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Abstract 
A transient delay-coupled network was proposed by modifying the standard 
delay-coupled network with a transient coupling technique to enlarge the 
synchronization domain of the network, where the synchronization domain 
is the interval of the coupling strength for which the network gets synchro-
nized. The coupling of the transient delay-coupled network is activated when 
the systems are in a particular region (coupling region) of the phase space 
and inactivated otherwise, which is different from the standard coupling. The 
specific synchronization performance of the transient delay-coupled network 
was investigated through case studies. The relationships between the syn-
chronization domain and the coupling region were obtained by gauging the 
synchronization index. It is understood that the synchronization domain 
changes in a non-smooth manner with the variation of the coupling region. 
In particular, the synchronization domain of a transient delay-coupled net-
work is much larger than that of the standard delay-coupled network when 
the coupling region is appropriately determined.  
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1. Introduction 

Synchronization is a typical dynamic phenomenon in coupled nonlinear systems 
[1]. Various synchronization methods have been proposed in the literature, in-
cluding phase synchronization, complete synchronization, generalized synchro-
nization, and lag synchronization. The strictest type is the complete synchroni-
zation, in which all the coupled systems undergo the same dynamical behavior 
simultaneously. A remarkable finding is that the coupled chaotic systems can 
achieve complete synchronization [2]. Chaotic synchronization has broad appli-
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cations in various fields, including secure communications, long-term predic-
tions, and pattern recognition [3] [4]. To study the stability of the synchronized 
state, a conditional Lyapunov exponent was introduced [5]. The synchronized 
state is stable if the maximum conditional Lyapunov exponent is negative and 
thus attains complete synchronization. Network topology plays a crucial role in 
synchronization. A universal master stability function was suggested to study the 
effects of the network topology [6]. Based on the master stability function, stu-
dies have indicated that fully coupled networks can achieve synchronization 
with small coupling strengths as long as the network scale is sufficiently large. 
For a network with the nearest-neighbor structure, synchronization perfor-
mance decreases consistently as the network scale increases [7]. The synchroni-
zation performances of the small-world networks are much better than those of 
nearest-neighbor networks [8]. The synchronization performances of the scale-free 
networks increase and saturate when the network scale increases [9]. 

Synchronization of networks with time-varying topologies has drawn consi-
derable attention, as researchers have sought to understand the complex collec-
tive behaviors of real networks with time-varying structures [10] [11]. There are 
potential applications for regulating the synchronization of coupled systems by 
using the switching technique [12] [13]. When the topology of a network 
switches significantly faster than the dynamic time scale of the coupled nodes, 
the network behaves as if the coupling is static and equivalent to the case with 
the time average of the switching connectivity [10] [11]. New collective dynam-
ics can appear if the switching frequency is comparable to the time scale of indi-
vidual nodes [12] [14]. An intriguing finding is that the switching structure can 
be beneficial for synchronization of the network [10] [15]. The synchronization 
domain can be enlarged with on-off coupling, and the synchronization can be 
attained much faster than that with the static coupling [12]. The synchronization 
of two coupled Rössler systems is possible when the coupling switches periodi-
cally between two values, even if each value of the coupling is not suitable for 
synchronization [13].  

The transient coupling is one of the simple types of switching structures pro-
posed to enhance the synchronization of driving-driven systems [16]. The 
coupling is activated only when the system is in a particular region (coupling re-
gion) of the state space and is inactivated otherwise. Studies have indicated that 
the synchronization performance with transient coupling can be better than that 
with standard coupling when the coupling region is properly chosen [17]. A 
transient coupling scheme was also used to attain synchronization of a network 
that was nonsynchronizable with static coupling [18]. The distributions of the 
eigenvalues of the local Jacobian and the local conditional Lyapunov exponents 
were also analyzed to understand the effects of transient coupling on the syn-
chronization [17] [19]. It was concluded that transient coupling modifies the 
collective dynamics of coupled systems in a strongly nonlinear way.  

Connection delays are generally incorporated into coupled systems, particu-
larly in large-scale networks and long-distance secure communication networks. 
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Long connection delays result from finite information transmission as well as 
processing speeds [20] [21] [22]. Networks with connection delays are described 
by time-delayed systems with infinite-dimensional state spaces. The evolution of 
time-delayed systems depends on both present and past states. Studies have 
demonstrated that the synchronization features of delay-coupled systems are 
substantially different from those of coupled systems without connection delays 
[20] [23]. For the coupled oscillators without connection delays, amplitude death 
can occur only when their frequency is disparate. However, amplitude death re-
sults from connection delays even if those oscillators have the same frequency 
[24]. The consequences of connection delays on various cluster states in de-
lay-coupled oscillators with nearest-neighbor structures were studied previously 
[25], and it was shown that the mean frequency decreased with the increase of 
the connection delay. The coupling with connection delays is invasive, and the 
coupling force still acts on the synchronized system when the synchronization is 
attained. Thus, the time delay is included in the synchronized system that de-
scribes the dynamics of the synchronized state, which will deteriorate the syn-
chronization performance frequently [26], destabilize the synchronized state 
[27], change the dynamics of the synchronized system, and lead to complex 
synchronous dynamics [23], resulting in various synchronization transitions 
[28].  

It is fundamentally necessary to enhance the synchronization performance of 
delay-coupled networks with applicable methods. To the best of the author’s 
knowledge, transient delay-coupling has not been introduced into delay-coupled 
networks, and the effects of the transient delay-coupling on the synchronization 
of delay-coupled networks have not been investigated. Inspired by this, the tran-
sient delay-coupling is introduced into the delay-coupled network to enhance 
the synchronization performance in this paper, which leads to the transient de-
lay-coupled network. Its specific synchronization features are studied through 
case studies. The rest of the article is organized as follows: In Section 2, transient 
delay-coupling is introduced into the delay-coupled network. In Section 3, the 
specific synchronization performances of the transient delay-coupled network 
are studied. In the last section, conclusions are drawn from the above investiga-
tion. 

2. Problem Statement and the Construction of Transient  
Delay-Coupled Network 

A fully coupled network with n identical nodes and a connection delay is de-
scribed by 

( ) ( ) ( )( )
1, 1

, 1, 2, , ,
1

n

i i ii i j
j j

gX F X a H X H X t i n
n

τ
= ≠

 
= + ⋅ + − = −  

∑� �     (1) 

where ( )i iX F X=�  describes the dynamics of the ith node,  
( )T

1 2, , , m
i i i imX x x x R= ∈�  is a vector of the state variables,  
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( ) ( ) ( ) ( )( )T
1 2, , , m

mF f f f R⋅ = ⋅ ⋅ ⋅ ∈�  is a vector of nonlinear functions, g is the 
total coupling strength of each node, τ  represents the connection delay,  

( ) ( ) ( ) ( )( )T
1 2, , , m

mH h h h R⋅ = ⋅ ⋅ ⋅ ∈�  is the vector of inner coupling functions, 
and ( ), 1, 2, ,ija i j n= �  are the coupling coefficients with ( )1ija i j= ≠  and  

1,

n

ij ij
j j i

a a
= ≠

= − ∑ . 

In the complete synchronization manifold, the dynamics of the synchronized 
state 1 2 nX X X X= = = =�  is determined by 

( ) ( ) ( )( )X F X g H x H xτ= + − −� .               (2) 

For a fully coupled network, all the perturbed equations on the transverse di-
rections are the same, described by the master stability function [29] [30] 

( )1
1

DF g DH DH t
n τη η η η τ = − + − − 

� ,             (3) 

where η  represents the deviation in the transverse directions of the synchroni-
zation manifold, DF is the Jacobian matrix of ( )F ⋅ , evaluated on the synchro-
nized state ( )X t , and DH and DHτ  are the Jacobian matrix of ( )H ⋅  eva-
luated at the synchronized state ( )X t  and delayed state ( )X t τ− , respective-
ly. The synchronization manifold is stable, and synchronization is attained when 
the maximum conditional Lyapunov exponent determined by the master stabil-
ity function (3) is negative [29] [30]. 

The evolution of the master stability function (3) depends on both the present 
and past states [31]. The initial state is the function ( ) ( )

0 0t tη θ η θ= + , defined 
in the Banach space [ ]( ),0 , mC C Rτ= − , where 0t  is the initial time, and 

[ ],0θ τ∈ − . The maximum conditional Lyapunov exponent is defined as  

( )
( )

0
0

max
t

Ct
m

η θ
ηλ λ θ

∈

=  while 

( )
( )
( )

0

0
0

1lim ln
t

t t C

t
t C

tη

η θ
λ θ

η θ
+

→∞

 
 = ⋅
 
 

,                 (4) 

where ( )
[ ]

( )
,0

2
max

T
C L

θ

φ θ φ θ
∈ −

=  is the norm of the function ( )φ θ  defined in 

Banach space C, and 
2L⋅  denotes the Euclidean norm defined in mR . 

Let ( )0 0,1, ,it t ih i= + = +∞�  denote the time series with the step size h, the 
conditional Lyapunov exponent ( )

0tη
λ θ  is then described as 

( )
( )
( )

( )
( )

( )
( )

0
0 1

1

1

1 1

1 1lim ln lim ln

1 1lim ln lim

i k

t

k

k

k

it tC C

i i kt tC C

i it C
ki ik kt C

ih ih

l
ih ih

η

η θ η θ
λ θ

η θ η θ

η θ

η θ

−

−

→∞ →∞ =

→∞ →∞= =

   
   = ⋅ = ⋅
   
   

 
 = =
 
 

∏

∑ ∑

 

( )
( )

1

ln k

k

t C
k

t C

l
η θ

η θ
−

 
 =
 
 

 is regarded as the local conditional Lyapunov exponent  
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corresponding to the point ( )kX t  of the synchronized state [32]. 0kl <  (or 
0kl > ) suggests that the point ( )kX t  is locally stable (or unstable). Thus, the 

local stability of the point ( )kX t  of the synchronized state depends on its posi-
tion in the phase space [33]. The conditional Lyapunov exponent ( )

0tη
λ θ  will 

decrease when the local conditional Lyapunov exponents kl  diminish overall. 
Thus, the coupling should be activated when the coupled system is in the region 
(coupling region) of the phase space where the local conditional Lyapunov ex-
ponents are diminished by the coupling and deactivated otherwise, leading to 
the transient delay-coupled network. 

The coupling without a connection delay is not invasive, while the coupling 
force vanishes when synchronization is attained. However, coupling with a con-
nection delay is invasive, and the coupling force is still acting on the synchro-
nized system when the synchronization is achieved. For delay-coupled systems, 
the conditions for complete synchronization are strict. One of the conditions is 
that all the coupled nodes have the same input degree. Thus, the transient 
coupling scheme proposed for coupled systems without connection delays [16] 
cannot be applied directly to delay-coupled systems.  

In this article, the transient delay-coupling is introduced into the network 
given by Equation (1) by letting 

( )
( ) and

0 and
i iij i js

ij i j
i i

a X X
a

X X
≠

≠

∈Ω ∈Ω= 
∉Ω ∉Ω

,             (5) 

where mRΩ ⊆  is the coupling region. Equation (1) becomes 

( ) ( ) ( )( )
1,

, 1, 2, ,
1

n
s s

i i ii i ij j
j j i

gX F X a H X a H X t i n
n

τ
= ≠

 
= + ⋅ + − = −  

∑� �   (6) 

where, 
1,

n
s s
ii ij

j j i
a a

= ≠

= − ∑ . The ith node will cut off all the connections with other  

nodes when iX ∉Ω , and all the other coupled nodes still have the same input 
degree. When mRΩ = , the transient delay-coupling in Equation (5) degrades 
into static delay-coupling with as s

ii ija a= . 
The synchronization performance of the network given by Equation (6) is 

closely associated with the coupling region Ω . It is challenging to determine the 
proper coupling regions analytically such that the network can get synchroniza-
tion in a large synchronization domain because of the strong nonlinear rela-
tionship between the synchronization and the coupling regions [16] [17]. In the 
present work, the relationship between the synchronization domain of the net-
work, given by Equation (6), and the coupling regions is first obtained by calcu-
lating the synchronization index, and the coupling region is determined such 
that the synchronization is achieved in a large synchronization domain. The ef-
fects of the transient delay-coupling were investigated by comparing the syn-
chronization performance of the network given by Equation (6) with transient 
delay-coupling to that of the network expressed by Equation (1) with static de-
lay-coupling, where the synchronization performance of one network is consi-
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dered to be better when the synchronization domain is larger [29] [34]. 

3. Synchronization of the Transient Delay-Coupled Network 

This section examines the specific synchronization features of the transient de-
lay-coupled networks through case studies. To show the advantage of the tran-
sient delay-coupling over the standard delay-coupling, we compare the synchro-
nization performance of the transient delay-coupled network and that of the 
standard delay-coupled network. 

Case 1: A fully delay-coupled network with nodes of the Hindmarsh-Rose 
(HR) neuron coupled via the x component only is considered, as follows: 

( )( )

( )

3 2

1,

2

0

1

n
s

i i i i i ij j i
j j i

i i i

i i i

gx y ax bx z I a x t x
n

y c dx y

z r s x x z

τ
= ≠

 = − + − + + ⋅ − − −
 = − −
  = + − 

∑�

�

�

       (7) 

where ix , iy  and iz  are the state variables of the ith node, representing the 
membrane potential, exchange of ions across the neuron membrane, and a 
slowly changing adaptation current, respectively; I is the membrane input cur-
rent for biological neurons, r is usually a small parameter related to the slow va-
riable iz , and 0x  represents the resting potential of the system [35].  

The HR system is the minimal model that can reproduce several electrical fir-
ing activities observed in real biological neuron activities. HR neuron networks 
have been studied intensively to understand the collective dynamics of real 
neural networks [30] [36]. In the following analysis, the system parameters were 
fixed to be 1a = , 3b = , 1c = , 5d = , 4s = , 0 1.6x = − , 0.004r =  and 

3.25I =  such that the single neuron produces bursting oscillations. 
The collective dynamics are evaluated by the synchronization index defined as 

( ) ( ) ( )
11

1 2
1

1
n

dex i i L
i

S n X t X t
−

−
+

=

= − −∑ .              (8) 

where, ( ) ( ) ( ) ( )( )T
, ,i i i iX t x t y t z t=  is the vector of state variables of ith node, 

⋅  represents the average over a sufficiently long time after the transient 
process. Smaller synchronization index dexS  corresponds to better collective 
dynamics, and 0dexS =  indicates complete synchronization.  

As the synchronization performance of the transient delay-coupled network 
(7) is closely related to the coupling region Ω , a proper coupling region Ω  
should first be established. There are different ways to change the coupling sig-
nal with different types of coupling regions. For the sake of simplifying the 
study, consider one of the simplest types of coupling regions: 

( ){ }, ,
lS lx y z x SΩ = ≤ .                     (9) 

As shown in Figure 1, the coupling region 
lSΩ  is determined by the 

switching line lS . The control signal is only activated when lx S≤ . Since the 
switching line lS  is only related to the available variable x, it is convenient to 
realize the transient delay-coupling by detecting the available variable x online. 
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Figure 1. The bursting oscillation of HR neuron projected on ( ),x z -plane, and the 

coupling region 
lSΩ  (gray region), determined by the switching line lS . 

 
Without loss of generality, the synchronization performances of the network 

provided by Equation (7) with network scale 10n =  and different connection 
delays τ  were studied for [ ]0,1.5g ∈ . The synchronization domain is the in-
terval of the coupling strength g for which the network gets synchronized. The 
relationships between the synchronization domain and the coupling region ( lS ) 
are obtained in Figure 2, which shows the synchronization domain changes in a 
non-smooth manner with the variation of the controlling region.  

To demonstrate the advantage of the transient delay-coupling over the stan-
dard delay-coupling, comparisons between the control performance of the tran-
sient delay-coupled network with a proper controlling region 

lSΩ  and that of 
the standard delay-coupled network are given in Figure 3. It is shown the syn-
chronization domain of the transient delay-coupled network is much larger than 
that of the standard delay-coupled network when the controlling region is ap-
propriately determined. This result is confirmed by the time series in Figure 4. 

Case 2: The transient delay-coupled Rössler systems connected linearly via 
the x component only is considered, as follows: 

( ) ( )( )

( )

1,1

n
s

i i i ij j i
j j i

i i i

i i i

gx y z a x t x
n

y x ay
z b z x c

τ
= ≠

 = − + + ⋅ − − −
 = +
 = + −

∑�

�

�

            (10) 

The dynamics of coupled Rössler systems have been studied intensively to 
understand the collective phenomena of coupled chaotic systems [5] [13]. Here, 
the transient delay-coupling is introduced into the network, and the impacts of 
the transient delay-coupling on the synchronization performance are examined. 
In the subsequent analysis, the system parameters are fixed at 0.2a = , 0.2b = , 
and 5.7c = , for which the single Rössler system exhibits chaotic dynamics. 

The collective dynamics of the transient delay-coupled network given by Equ-
ation (10) are again evaluated by the synchronization index defined in Equation 
(8), and the simplest type of coupling region 

lSΩ  described in Equation (9) is 
used to construct the transient delay-coupling in the network. The synchroniza-
tion performances of the network with network scale 10n =  and different  
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Figure 2. The relationships between the synchronization domain of network 7) and the 
switching line lS , where the value of the synchronization index dexS  is indicated by the 
color, with a saturation value of 0.005, and the synchronization domain is the interval of g 
where 0dexS = . Left: Network scale 10n =  and connection delay 0.2τ = . Right: Net-
work scale 10n =  and connection delay 1τ = . 
 

 

Figure 3. Comparisons between the synchronization performance of the transient de-
lay-coupled network and that of the standard delay-coupled network, the blue solid lines, 
and red dash lines indicate the synchronization indexes corresponding to transient de-
lay-coupling and standard delay-coupling, respectively. Left: The transient delay-coupled 
network with a controlling region 

lSΩ  ( 0.3lS = ). Right: The transient delay-coupled 

network with a controlling region 
lSΩ  ( 0.4lS = ). 

 

 

Figure 4. Collective dynamics of network (7) with scale 10n =  and different system pa-
rameters. Left: Asynchronization with standard delay-coupling ( mRΩ = ). Right: Syn-
chronization with transient delay-coupling (

lSΩ = Ω ). 
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connection delays τ  are examined for [ ]0,10g ∈ . The relationships between 
the synchronization domain and the controlling region are obtained in Figure 5, 
which indicates the synchronization domain varies in a non-smooth manner 
with the variation of the controlling region. 

To instantiate the advantage of the transient delay-coupling over the standard 
delay-coupling, comparisons between the control performance of the transient 
delay-coupled network with a proper controlling region 

lSΩ  and that of the 
standard delay-coupled network are given in Figure 6. It is shown the synchro-
nization domain of the transient delay-coupled network is larger than that of the 
standard delay-coupled network when the controlling region is appropriately 
determined. This outcome is confirmed by the time series in Figure 7. 

Summarizing the conclusions obtained from the above case studies, the syn-
chronization performance of the transient delay-coupled network is closely re-
lated to the coupling region. The synchronization domain changes in a non-smooth 
fashion with the variation of the controlling region. In particular, the transient 
delay-coupling proposed in this paper is beneficial to the synchronization per-
formance of the delay-coupled network; the synchronization domain of the 
transient delay-coupled network is much larger than that of the standard de-
lay-coupled network when the coupling region is appropriately determined. 
 

 

Figure 5. The relationships between the synchronization domain of network (10) and the 
switching line lS , where the value of the synchronization index dexS  is indicated by a 
color, with a saturation value of 0.005, and the synchronization domain is the interval of g 
where 0dexS = . Left: Network scale 10n =  and connection delay 0.1τ = . Right: Net-
work scale 10n =  and connection delay 0.5τ = . 
 

 

Figure 6. Comparisons between the synchronization performance of the transient de-
lay-coupled network and that of the standard delay-coupled network, the blue solid lines, 
and red dash lines indicate the synchronization indexes corresponding to transient de-
lay-coupling and standard delay-coupling, respectively. Left: The transient delay-coupled 
network with a controlling region 

lSΩ  ( 3.6lS = ). Right: The transient delay-coupled 

network with a controlling region 
lSΩ  ( 2.6lS = − ). 
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Figure 7. Collective dynamics of network (10) with scale 10n =  and different system 
parameters. Left: Asynchronization with standard delay-coupling ( mRΩ = ). Right: Syn-
chronization with transient delay-coupling (

lSΩ = Ω ). 

4. Conclusion 

Delay-coupling is invasive as the delay-coupling force still acts on the synchro-
nized system when the synchronization is achieved. The connection delay desta-
bilized the synchronization manifold frequently and deteriorated the synchroni-
zation performance of the delay-coupled network. It is of fundamental impor-
tance to improve the synchronization performance of the delay-coupled net-
work. The transient delay-coupled network was proposed, for the first time, by 
applying the transient coupling technique to the standard delay-coupled net-
work. Case studies have indicated that the synchronization performance of the 
delay-coupled network is much better than that of the standard delay-coupled 
network when the coupling region is appropriately chosen. From the practical 
application point of view in engineering, the transient delay-coupled network 
has some advantages over the standard delay-coupled network. For example, in 
some real networks, the coupling strength is restricted to a particular limited 
domain of the parameter space. In this case, the synchronization domain of the 
transient delay-coupled network can be changed and enlarged to make the 
coupling strength fall within the synchronization domain by choosing an ap-
propriate coupling region, and thus, the synchronization is attained. Different 
than the continuous coupling force of the standard delay-coupled network, the 
coupling force of the transient delay-coupled network is only activated in the 
coupling region. Consequently, the transient delay-coupled network is low-cost 
and conserves energy, especially when the coupling region is small. Besides, the 
results obtained in the present paper can help to understand the synchronization 
of real delay-coupled networks with time-varying structures. 
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