt is a
simple verification of it, as noted in Roesner et al. [6].

7. Solution Comparisons

Security software solutions provide a means for the identification and preven-
tion of malicious file or code execution. However, the software still depends on
signatures and execution heuristics. The problems with false positives and im-
pact on applications create a problem for security software. For troubleshooting,
installation, or even running an application, users are often suggested to turn off
their security software for the application to run correctly. This prevents the se-
curity software from ensuring that the user is properly protected. In a manner
similar to Roesner et al., [6] by using using user interactions with applications,
the model can reduce such problems through said interaction to dictate program
permissions.

Current system security implementations rely heavily on traditional access con-
trol models utilizing what users have access to. Linux security modules like SE-
Linux [32] have methods to reduce damage caused by malicious applications to
system resources through access prevention, but have limitations for user specif-
ic content. Unless provided, users would often have to modify the security mod-
ule configurations for stricter security policies. This model can limit application
access with little user interaction with security configuration files.

Some of the newer features security features in Windows utilize sandboxing
that require the application developers to modify their application code to pro-
vide further protection [33]. The current model allows for legacy support to ap-
plications that are no longer being supported as it utilizes the applications usage
of system calls and not an application feature.

8. Future Work
8.1. Linux and Windows Implementation

Although some important work has already been accomplished, it was still not
possible to fully implement a system that could be used in Linux and Windows
due to the heavy workload. As a possible future work, an implementation of the

https://doi.org/10.4236/jcc.2022.1010003

E. Ito, D. P. Li

DOI: 10.4236/jcc.2022.1010003 46 Journal of Computer and Communications

model for both Linux and Windows could be created to show how well the
model works when compared to the current security implementations in place.

More research would be needed on the Linux side to ensure compatibility
with older kernel versions and robustness for updates to the Linux kernel. If the
model is dependent on checking syscalls, backwards compatibility and the need
for legacy checks are required. In addition, shared library injectors need to work
for any application that does not use syscalls functions. For Windows, research
into creating custom DLLs and methods of application preemption, similar to
that of security products need to be researched further.

However, it needs to be noted that Microsoft has been updating the security
features in Windows 10. With the latest Creators Update that was rolled out on
April 11th, Microsoft is introducing new security features in Windows Defender
and Windows 10 to harden the system against threats. However, some of these
features like the Windows Defender Advanced Threat Protection are only for
paying enterprise customers or systems that normal users may not use (i.e. Pro,
Educational) [33] [34] [35].

With this in mind, the proposed alleviation model can still be applied to Win-
dows due to the security difference between regular users and users who are pro-
fessionals, part of an institution or business.

8.2. User Interface

As noted in the model issues in Section 6.2, the model relies on user interaction,
which presets a problem when it comes to the User Interface (UI) that they would
interact with to allow permissions. Users can often skip Windows UAC prompts
not knowing the implications of what they were doing. [31] In addition, the type
of prompts being presented to users may not be interpreted in a manner that is
correct. This issue has been noted in research on browser information to users
on their connection type [36].

Ensuring that there is an understandable UI for users to interact with is a dif-
ficult challenge. Even if the information is presented in a manner that is explicit
and understandable for users, the manner that the information is presented may
affect user’s assumption on the prompt.

8.3. User Education

While a problem like user education is out-of-scope of the model, users are often
the last line of defense when it comes to unknowingly runing a zero-day exploit.
While security software and operating systems make it generalized for users to
understand what is secure and what is not, such methods have a limit on the
impact on users decision making. If users do not understand the threats well or
if they have misconceptions on the threats, their interaction with systems and
decision making will circumvent the system security.

Despite the proposed model making it easier for users to understand why they
are getting the prompt, like accessing a new website that is not on a list, users

https://doi.org/10.4236/jcc.2022.1010003

E. Ito, D. P. Li

DOI: 10.4236/jcc.2022.1010003 47 Journal of Computer and Communications

may not see the prompt as a warning. Systems can only protect users to a given
point as malicious activity can occur with and without user involvement.

8.4. Internet of Things (IoT)

One of the major limitations of the proposed model is its usage of user interac-
tion, which hinders application for IoT devices. In general, there are three main
problems that access control models face for IoT devices.

1) Constricted Resources
2) Automation
3) User Compromise
The primary problem is the constricted nature of IoT devices. Security models

need to take into consideration the resource limitations that IoT devices have,
while. The next problem is how IoT device are not usually managed with hu-
man interaction, this means that current proposed model cannot work effi-
ciently. There are a wide array of services that IoT devices provide with devices
like security cameras and sensors not requiring much human input. The model
will need to consider how to handle permissions with automated services. The
last problem is the handling of user compromise. If the model were to be gene-
ralized, the last problem would be considered out-of-scope for the model in the
case of direct terminal connection to the device. If the device is being controlled
via an application, it is theoretically possible for the proposed model to be gene-
ralized and adapted to cover this scenario.

9. Conclusion

The current security models and systems that are in use need to be updated. The
proposed system can be considered as a stop-gap, as it does not fully resolve the
current problems that security models face. Despite this, updates to models are a
continuing cycle for security development. The inclusion of alleviation tech-
niques on trusted applications is a point of interest to ensure protection for users
who may trust their applications beyond the current security capabilities. The
evaluation about the proposed model as well as the first step implementation can
show better security protection than existing systems. The future work for this
research is to fully implement the model for both Linux and Windows to dem-
onstrate how well the model works while compared to the current security im-
plementations.

Conflicts of Interest

The authors declare no conflicts of interest regarding the publication of this pa-
per.

References
[1] Saeed, I.A., Selamat, A. and Abuagoub, A. (2013) A Survey on Malware and Mal-

ware Detection Systems. International Journal of Computer Applications, 67, 25-31.

https://doi.org/10.4236/jcc.2022.1010003

E. Ito, D. P. Li

DOI: 10.4236/jcc.2022.1010003 48 Journal of Computer and Communications

https://doi.org/10.5120/11480-7108

[2] Liang, Z.K., Venkatakrishnan, V.N. and Sekar, R. (2003) Isolated Program Execu-
tion: An Application Transparent Approach for Executing Untrusted Programs. 19th
Annual Computer Security Applications Conference, 2003. Proceedings, Las Vegas,
8-12 December 2003, 182-191.

[3] Zeldovich, N., Boyd-Wickizer, S., Kohler, E. and Mazi’eres, D. (2006) Making In-
formation Flow Explicit in Histar. Proceedings of the 7th Symposium on Operating
Systems Design and Implementation, Seattle, 6-8 November 2006, 263-278.

[4] Karp, A., Haury, H. and Davis, M. (2010) From ABAC to ZBAC: The Evolution of
Access Control Models. Journal of Information Warfare, 9, 38-46.

[5] Wang, H.J., Moshchuk, A. and Bush, A. (2009) Convergence of Desktop and Web
Applications on a Multi-Service OS. Proceedings of the 4th USENIX Conference on
Hot Topics in Security, Montreal, August 2009, 11.

[6] Roesner, F., Kohno, T., Moshchuk, A., Parno, B., Wang, H.J. and Cowan, C. (2012)
User-Driven Access Control: Rethinking Permission Granting in Modern Operating
Systems. 2012 IEEE Symposium on Security and Privacy, San Francisco, 21-23 May
2012, 224-238. https://doi.org/10.1109/SP.2012.24

[7] Christin, N., Egelman, S., Vidas, T. and Grossklags, J. (2011) It’s All about the Ben-
jamins: An Empirical Study on Incentivizing Users to Ignore Security Advice. In-
ternational Conference on Financial Cryptography and Data Security, Gros Islet, 28
February-4 March 2011, 16-30. https://doi.org/10.1007/978-3-642-27576-0_2

[8] Gupta, S., Singhal, A. and Kapoor, A. (2016) A Literature Survey on Social Engi-
neering Attacks: Phishing Attack. 2016 International Conference on Computing,
Communication and Automation (ICCCA), Greater Noida, 29-30 April 2016, 537-540.
https://doi.org/10.1109/CCAA.2016.7813778

[9] Sandhu, R.S., Coyne, E.J., Feinstein, H.L. and Youman, C.E. (1996) Role-Based Access
Control Models. Computer, 29, 38-47. https://doi.org/10.1109/2.485845

[10] Hu, V.C., Kuhn, D.R. and Ferraiolo, D.F. (2015) Attribute-Based Access Control.
Computer, 48, 85-88. https://doi.org/10.1109/MC.2015.33

[11] McCollum, C.J., Messing, J.R. and Notargiacomo, L. (1990) Beyond the Pale of Mac
and Dac-Defining New Forms of Access Control. 1990 IEEE Computer Society Sym-
posium on Research in Security and Privacy, Oakland, 7-9 May 1990, 190-200.
https://doi.org/10.1109/RISP.1990.63850

[12] Shtober, K. (2016) Execmon. https://github.com/kfiros/execmon

[13] Nestorov, A. (2016) Monks. https://github.com/alexandernst/monks

[14] gaffe23 (2016) linux-inject. https://github.com/gaffe23/linux-inject

[15] NetSPI (2013) Function Hooking Part I: Hooking Shared Library Function Calls in
Linux.
https://blog.netspi.com/function-hooking-part-i-hooking-shared-library-function-c
alls-in-linux

[16] Bremer, J. (2012) Intercepting System Calls on x86 64 Windows.
http://jbremer.org/intercepting-system-calls-on-x86_64-windows/

[17] Hooks (2017).
https://msdn.microsoft.com/en-us/library/windows/desktop/ms632589(v=vs.85).as
px

[18] Husse, C. and Stenning, J. (2012) Easyhook.
https://github.com/EasyHook/EasyHook

[19] Batra, R. (2013) Api Monitor. http://www.rohitab.com/apimonitor

https://doi.org/10.4236/jcc.2022.1010003
https://doi.org/10.5120/11480-7108
https://doi.org/10.1109/SP.2012.24
https://doi.org/10.1007/978-3-642-27576-0_2
https://doi.org/10.1109/CCAA.2016.7813778
https://doi.org/10.1109/2.485845
https://doi.org/10.1109/MC.2015.33
https://doi.org/10.1109/RISP.1990.63850
https://github.com/kfiros/execmon
https://github.com/alexandernst/monks
https://github.com/gaffe23/linux-inject
https://blog.netspi.com/function-hooking-part-i-hooking-shared-library-function-calls-in-linux
https://blog.netspi.com/function-hooking-part-i-hooking-shared-library-function-calls-in-linux
http://jbremer.org/intercepting-system-calls-on-x86_64-windows/
https://msdn.microsoft.com/en-us/library/windows/desktop/ms632589(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms632589(v=vs.85).aspx
https://github.com/EasyHook/EasyHook
http://www.rohitab.com/apimonitor

E. Ito, D. P. Li

DOI: 10.4236/jcc.2022.1010003 49 Journal of Computer and Communications

[20] Malik, A. DLL Injection and Hooking.
http://securityxploded.com/dll-injection-and-hooking.php

[21] (2017) File System Watcher Class.
https://msdn.microsoft.com/en-us/library/system.io.filesystemwatcher(v=vs.110).aspx

[22] (2017) File System Watcher Event.
https://msdn.microsoft.com/en-us/library/system.io.filesystemwatcherevents(v=vs.1
10).aspx

[23] (2009) Sysinternals Licensing Faq.
https://technet.microsoft.com/en-us/sysinternals/bb847944

[24] Merzdovnik, G., Falb, K., Schmiedecker, M., Voyiatzis, A.G. and Weippl, E. (2016)
Whom You Gonna Trust? A Longitudinal Study on TLS Notary Services. IFIP An-
nual Conference on Data and Applications Security and Privacy, Trento, 18-21 July
2016, 331-346. https://doi.org/10.1007/978-3-319-41483-6_23

[25] Durumeric, Z., Kasten, J., Adrian, D., Halderman, J.A., Bailey, M., Li, F., Weaver,
N., Amann, J., Beekman, J., Payer, M., et al. (2014) The Matter of Heartbleed. ACM
Proceedings of the 2014 Conference on Internet Measurement, Vancouver, 5-7 No-
vember 2014, 475-488. https://doi.org/10.1145/2663716.2663755

[26] Shezan, F.H., Afroze, S.F. and Iqbal, A. (2017) Vulnerability Detection in Recent
Android Apps: An Empirical Study. 2017 IEEE International Conference on Net-
working, Systems and Security (NSysS), Dhaka, 5-8 January 2017, 55-63.
https://doi.org/10.1109/NSysS.2017.7885802

[27] Liberman, T. (2016) Atom-Bombing: A Code Injection That Bypasses Current Se-
curity Solutions.
http://blog.ensilo.com/atombombing-acode-injection-that-bypasses-current-securit
y-solutions

[28] Baz, M. and Safran, O. (2017) Dridex’s Cold War: Enter Atombombing.
https://securityintelligence.com/dridexs-cold-war-enter-atombombing

[29] Corio, C. and Sayana, D.P. (2008) Security: Application Lockdown with Software
Restriction Policies. https://technet.microsoft.com/en-us/library/2008.06.srp.aspx

[30] Https Interception Weakens TLS Security—Us-Cert.
https://www.us-cert.gov/ncas/alerts/TA17-075A

[31] Motiee, S., Hawkey, K. and Beznosov, K. (2010) Do Windows Users Follow the Prin-
ciple of Least Privilege? Investigating User Account Control Practices. ACM Pro-
ceedings of the Sixth Symposium on Usable Privacy and Security, Redmond, 14-16
July 2010, 1. https://doi.org/10.1145/1837110.1837112

[32] Smalley, S., Vance, C. and Salamon, W. (2001) Implementing Selinux as a Linux
Security Module. NAI Labs Report, 1, 139.

[33] (2017) Mitigate Threats by Using Windows 10 Security Features (Windows 10).
https://technet.microsoft.com/en-us/itpro/windows/keep-secure/overview-of-threat
-mitigations-in-windows-10

[34] (2016) Introducing Windows Defender Application Guard for Microsoft Edge.
https://blogs.windows.com/msedgedev/2016/09/27/application-guard-microsoft-edge

[35] (2017) Windows Defender Advanced Threat Protection (atp).
https://www.microsoft.com/en-us/WindowsForBusiness/Windows-ATP

[36] Clark, J. and van Oorschot, P.C. (2013) Sok: Ssl and https: Revisiting past Chal-
lenges and Evaluating Certificate Trust Model Enhancements. 2013 IEEE Sympo-
sium on Security and Privacy (SP), Berkeley, 19-22 May 2013, 511-525.
https://doi.org/10.1109/SP.2013.41

https://doi.org/10.4236/jcc.2022.1010003
http://securityxploded.com/dll-injection-and-hooking.php
https://msdn.microsoft.com/en-us/library/system.io.filesystemwatcher(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.io.filesystemwatcherevents(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.io.filesystemwatcherevents(v=vs.110).aspx
https://technet.microsoft.com/en-us/sysinternals/bb847944
https://doi.org/10.1007/978-3-319-41483-6_23
https://doi.org/10.1145/2663716.2663755
https://doi.org/10.1109/NSysS.2017.7885802
http://blog.ensilo.com/atombombing-acode-injection-that-bypasses-current-security-solutions
http://blog.ensilo.com/atombombing-acode-injection-that-bypasses-current-security-solutions
https://securityintelligence.com/dridexs-cold-war-enter-atombombing
https://technet.microsoft.com/en-us/library/2008.06.srp.aspx
https://www.us-cert.gov/ncas/alerts/TA17-075A
https://doi.org/10.1145/1837110.1837112
https://technet.microsoft.com/en-us/itpro/windows/keep-secure/overview-of-threat-mitigations-in-windows-10
https://technet.microsoft.com/en-us/itpro/windows/keep-secure/overview-of-threat-mitigations-in-windows-10
https://blogs.windows.com/msedgedev/2016/09/27/application-guard-microsoft-edge
https://www.microsoft.com/en-us/WindowsForBusiness/Windows-ATP
https://doi.org/10.1109/SP.2013.41

	Reduce Malicious Activity in Trusted Programs
	Abstract
	Keywords
	1. Introduction
	2. Background and Related Work
	3. Current Systems
	4. Model Proposal
	4.1. Goal
	4.2. Assumptions
	4.3. Available System Features
	4.4. Model
	4.5. Implementation

	5. Experiment Attempt
	5.1. Linux
	5.2. Windows

	6. Limitations and Issues
	6.1. Limitations
	6.2. Issues

	7. Solution Comparisons
	8. Future Work
	8.1. Linux and Windows Implementation
	8.2. User Interface
	8.3. User Education
	8.4. Internet of Things (IoT)

	9. Conclusion
	Conflicts of Interest
	References

