
Journal of Computer and Communications, 2021, 9, 103-120
https://www.scirp.org/journal/jcc

ISSN Online: 2327-5227
ISSN Print: 2327-5219

DOI: 10.4236/jcc.2021.98007 Aug. 31, 2021 103 Journal of Computer and Communications

AudiTEE: Efficient, General-Purpose and
Privacy-Preserving Audit for Distributed
Ledgers

Zhufeng Ye, Zhenghao Wu, Xianglan Tian

College of Cyber Security, Jinan University, Guangzhou, China

Abstract
Privacy-preservation and effective auditing are two desirable but challenging
requirements on distributed ledgers. To meet the requirements, this paper
presents an auditing scheme, called as AudiTEE, which can audit a distri-
buted ledger in a generic, efficient, and privacy-preserving manner. AudiTEE
leverages Trusted Execution Environment (TEE) to generate confidential but
auditable transactions and realize arbitrary, efficient and confidential audit on
them. Unfortunately, TEE suffers from some inherent barriers and is itself
not a complete solution for fast audit. To tackle these challenges, AudiTEE
takes advantage of KAMT (K-anonymity Authentication Based on Merkle
Tree) protocol for efficient management on account and user-defined ano-
nymous transactions. Further, to achieve a complete and fast audit with un-
linkability, TEE doesn’t process through all but only a comparatively small
part of transactions according to a special ktag attached on each transaction
to ensure that a user cannot hide transactions from auditor even when audi-
tor is blind with who is involved in each transaction on the ledger. Apart
from the above, AudiTEE allows flexible control on user behaviors. We im-
plement a concrete instance of AudiTEE under a bank setting and demon-
strate the scalability with all its core functionalities.

Keywords
Distributed Ledgers, Trusted Execution Environments, Auditing,
Privacy-Preservation, Authentication

1. Introduction

A distributed ledger [1] [2] is a general distributed database that exists across

How to cite this paper: Ye, Z.F., Wu, Z.H.
and Tian, X.L. (2021) AudiTEE: Efficient,
General-Purpose and Privacy-Preserving
Audit for Distributed Ledgers. Journal of
Computer and Communications, 9, 103-120.
https://doi.org/10.4236/jcc.2021.98007

Received: July 30, 2021
Accepted: August 28, 2021
Published: August 31, 2021

Copyright © 2021 by author(s) and
ScientificResearch Publishing Inc.
This work is licensed under the
CreativeCommons Attribution
International
License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

Open Access

https://www.scirp.org/journal/jcc
https://doi.org/10.4236/jcc.2021.98007
https://www.scirp.org/
https://doi.org/10.4236/jcc.2021.98007
http://creativecommons.org/licenses/by/4.0/

Z. F. Ye et al.

DOI: 10.4236/jcc.2021.98007 104 Journal of Computer and Communications

several locations or among multiple participants. As a result, it is decentralized
to mitigate the need for a central authority or intermediary to process, validate
or authenticate transactions. Its records are stored one after the other in a con-
tinuous ledger, but they can only be added when the participants reach some
consensus.

Audit [3] [4] plays an indispensable role in deterring ledger malpractice from
time to time1. In the financial sector, for example, auditors verify the correctness
of the company statement with transaction records from banks [5]. In Septem-
ber 2020, the transaction regulators confirmed Luckin’s falsification of financial
and operational figures [6], removed Luckin from NASDAQ list. Audit is also
required in many sectors such as government and charity organization [7] [8].

Due to their promising immutable data and public verifiability merits demon-
strated in the auditing process, distributed ledgers have become a brand new
sword in the practice of audit by pioneers such as the “Big Four” (Deloitte, PwC,
EY and KPMG) [9]. In the schemes of the auditing process of distributed ledger,
each ledger user is assigned with a unique ID, and can go to service providers,
such as banks or brokers, to open its service account. Service providers will then
perform operations (e.g., payment or exchanging) according to the request of a
valid account. A regulator can impose account-based policy on user and an au-
ditor can audit the service records to hold any misbehaved individual to account.

Although the auditing on distributed ledgers brings many advantages, it trig-
gers concerns on several issues. 1) Privacy leakage: As auditing could be ex-
tremely challenging when an auditor is blind with which transactions belong to a
user, the auditor is usually authorized to know all the transactions of the user,
i.e., the auditor requires to know the linkability of transactions [10] [11] [12]
[13]. This requirement significantly threatens user’s privacy on transaction time
and payment frequency. Even worse, auditors may need excessive power to de-
crypt confidential transactions sometimes [10] [11] [12]. 2) Limited functionali-
ties: To preserve the privacy of transactions, zero-knowledge proof is usually
adopted to realize confidential audit in the schemes [13] [14] [15] [16]. Howev-
er, the schemes can merely conform to some specific tasks, such as payment li-
mitation and correct taxation. 3) Inefficiency: An audit based on zero-knowledge
proof usually costs much time for the cooperation between the auditor and the
user. Besides, zkLedger [16] enables a single audit to involve all irrelevant trans-
actions in a time period for preserving unlinkability. Thus, they are impractical
for large-scale audit on massive transactions and users.

Trusted Execution Environment (TEE) can enhance the confidentiality and
integrity of computations [17]-[22]. Particularly, hybridized TEE-blockchain
systems demonstrate the potential of TEE in the distributed ledger. For example,
Proof of Luck [23] leverages TEE’s random number generator to mimic the

1Originally defined in finance as independent examination of financial information of any entity, the
concept of audit has now expanded to encompass so many areas in the public and corporate sector.
It generally refers to inspection or examination, of a process or quality system, to ensure compliance
to requirements.

https://doi.org/10.4236/jcc.2021.98007

Z. F. Ye et al.

DOI: 10.4236/jcc.2021.98007 105 Journal of Computer and Communications

original Proof of Work consensus in a low-latency, egalitarian and energy-saving
way. Teechain [24] seeks to deal with the scalability of the notable Bitcoin block-
chain [25] under the aegis of TEE. Notwithstanding, they don’t focus on auditabil-
ity. [26] provides a TEE-based method for efficient and privacy-protected policy
compliance on distributed ledger. However, audit merely takes place in transac-
tion verification. Regretfully, TEE-based authentication suffers from inherent
obstacles: 1) TEE is generally constrained in trusted memory. For example, Intel
SGX only has a trusted memory of 128 MB. Therefore, all accounts information
cannot be put into the enclave for anonymous user authentication. 2) TEE in
general lacks trusted time source. It cannot reliably determine the state of a user
is fresh or stale. This can be misused by a malicious user to create transactions
with invalid account. 3) Trusted memory usually has worse performance than
untrusted memory [27] [28], thus slowing down the authentication process.

With regard to auditing, arbitrary audit function can be performed in plain-
text speedily and the plaintext is only known to the enclave itself. However, TEE
itself is not an efficient solution for unlinkable audit. When an auditor cannot
determine who is involved in a transaction, a complete2 audit has to be per-
formed with all transactions in a time period as a price to ensure no transaction
belonging to its auditee is left out. The exclusion of unrelated transactions will
happen in the enclave to render a correct audit result. This is, nonetheless, high-
ly impractical towards large scale audit.

The present scheme AudiTEE aims to provide efficient and privacy-preserving
auditing on distributed ledgers. Specifically, it first creates an intermediary-
based ledger, e.g., bank-intermediated ledger in the financial community [12]
[29] [30], which enables a set of intermediary parties, namely, service providers,
to post transactions of their users on the distributed ledger. Secondly, it employs
an effective authentication component based on Trusted Execution Environ-
ment (TEE) which makes sure service providers only serve authorized users in a
privacy-preserving way. Thirdly, auditable but confidential transactions and ef-
ficient, general-purpose and privacy-preserving audit are performed inside TEE
to ensure confidentiality.

AudiTEE adopts KAMT (K-anonymity Authentication Based on Merkle Tree)
protocol as a key component to enable TEE in efficient and anonymous user
authentication and high-speed privacy-concealed audit: 1) To engage in user
authentication, TEE simply stores a single short hash string rather than all ac-
counts information. This short string helps TEE to identify that an account is
currently valid. Meanwhile, the anonymous authentication for a user only relies
on the verification of Merkle path, which is much faster than signature-based
method. 2) Our special ktag produced allows any complete audit to be per-
formed without the loss of unlinkability while much more practical and efficient
than processing through all transactions, like zkLedger [16], as only a compara-
tively small part of transactions on the ledger needs to get involved. This prop-

2A complete audit involves all transactions of a user in a specific time period.

https://doi.org/10.4236/jcc.2021.98007

Z. F. Ye et al.

DOI: 10.4236/jcc.2021.98007 106 Journal of Computer and Communications

erty guarantees user privacy on when a transaction occurs or the frequency of
transaction while no relative transaction will be left out for an audit. Meanwhile,
an audit can be performed immediately when permitted by a trusted authority
and does not involve the cooperation with the auditee. Thus, supported by
KAMT protocol, AudiTEE realizes complicated, confidential but fast audit
compared to others.

Our contributions can be summarized as follows:
• AudiTEE framework. We propose AudiTEE to support efficient, gener-

al-purpose and privacy-preserving audit on confidential distributed ledger.
• KAMT protocol. We introduce this special building block to provide TEE-

empowered solution for efficient identity management, user-defined ano-
nymous authentication and enable fast and complete audit for AudiTEE.

• Implementation and Experiments. We have an instantiation of AudiTEE
under bank setting and demonstrate its gratifying performance.

Outline of this work. The rest of this paper proceeds as follows. In Section 2,
we propose AudiTEE scheme including the system model, security model and
modules. In Section 3, we discuss the performance of AudiTEE. We instantiate
AudiTEE under a banking scenario to examine its performance in Section 4. The
paper is concluded in Section 5.

2. The Proposed Auditing Scheme

AudiTEE provides efficient, general-purpose and privacy-preserving audit by
integrating TEE-enabled hosts into distributed ledgers. It can achieve the fol-
lowing goals: 1) Privacy-preservation. The transactions of users are confidential
and unlinkable. 2) Correctness: Only valid transactions can be produced. 3)
Completeness: An audit cannot perform at the price of linkability although all
relative transactions are checked. The notations are listed in Table 1.

Table 1. Notations.

Variable Definition

Merkle Verify (proof,
v, MR)

Function to verify whether proof is the existential proof of leaf v with Merkle
root MR.

ktagVerify (proof,
ktag)

Function to verify whether ktag conforms to existential proof.

(epk, esk) Key pair for encryption use.

(spk, ssk) Key pair for signing use.

K Symmetric key K.

signssk (m) To sign message m with ssk.

encepk (m) To encrypt message m with epk.

encK (m) To encrypt message m with K.

rand (λ) To generate a randomness of length λ.

H (m) Collision-resistant hash function with
input m.

https://doi.org/10.4236/jcc.2021.98007

Z. F. Ye et al.

DOI: 10.4236/jcc.2021.98007 107 Journal of Computer and Communications

2.1. System Model
As shown in Figure 1, AudiTEE consists of four parties: regulator, service pro-
viders, users and auditors:

Regulator R is the party to supervise the distributed ledger. It is in charge of 1)
managing accounts for users and service providers; 2) enforcing policy on user
behaviors; 3) judging the lawfulness of an auditing request from an auditor; and
4) helping the authorized auditor to get the result.

TEE-empowered Service Provider Pi enrolls a user and receives his service re-
quests through TEE, verifies the requests, and forms confidential and authenti-
cated transactions inside a TEE.

User U is at least enrolled by one Pi. He performs actions on the ledger
through the TEEs of service providers as an intermediary and follows certain
policy. His behaviors or transactions can be audited by an auditor under the
permission of R.

Auditor A is to inspect the transactions of users. Under the authorization of R,
an auditing process takes place in the TEE of some Pi.

AudiTEE consists of 3 phases. In phase I, each user U registers with some
provider Pi for an account under the confirmation of the regulator R. In phase II,
user U anonymously authenticates himself to the TEE of Pi with KAMT protocol
and then posts confidential transactions on the distributed ledger. In phase III,
auditor A sends the auditing request to R. As long as the auditing request is ap-
proved, auditor A will carry on auditing process on U’s transactions inside the
TEE of some Pi.

Figure 1. AudiTEE system model. Authentication and audit are performed inside the
TEEs of service providers.

https://doi.org/10.4236/jcc.2021.98007

Z. F. Ye et al.

DOI: 10.4236/jcc.2021.98007 108 Journal of Computer and Communications

2.2. Security Model

We now elaborate on assumptions of AudiTEE:
Regulator is semi-honest. It honestly follows the AudiTEE protocols and

doesn’t misuse the power of audit, but is curious about who is making a transac-
tion.

Service Provider is considered to be dishonest if it: 1) helps malicious users to
misbehave; 2) breaks the privacy of transactions.

User is assumed to be untrustworthy if he behaves in the following ways: 1)
lies about his transactions during auditing; 2) makes a transaction against policy;
3) makes a transaction from an invalid account.

Auditor is semi-honest. She follows the AudiTEE protocols but is curious
about user privacy during auditing.

AudiTEE doesn’t protect against an adversary who performs network traffic
analysis. For example, if U sends a message to the TEE of Pi, it’s reasonable to
assume that a new transaction involves U.

2.3. AudiTEE Protocol

According to Figure 1, AudiTEE comprises of three modules, 1) initialization
(phase I): initializes Merkle tree for user information; 2) authenticated transac-
tion generation (phase II): generates the transaction and 3) privacy-preserving
auditing (phase III): performs auditing process.

Initialization (Phase I). In the beginning, user U registers with some provider
Pi under the confirmation of R as shown in Figure 2. Specifically, user U pro-
duces his asymmetric key pair (epkU, eskU), and requests for registration to some
provider Pi. Afterwards, Pi signs epkU and a timestamp ts with its signing key
sskPi as σPi. U sends a tuple < spkPi, epkU, 𝑡𝑡𝑠𝑠, σPi > to R for confirmation.

R defines a user policy usrSpecif on user U, and forms user information info =
H (epkU, usrSpecif, r), where r is a nonce, and H (·) is a one-way hash function.
info will be included into a publicly accessible Merkle tree maintained by the
regulator R as Figure 3. R then returns to the user U a tuple < epkU, usrSpecif, r,
index>, where index is the position of leaf node for info. The Merkle tree will be
re-produced by the regulator when there are some events including user join,
user leave or info update.

Authenticated transaction generation (Phase II). To post a verifiable transac-
tion on the distributed ledger, U needs to authenticate himself through TEE in
an anonymous and efficient manner using KAMT protocol.

Figure 2. Registration process.

https://doi.org/10.4236/jcc.2021.98007

Z. F. Ye et al.

DOI: 10.4236/jcc.2021.98007 109 Journal of Computer and Communications

Figure 3. Identity management with Merkle tree. Any leaf node is a value info for a user
or 0, and any non-leaf node is vy = H (vy0||vy1) for two children nodes vy0 and vy1.

Due to the Merkle tree update, U needs to fetch the latest proof of his identity.

Furthermore, in order to hide his identity in the retrieval, rather than asking for
a specific proof, this can be done by blinding part of the original proof with
self-defined 2𝑚𝑚 leaves under a specific node amid the path from info to the root.
Technically, we call the index of this specific node ktag, the subroot index of a
subtree. For example, supposing 𝑑𝑑 = 10 (the tree is with 29 leaves) and m = 6, the
retrieval of the Merkle proof of v011101011 (a specific info) includes all v011x4...x9,
where xi ∈ {0, 1} and |011x4...x9| = 9, and (v010, v00, v1). User can choose a desir-
able 2𝑚𝑚 including enough non-empty info and easily recover its complete proof
(v011101011, v011101010, v01110100, v0111011, v011100, v01111, v0110, v010, v00, v1). The ktag for U is
011, indicating U is some user under v011. The design of KAMT protocol ensures
ktag is bound with an existential proof and cannot be forged.

Pi runs a TEE program which receives the Merkle tree root MR. Meanwhile, U
sends the tuple < epkU, usrSpecif, r, proof > to TEE. By checking the recovered
root value and retrieved root value MR, TEE determines whether the user is ge-
nuine or not.

Now we integrate KAMT protocol to the generation of authenticated transac-
tion. We illustrate the whole process in Figure 4. Any genuine user U authenti-
cated sends request txReq to TEEPi, where txReq including a pack of data that’s
required for service-specific logic, such as epk for cp, ktag and other ser-
vice-dependent data. For the validated request, TEEPi will forms an authenti-
cated transaction TX as described in Algorithm 1 in Figure 5. Table 2 is the au-
thenticated transaction, where cp refers to secret information and ktag denotes
an anonymous participant inside a group of accounts. For simplicity, cp is en-
crypted under one epk and there is only one ktag for a single anonymous user in
a transaction. The transaction TX is broadcast to the distributed ledger network
for further validation such as double-spending checking.

Privacy-preserving audit (Phase III).For any user in the distributed ledger,
AudiTEE can perform efficient, general-purpose and confidential auditing and
will not leak any extra information.

Algorithm 2 in Figure 6 illustrates the auditing process. Auditor A first sends
a specific audit request on the user U to the regulator R, which is presented as
code AudProg. If the request is legal, R informs the auditor A all the leaves be-
longing to U. Then A posits the transactions’ ca, a set of ca with ktag involving

https://doi.org/10.4236/jcc.2021.98007

Z. F. Ye et al.

DOI: 10.4236/jcc.2021.98007 110 Journal of Computer and Communications

Figure 4. Generation of authenticated transaction.

Figure 5. Algorithm 1 for TEE verification.

Table 2. Transaction in AudiTEE.

TX = (ca, cp, pub, ktag, σTEE)

ca Auditable contents encrypted under the symmetric key K of R.

cp Secret information for specific user.

pub Publicly accessible information.

ktag Tag to indicate anonymity set of accounts.

σTEE Proof of the correct formation of a transaction in TEE.

leaves of U (U is under a subtree with subroot index of ktag). All ca will be sent
into the TEE of Pi and decrypted with K. The plaintext of ca should generally in-
clude the participant for TEE to exclude any transaction irrelevant to U. TEE

https://doi.org/10.4236/jcc.2021.98007

Z. F. Ye et al.

DOI: 10.4236/jcc.2021.98007 111 Journal of Computer and Communications

Figure 6. Algorithm 2 for TEE audit.

performs the operation defined in AudProg only on transactions of U. After the
process in TEE, A checks σTEE to ensure the integrity of ca and the belonging of
result by H (epkA, ca) and decrypts encepkA (result) for the result.

3. Performance Analysis of AudiTEE
3.1. Trade-off in Anonymity

Although AudiTEE ensures user anonymity flexibly, side effect needs to be taken
into consideration. Firstly, a transaction with higher anonymity will suffer from
extra transaction delay due to network communication and recovery of Merkle
proof. Meanwhile, stronger anonymity asks for more disk space to store the re-
trieved data before recovering the complete Merkle proof. What’s more, extra
burden may take place depending on a concrete scenario. For example, in our
experimentation of a banking scenario in Section 4, the tracing of UTXO can be
unwieldy when we choose a substantially safe ktag because such ktag is more
likely to collide with other user’s choice. All the above concerns may push nor-
mal user, e.g., mobile user, to choose a proper privacy-protecting level rather
than the highest allowed and as a result, the process of audit can be faster. Thus,
there is a trade-off between anonymity and audit efficiency.

3.2. Quick Bootuping

Algorithm 1, involving the encryption under regulator’s key K, entails a bootup
to recover K. Thus, a cooperation between Pi and R is demanded. In practice,
thousands of TEEs may be run by a single Pi, requiring thousands of bootup co-
operation. Also, unexpected breakdown of certain TEE will require a reboot. All
these can pose a substantial burden to the whole system. We propose a knack to
expedite the bootup process. At the onset, a TEE TEE1 performs its bootup as
usual. Ever since then, any new TEE, such as TEE2, to join in can simply authen-

https://doi.org/10.4236/jcc.2021.98007

Z. F. Ye et al.

DOI: 10.4236/jcc.2021.98007 112 Journal of Computer and Communications

ticate itself to a random TEE which has already booted up, e.g., TEE1. TEE2 will
prove that it’s running in an enclave with homogeneous program with TEE1 by
remote attestation. If successful, TEE1 will directly share K with TEE2. This pro-
tocol doesn’t require further participation of R and can be quite effective when a
cluster of TEEs are managed by a single party, like a bank.

3.3. Optimization of TEE

An optimization makes use of an enclave-generated sskT to sign any output and
epkT to encrypt input. So only one remote attestation is required for the genera-
tion of (epkT, spkT) and the protocol can then be run repeatedly without attesta-
tion. Meanwhile, U can directly send a message to TEE without key exchange for
symmetric key.

3.4. Secret-Sharing on Regulator’s Secret

To enhance robustness of AudiTEE, any secret-sharing scheme [31] [32] [33]
can be adopted to distribute the regulator’s secret K into pieces for several regu-
lators. Thus, a single party cannot decrypt user secret furtively and an audit
needs to be granted by a majority of regulators to be effective.

3.5. Privacy-Preserving

Theorem 1. Assume that the remote attestation scheme of TEE and the digital
signature used for TEE-generated (spk, ssk) are existentially unforgeable under
chosen message attacks (EU-CMA), that TEE guarantees confidentiality and in-
tegrity and that the anonymity set for R is properly chosen, user can enjoy
self-defined anonymity.

Proof. As the transaction is formed inside TEE, the private contents of a
transaction can be protected. Meanwhile, supposing a user will post a transac-
tion immediately after fetching its existential proof, the user authentication pro-
tocol only tells that a transaction is made by one of the chosen leaf nodes under
the subtree of ktag.

3.6. Correctness and Completeness

Theorem 2. Assume that the remote attestation scheme of TEE and the digital
signature used for TEE-generated (spk, ssk) are existentially unforgeable under
chosen message attacks (EU-CMA), a user can form an authenticated transac-
tion only when he owns a valid account and conforms to certain policy and au-
ditor enjoys a complete audit on any user.

Proof. To break the correctness of AudiTEE, a malicious user has to generate
(epkU, usrSpecif, r) not existing in the Merkle tree maintained by R but with an
existential proof successfully leading to the root of the tree, MR.

The correct attachment of ktag helps auditor to target a set of transactions in-
cluding but larger than those for its auditee. The design of Merkle tree ensures
that the chosen ktag is bound with an existential proof.

https://doi.org/10.4236/jcc.2021.98007

Z. F. Ye et al.

DOI: 10.4236/jcc.2021.98007 113 Journal of Computer and Communications

As the hash function H (·) is one-way, the forgery of proof and ktag is com-
putationally infeasible.

4. Experiment and Result
4.1. Experiment Design

We evaluate the performance of AudiTEE under a bank application field, in-
cluding parties of users, commercial banks, auditors and central bank. Several
commercial banks, as the role of service providers will enroll users and enable
their access to the payment system built up with distributed ledger under the
confirmation of central bank. Bank account is in the form (epkU, bankU, ktag) to
receive payment and bankU refers to an identifier for the bank enrolled U. Cen-
tral bank plays the role of regulator to take care of valid accounts in a Merkle
tree and audit request needs to be granted by it to be effective. For simplicity, the
order of transaction will be decided by the central bank with its signature. Table
3 shows the concrete parameters of transaction. As explained in Algorithm 3 in
Figure 7, each bank will receive and process payment request from user (in-
cluding an identity proof fetched from central bank and other service-dependent
data) via its TEE, TEEBi, and a half done transaction, TX’, will be directly sent to
the central bank from the enclave. The central bank will first verify the signature
of TEE, σT, is authentic, the UTXO has not been spent and then include the hash
of previous transaction, h, to complete the new transaction. Finally, it signs the
new transaction to produce σCB. The settled transaction, TX, will be sent to each
bank for another check on order correctness, UTXO freshness, signature of both
TEE and central bank and stored locally.

4.2. Implementation

We implemented the above application of AudiTEE in C. All of our experiment
is run on desktop with Intel (R) Core (TM) i5-7500 3.40 GHz CPU (SGX sup-
ported) and 32 GB RAM on Ubuntu 18.04. We detail each component in the
following: 1) Cryptographic tools: Our prototype uses OpenSSL (Version 1.1.1)

Table 3. Parameter setting (banking).

TX = (ca, cp, pub, ktag, σT, h, σCB)

ca
The secret of payer, payee and amount under the encryption of K for audit. ca = encK
(epkpayer, epkpayee, v).

cp
A secret s encrypted by payee’s epk to prove ownership of the new-formed UTXO. cp =
encepkpayee (bankpayee, v, s).

pub The UTXO spent and a new-formed UTXO. UTXO = H (epkpayee, bankpayee, v, ktag, s).

ktag A tag to indicate an anonymity account set of payee.

σT Proof of the correct formation of a transaction in TEE (see Section 3.3).

h The hash of prior transaction (added by central bank for order decision).

σCB Proof of central bank to confirm the transaction.

https://doi.org/10.4236/jcc.2021.98007

Z. F. Ye et al.

DOI: 10.4236/jcc.2021.98007 114 Journal of Computer and Communications

Figure 7. Algorithm 3 for TEE verification in bank field.

library for our cryptographic blocks. We choose SHA256 for our hash function,
AES_256_CBC with 256-bit key and 128-bit initialization vector for symmetric
encryption. The PKCS #1 v1.5 padding for asymmetric encryption and PKCS #1
v2.0 for signing scheme are both with 1024-bit key. 2) Trusted Execution Envi-
ronment: We use Intel SGX as our TEE component and the program is run with
the support of Occlum library OS [34]. The server program is partitioned into
trusted part, receiving, processing user request for a half done transaction (for
central bank), and untrusted part, accepting and verifying final transaction from
central bank and storing it locally. 3) Database and distributed ledger: Redis li-
brary is used as database for the storage of UTXOs for banks and central bank.
It’s also for the formation and maintenance of the Merkle tree for user manage-
ment in the central bank side. Particularly, the subscriber-publisher model is
adopted for the distribution of final transaction signed by central bank in a dis-
tributed ledger. We include central bank and commercial banks under a com-
mon channel but only the central bank is allowed to publish message (transac-
tion) into the channel. Bank receives settled transaction from central bank and
stores it locally. All honest banks will be consistent in their local ledgers. All the
operation of Redis is controlled through Hiredis library.

Our evaluation responds to the following questions:
a) How expensive is it to manage identity in a Merkle tree (formation, update

and retrieval)? (Experiment 1)

https://doi.org/10.4236/jcc.2021.98007

Z. F. Ye et al.

DOI: 10.4236/jcc.2021.98007 115 Journal of Computer and Communications

b) What’s the efficiency of transaction verification in AudiTEE and how does
AudiTEE system scale with the number of banks? (Experiment 2)

c) What’s the efficiency of different audit functions in online and offline
mode? (Experiment 3)

d) What’s the performance of UTXO tracing in online and offline mode?
(Experiment 4)

Experiment 1 The first experiment concerns the maintenance of Merkle tree.
Experiment 1 is divided into three parts: 1) Tree formation: During the con-
struction of the tree, each user information epk, usrSpecif, r (assuming 128 Bytes
in total) will be hashed into info to become a leaf and then the tree will be fully
calculated and stored locally. 2) Retrieval: In this part, some members of the tree
will be fetched as that in Section 2.3. 𝑚𝑚𝑖𝑖𝑥𝑥 refers to number of the mixing
𝑎𝑎𝑐𝑐𝑐𝑐𝑜𝑜𝑢𝑢𝑛𝑛𝑡𝑡𝑠𝑠. 3) Update: In the update test, a specific info will be changed, entailing
certain update of the tree. The first test was run once while the latter two run 10,
000 times. We recorded the performance under different parameter setting.

According to our experiment outcome in Figure 8, the formation of the tree
will grow exponentially with k in time. We stress the formation of the tree, al-
though most costly, is a one-time process for R. The fetching with anonymity set
only grows slightly when k increases. The exponentially growth of anonymity set
leads to a similar growth in fetching time. The update of a leaf grows linearly
when 𝑘𝑘 increases. We stress that all the above processes can be separated into
several servers to boost velocity.

Experiment 2 The second experiment pertains to the performance of transac-
tion verification and the overall throughput of AudiTEE. We first measure the
verification component in both online and offline mode. Only one server with
single thread is interacting with one client during online test. In offline test, we
put all transaction requests locally and server simply fetches them from disk.
Transaction verification confirms: 1) the request is from a valid account; 2) the
ownership of UTXO spent; 3) the payment is correct and policy-conformed.
More details have been included in Algorithm 3 in Figure 7. All the above tests
were performed on mimic request for 1000 times online and 10,000 offline. Then

Figure 8. Merkle tree operation.

https://doi.org/10.4236/jcc.2021.98007

Z. F. Ye et al.

DOI: 10.4236/jcc.2021.98007 116 Journal of Computer and Communications

we make things more integral, with central bank, banks and clients to have a
more authentic measurement on its efficiency. Each server is run with four
threads. To be emphasized, each socket between client and bank will be used
only once to be more realistic. We adopt the optimization in Section 3.3 and all
the data sent is encrypted under AES and RSA encryption except the broadcast
of half done transaction from SGX and the settled one from central bank.

Table 4 shows the desirable speed of transaction verification. The comparison
of online and offline mode points out the underuse of verification function. This
may be resolved by an SGX shared by several server threads. The data required
by verification and the transaction are both with desirable size. In Figure 9, the
throughput result itself manifests its capability of high frequency application
such as trading and exchange. As service provider is potential to be equipped
with high-end server machine, the performance in practice can be more power-
ful than we’ve been shown.

Experiment 3 This experiment simulates various audit functions inside SGX.
The auditing outcome contains the hash of epkA and all input ca and the secret
result under the encryption of epkA. Without loss of generality, we omit the
process of remote attestation and recovery of K inside SGX for their unnoticea-
ble effect when transactions under audit are substantial. In offline mode, SGX
will directly fetch desirable ca from the local. Online mode is required when the

Table 4. Transaction verification.

Tree Capacity
Data for Verification

(Plaintext/Ciphertext)
Online Offline

223 1.87 kB/2 kB 206 ms/tx 0.3 ms/tx

Halfdone Transaction Size Settled Size

0.39 kB 0.55 kB

Figure 9. AudiTEE throughput.

https://doi.org/10.4236/jcc.2021.98007

Z. F. Ye et al.

DOI: 10.4236/jcc.2021.98007 117 Journal of Computer and Communications

auditor asks for extra confidentiality. ca will be sent under a symmetric key
shared between bank’s SGX and the auditor. As a result, bank can have no idea
which transaction is currently being audited. We performed three types of audit:
1) summing (calculate balance of a user); 2) matching (how many transaction
happened between two specified users); 3) exception detection (how many
transaction of a user is beyond some value). Each audit type was performed on-
line and offline for 1,000,000 times.

Table 5 shows a satisfactory speed for audit. Realistically, an audit only con-
cerns relatively small part of ca on the ledger rather than all. What’s more, sever-
al audit functions can actually be carried out in one audit and one audit can also
be separately performed in several SGXs. Thus, there is still a considerable room
for optimization.

Experiment 4 The final experiment is on the tracing of UTXO. In our imple-
mentation, UTXO is a hash commitment of epkU, bank identifier bankU, value v,
ktag and a secret randomness s. BankU, v, s are encrypted under the receiver’s
private key in cp. Thus, to identify the ownership of a UTXO, the user first tries
to decrypt cp to get bankU, v, s. Then it hashes, together with its epkU and ktag to
see if UTXO = H (epkU, bankU, v, ktag, s). Once again, the tracing may be carried
out locally (offline mode), or can be passed from a bank to save disk space (on-
line mode). Notice that this process is performed outside the SGX. Each mode
was performed 1,000,000 times.

The outcome is shown in Table 6. A user only has to trace those transactions
with its chosen ktag. A ktag tells the possible recipients of a transaction. As ktag
is self-defined as part of a user’s account, (epkU, bankU, ktag), to receive pay-
ment, when ktag indicates a larger subtree, thus with a higher anonymity, it’s
more likely that a transaction with user-chosen ktag may not actually belong to
U, but other users under the same subtree. This means a lot of redundancy, or ex-
tra effort will take place when the possible transactions are to be transferred from a
full node to and verified by user to confirm their real ownership. Thus, a user can
properly choose a desirable ktag based on the cost of network communication and

Table 5. Transaction audit.

Data Size: 68 Bytes/tx (offline)/80 Bytes/tx (online)

Audit Type Summing Matching Exception Detection

Online 0.017 ms/tx 0.016 ms/tx 0.017 ms/tx

Offline 0.002 ms/tx 0.002 ms/tx 0.002 ms/tx

Table 6. UTXO tracing.

Data Size: 160 Bytes (offline)/180 Bytes (online)

𝑈𝑈𝑇𝑇𝑋𝑋𝑂𝑂 Tracing Time Cost

Online 0.095 ms/tx

Offline 0.088 ms/tx

https://doi.org/10.4236/jcc.2021.98007

Z. F. Ye et al.

DOI: 10.4236/jcc.2021.98007 118 Journal of Computer and Communications

verification during the tracing of UTXO.

5. Conclusion and Future Work

AudiTEE proposes a practical framework for speedy, general-purpose and con-
fidential audit on privacy-preserving distributed ledger. It can be implemented
in various applications to enable user privacy with effective regulation. Powered
by KAMT protocol, AudiTEE tackles several concerns for TEE in realising effi-
cient account management in large scale. Meanwhile, the user-defined ano-
nymous authentication for a user only relies on the verification of Merkle path,
which is much faster than signature-based method. Specifically, a special ktag
defined in KAMT protocol helps to realize fast audit on user while still preserv-
ing unlinkability and completeness. AudiTEE also allows various policies on user
from regulator. Our evaluation shows that AudiTEE has satisfactory perfor-
mance in all its core functionalities.

In the future, the current work can be extended in several aspects. Firstly, Au-
diTEE will be implemented in more applications for testing and improving. Se-
condly, extra attention should be focused on possible side-channel attacks on
TEE and corresponding solutions. Finally, further research will be required to
appease the need for a central trusted party, namely, regulator in AudiTEE sys-
tem model to make the framework even more robust.

Acknowledgements

This work was in part supported by National Natural Science Foundation of
China (Grant Nos. 61932011), Guangdong Basic and Applied Basic Research
Foundation (Grant No. 2019B1515120010), Guangdong Key R&D Plan2020 (No.
2020B0101090002), Key-Area Research and Development Program of Guangdong
Province (No. 2020B0101090004) and Special Funds for the Cultivation of
Guangdong College Students’ Scientific and Technological Innovation (“Climb-
ing Program” Special Funds.) (No. PDJH2021A0050).

Conflicts of Interest

The authors declare no conflicts of interest regarding the publication of this pa-
per.

References
[1] Maull, R., Godsiff, P., Mulligan, C., Brown, A. and Kewell, B. (2017) Distributed

Ledger Technology: Applications and Implications. Strategic Change, 26, 481-489.
https://doi.org/10.1002/jsc.2148

[2] Rauchs, M., Glidden, A., Gordon, B., Pieters, G.C., Recanatini, M., Rostand, F.,
Vagneur, K. and Zhang, B.Z. (2018) Distributed Ledger Technology Systems: A
Conceptual Framework. https://doi.org/10.2139/ssrn.3230013

[3] Wikipedia Audits. https://en.wikipedia.org/wiki/Audit

[4] American Society for Quality. What Is Auditing?
https://asq.org/quality-resources/auditing

https://doi.org/10.4236/jcc.2021.98007
https://doi.org/10.1002/jsc.2148
https://doi.org/10.2139/ssrn.3230013
https://en.wikipedia.org/wiki/Audit
https://asq.org/quality-resources/auditing

Z. F. Ye et al.

DOI: 10.4236/jcc.2021.98007 119 Journal of Computer and Communications

[5] Investor.gov. The Laws That Govern the Securities Industry.
https://www.investor.gov/introduction-investing/investing-basics/role-sec/laws-gov
ern-securities-industry

[6] REUTERS (2020) China Fines Luckin Coffee and Linked Firms a Total of $9 Mil-
lion.
https://www.reuters.com/article/us-luckin-coffee-investigation-fine-idUSKCN26D0
7G

[7] IRS Charity and Nonprofit Audits.
https://www.irs.gov/charities-non-profits/exempt-organizations-audit-process

[8] AICPA What Is a Governmental Audit?
https://www.aicpa.org/interestareas/governmentalauditquality/information-on-gov
ernmental-audits.html

[9] Schmitz, J. and Leoni, G. (2019) Accounting and Auditing at the Time of Block-
chain Technology: A Research Agenda. Australian Accounting Review, 29, 331-342.
https://doi.org/10.1111/auar.12286

[10] Mitani, T. and Otsuka, A. (2020) Confidential and Auditable Payments. Interna-
tional Conference on Financial Cryptography and Data Security, Kota Kinabalu,
10-14 February 2020, 466-480. https://doi.org/10.1007/978-3-030-54455-3_33

[11] Androulaki, E., Camenisch, J., Caro, A.D., Dubovitskaya, M., Elkhiyaoui, K. and
Tackmann, B. (2020) Privacy-Preserving Auditable Token Payments in a Permis-
sioned Blockchain System. Proceedings of the 2nd ACM Conference on Advances
in Financial Technologies, New York, 21-23 October 2020, 255-267.
https://doi.org/10.1145/3419614.3423259

[12] Cecchetti, E., Zhang, F., Ji, Y., Kosba, A., Juels, A. and Shi, E. (2017) Solidus: Confi-
dential Distributed Ledger Transactions via PVORM. Proceedings of the 2017 ACM
SIGSAC Conference on Computer and Communications Security, Dallas, 30 Octo-
ber-3 November 2017, 701-717. https://doi.org/10.1145/3133956.3134010

[13] Chen, Y., Ma, X.C., Tang, C. and Au, M.H. (2020) PGC: Decentralized Confidential
Payment System with Auditability. European Symposium on Research in Computer
Security, Guildford, 14-18 September 2020, 591-610.
https://doi.org/10.1007/978-3-030-58951-6_29

[14] Naganuma, K., Yoshino, M., Sato, H. and Suzuki, T. (2017) Auditable Zerocoin.
2017 IEEE European Symposium on Security and Privacy Workshops, Paris, 26-28
April 2017, 59-63. https://doi.org/10.1109/EuroSPW.2017.51

[15] Garman, C., Green, M. and Miers, I. (2016) Accountable Privacy for Decentralized
Anonymous Payments. International Conference on Financial Cryptography and
Data Security, Christ Church, 22-26 February 2016, 81-98.
https://doi.org/10.1007/978-3-662-54970-4_5

[16] Narula, N., Vasquez, W. and Virza, M. (2018) zkledger: Privacy-Preserving Audit-
ing for Distributed Ledgers. 15th USENIX Symposium on Networked Systems De-
sign and Implementation, Renton, 9-11 April 2018, 65-80.

[17] Dinh, T.T.A., Saxena, P., Chang, E.-C., Ooi, B.C. and Zhang, C.W. (2015) M2r:
Enabling Stronger Privacy in Mapreduce Computation. 24th USENIX Security
Symposium (USENIX Security 15), Washington DC, 12-14 August 2015, 447-462.

[18] Zheng, W.T., Dave, A., Beekman, J.G., Popa, R.A., Gonzalez, J.E. and Stoica, I.
(2017) Opaque: An Oblivious and Encrypted Distributed Analytics Platform. 14th
USENIX Symposium on Networked Systems Design and Implementation, Boston,
27-29 March 2017, 283-298.

https://doi.org/10.4236/jcc.2021.98007
https://www.investor.gov/introduction-investing/investing-basics/role-sec/laws-govern-securities-industry
https://www.investor.gov/introduction-investing/investing-basics/role-sec/laws-govern-securities-industry
https://www.reuters.com/article/us-luckin-coffee-investigation-fine-idUSKCN26D07G
https://www.reuters.com/article/us-luckin-coffee-investigation-fine-idUSKCN26D07G
https://www.irs.gov/charities-non-profits/exempt-organizations-audit-process
https://www.aicpa.org/interestareas/governmentalauditquality/information-on-governmental-audits.html
https://www.aicpa.org/interestareas/governmentalauditquality/information-on-governmental-audits.html
https://doi.org/10.1111/auar.12286
https://doi.org/10.1007/978-3-030-54455-3_33
https://doi.org/10.1145/3419614.3423259
https://doi.org/10.1145/3133956.3134010
https://doi.org/10.1007/978-3-030-58951-6_29
https://doi.org/10.1109/EuroSPW.2017.51
https://doi.org/10.1007/978-3-662-54970-4_5

Z. F. Ye et al.

DOI: 10.4236/jcc.2021.98007 120 Journal of Computer and Communications

[19] Arasu, A., Blanas, S., Eguro, K., Kaushik, R., Kossmann, D., Ramamurthy, R. and
Venkatesan, R. (2013) Orthogonal Security with Cipherbase. CIDR.

[20] Baumann, A., Peinado, M. and Hunt, G. (2015) Shielding Applications from an
Untrusted Cloud with Haven. ACM Transactions on Computer Systems (TOCS),
33, 1-26. https://doi.org/10.1145/2799647

[21] Bajaj, S. and Sion, R. (2013) TrustedDB: A Trusted Hardware-Based Database with
Privacy and Data Confidentiality. IEEE Transactions on Knowledge and Data Engi-
neering, 26, 752-765. https://doi.org/10.1109/TKDE.2013.38

[22] Schuster, F., Costa, M., Fournet, C., Gkantsidis, C., Peinado, M., Mainar-Ruiz, G.
and Russinovich, M. (2015) VC3: Trustworthy Data Analytics in the Cloud Using
SGX. 2015 IEEE Symposium on Security and Privacy, San Jose, 21-22 May 2015, 38-54.
https://doi.org/10.1109/SP.2015.10

[23] Milutinovic, M., He, W., Wu, H. and Kanwal, M. (2016) Proof of Luck: An Efficient
Blockchain Consensus Protocol. Proceedings of the 1st Workshop on System Soft-
ware for Trusted Execution, Trento, 12-16 December 2016, 1-6.
https://doi.org/10.1145/3007788.3007790

[24] Lind, J., Eyal, I., Kelbert, F., Naor, O., Pietzuch, P. and Sirer, E. (2017) Teechain:
Scalable Blockchain Payments Using Trusted Execution Environments.

[25] Nakamoto, S. (2019) Bitcoin: A Peer-to-Peer Electronic Cash System. Manubot.

[26] Fedorov, S., Li, W.T. and Karame, G. (2019) Efficient Validation of Transaction
Policy Compliance in a Distributed Ledger System. Google Patents, US Patent App.
15/916,293.

[27] Zhao, C.C., Saifuding, D., Tian, H.L., Zhang, Y. and Xing, C.X. (2016) On the Per-
formance of Intel Sgx. 2016 13th Web Information Systems and Applications Con-
ference (WISA), Wuhan, 23-25 September 2016, 184-187.
https://doi.org/10.1109/WISA.2016.45

[28] Göttel, C., Pires, R., Rocha, I., Vaucher, S., Felber, P., Pasin, M. and Schiavoni, V.
(2018) Security, Performance and Energy Trade-Offs of Hardware-Assisted Memo-
ry Protection Mechanisms. 2018 IEEE 37th Symposium on Reliable Distributed
Systems (SRDS), Salvador, 2-5 October 2018, 113-142.
https://doi.org/10.1109/SRDS.2018.00024

[29] Danezis, G. and Meiklejohn, S. (2015) Centrally Banked Cryptocurrencies.
https://doi.org/10.14722/ndss.2016.23187

[30] Walker, P. and Venables, P.J. (2017) Cryptographic Currency for Securities Settle-
ment. Google Patents, US Patent 9,704,143.

[31] Beimel, A. (2011) Secret-Sharing Schemes: A Survey. International Conference on
Coding and Cryptology, Qingdao, 30 May-3 June 2011, 11-46.
https://doi.org/10.1007/978-3-642-20901-7_2

[32] Shamir, A. (1979) How to Share a Secret. Communications of the ACM, 22, 612-613.
https://doi.org/10.1145/359168.359176

[33] Blakley, G.R. (1979) Safeguarding Cryptographic Keys. International Workshop on
Managing Requirements Knowledge (MARK), New York, 4-7 June 1979, 313.
https://doi.org/10.1109/MARK.1979.8817296

[34] Shen, Y.R., Tian, H.L., Chen, Y., Chen, K., Wang, R.J., Xu, Y., Xia, Y.B. and Yan,
S.M. (2020) Occlum: Secure and Efficient Multitasking inside a Single Enclave of
Intel Sgx. Proceedings of the Twenty-Fifth International Conference on Architec-
tural Support for Programming Languages and Operating Systems, Lausanne, 16-20
March 2020, 955-970. https://doi.org/10.1145/3373376.3378469

https://doi.org/10.4236/jcc.2021.98007
https://doi.org/10.1145/2799647
https://doi.org/10.1109/TKDE.2013.38
https://doi.org/10.1109/SP.2015.10
https://doi.org/10.1145/3007788.3007790
https://doi.org/10.1109/WISA.2016.45
https://doi.org/10.1109/SRDS.2018.00024
https://doi.org/10.14722/ndss.2016.23187
https://doi.org/10.1007/978-3-642-20901-7_2
https://doi.org/10.1145/359168.359176
https://doi.org/10.1109/MARK.1979.8817296
https://doi.org/10.1145/3373376.3378469

	AudiTEE: Efficient, General-Purpose and Privacy-Preserving Audit for Distributed Ledgers
	Abstract
	Keywords
	1. Introduction
	2. The Proposed Auditing Scheme
	2.1. System Model
	2.2. Security Model
	2.3. AudiTEE Protocol

	3. Performance Analysis of AudiTEE
	3.1. Trade-off in Anonymity
	3.2. Quick Bootuping
	3.3. Optimization of TEE
	3.4. Secret-Sharing on Regulator’s Secret
	3.5. Privacy-Preserving
	3.6. Correctness and Completeness

	4. Experiment and Result
	4.1. Experiment Design
	4.2. Implementation

	5. Conclusion and Future Work
	Acknowledgements
	Conflicts of Interest
	References

