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Abstract 
Combining both visible and infrared object information, multispectral data is 
a promising source data for automatic maritime ship recognition. In this pa-
per, in order to take advantage of deep convolutional neural network and 
multispectral data, we model multispectral ship recognition task into a con-
volutional feature fusion problem, and propose a feature fusion architecture 
called Hybrid Fusion. We fine-tune the VGG-16 model pre-trained on Im-
ageNet through three channels single spectral image and four channels mul-
tispectral images, and use existing regularization techniques to avoid 
over-fitting problem. Hybrid Fusion as well as the other three feature fusion 
architectures is investigated. Each fusion architecture consists of visible image 
and infrared image feature extraction branches, in which the pre-trained and 
fine-tuned VGG-16 models are taken as feature extractor. In each fusion ar-
chitecture, image features of two branches are firstly extracted from the same 
layer or different layers of VGG-16 model. Subsequently, the features ex-
tracted from the two branches are flattened and concatenated to produce a 
multispectral feature vector, which is finally fed into a classifier to achieve 
ship recognition task. Furthermore, based on these fusion architectures, we 
also evaluate recognition performance of a feature vector normalization me-
thod and three combinations of feature extractors. Experimental results on 
the visible and infrared ship (VAIS) dataset show that the best Hybrid Fusion 
achieves 89.6% mean per-class recognition accuracy on daytime paired im-
ages and 64.9% on nighttime infrared images, and outperforms the 
state-of-the-art method by 1.4% and 3.9%, respectively. 
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1. Introduction 

By integrating complementary information from visible (VIS) and infrared (IR) 
images, multispectral data has recently received much attention in machine 
learning and computer vision [1] [2] [3] [4] [5]. VIS images are sensitive to vari-
ation illumination and unfavourable weather conditions, which degrade the 
performance of computer vision systems built on these images. Thermal camera 
can ameliorate the problem, but it cannot provide image with the same 
high-resolution as visible camera, and often exhibit a decrease in image quality 
during daytime due to a high background temperature. Therefore, multispectral 
images have been successfully used to face recognition [6] [7] [8] [9], and are 
also widely applied to object recognition [10], person re-identification [11], pe-
destrian detection [12], and object tracking [13] by exploiting deep learning in 
recent years. 

As known to all, after the breakthrough research by Krizhevsky et al. [14], 
deep convolutional neural networks (CNN) have achieved remarkable success 
for a large variety of tasks, and quickly became the dominant tool in computer 
vision. Meanwhile, some well-known deep CNN models have been reported, 
such as Oxford VGG Model [15], Google Inception Model [16] and Microsoft 
ResNet Model [17]. One factor for the dramatic improvement in performance of 
deep CNN is that many challenging datasets for training with millions of labeled 
examples are harvested from the web, such as ImageNet [18]. However, a 
large-scale training set is expensive or difficult to collect in the real world, and 
training a large neural network on a small dataset would lead to poor perfor-
mance due to the problem of overfitting. The lack of a large-scale training set 
forces the computer vision community to find practical workarounds. Much re-
cent effort [19] [20] [21] has been dedicated to developing methods that 
fine-tune the well-known pre-trained deep CNN models or directly take these 
models as feature extractors. Research in vision tasks based on multispectral data 
follows the same trend, e.g., action recognition [22], pedestrian detection [23], 
object recognition [10]. In the previous works on multispectral data, whether 
fine-tuning after feature fusion or directly extracting feature without fine-tuning, 
features are produced at the same layer of the pre-trained deep CNN model for 
VIS and IR images. However, due to the aforementioned difference between VIS 
and IR images, features extracted from the same layer may not both be the best, 
so feature fusion cannot fully take advantage of multispectral data. Therefore, 
how features of VIS and IR images can be properly fused in pre-trained or 
fine-tuned deep CNN model to achieve the best performance in vision task re-
mains to be solved. 

In this paper, we focus on using the pre-trained or fine-tuned deep CNN 
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model to extract features of VIS and IR image, and propose a novel feature fu-
sion architecture called Hybrid Fusion for multispectral maritime ship recogni-
tion. We firstly model the multispectral maritime ship recognition task to a 
convolutional feature fusion problem, and then evaluate the feature representa-
tion ability of the pre-trained or fine-tuned deep CNN model for multispectral 
data. Thirdly, Hybrid Fusion and the other three feature fusion architectures are 
investigated. Finally, we compare Hybrid Fusion with the other reported me-
thods. Our idea is that combining high-level feature of VIS image and mid-
dle-level feature of IR image can provide rich multispectral information to the 
classifier for the final prediction. Due to the large gap of feature values at differ-
ent layers, a features normalization method is exploited. Meanwhile, based on 
different feature extractors used by VIS and IR images, three combinations are 
also investigated. 

Our major contribution is fourfold: First, we propose a feature fusion archi-
tecture named Hybrid Fusion, which combines high-level feature of VIS image 
and middle-level feature of IR image. Second, we investigate four distinct feature 
fusion architectures, namely Early Fusion, Halfway Fusion, Late Fusion and Hy-
brid Fusion, and evaluate these fusion architectures on the public multispectral 
maritime ship images, the VAIS dataset [10]. Third, we fine-tune the pre-trained 
VGG-16 model on both single spectral image and multispectral images, and also 
exploit three existing regularization techniques to avoid over-fitting problem. 
Fourth, the best Hybrid Fusion performs 89.6% mean per-class recognition accu-
racy on the daytime paired images of VAIS dataset, outperforms the state-of-the-art 
method by 1.4%, and also achieves 64.9% on nighttime and 68.6% on all time IR 
images. 

2. Related Work 

Object recognition with deep convolutional feature fusion. Initializing 
with transferred features whether features are transferred from the low-level, 
middle-level or high-level of the pre-trained deep CNN, can improve generaliza-
tion performance even after substantial fine-tuning on a new task [24]. Schwarz 
et al. [25] presented feature fusion model for multi-modal object recognition, a 
pre-trained AlexNet model [14] is exploited to extract features from the last two 
fully connected layers. An extension of the fusion model further improves object 
recognition accuracy by fine-tuning the pre-trained AlexNet with multi-modal 
training data [19]. Furthermore, Zia et al. [26] proposed a hybrid 2D/3D convo-
lutional neural network initialized by the pre-trained VGG-16 model [15], and 
fused the features separately extracted from the fully connected layers of three 
network architectures. Another interesting work [27] presented an unsupervised 
feature learning framework. In this framework, the pre-trained VGG-f model 
[28] is taken as a feature extractor, and then recursive neural network [29] is 
used to reduce dimension of the extracted features and learn high-level features. 
The aforementioned methods focus not only on convolutional feature fusion but 
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also on the processing of modal data. The goal of our work is how to leverage 
convolutional feature fusion and limited multispectral data to maximize ship 
recognition accuracy. 

Ship recognition on single spectral image. Kanjir et al. [30] provided an 
overview of existing literature on ship detection and classification from optical 
satellite imagery. However, most of the reviewed methods are performed on 
optical remote sensing images, and our work focuses on ship recognition from 
VIS and IR images. Therefore, we mainly review the works of vessel/ship recog-
nition on VIS image due to little of ones on IR image. Khellal et al. [31] used ex-
treme learning machine (ELM) to learn discriminative CNN feature for IR image 
maritime ship recognition. Fouad et al. [32] presented an experimental study to 
investigate the ability of deep CNN features to catch details of VIS image mari-
time ships for fine-grained classification. Cuong et al. [33] trained and tested 
AlexNet with a dataset of 130,000 VIS images of maritime ships, which are col-
lected from website ShipSpotting1. Gundogdu et al. [34] [35] introduced a 
large-scale VIS image maritime vessels dataset, namely MARVEL, for the 
fine-grained visual categorization, recognition, retrieval and verification tasks. 
To achieve the baseline results, both extracting feature from pre-trained VGG-f 
model and training AlexNet model have been used to perform the aforemen-
tioned tasks. To improve the performance of the tasks on MARVEL dataset, 
Solmaz et al. [36] exploited a multi-task learning framework based on deep CNN 
models to accompany deep metric learning with a proposed loss function. Mili-
cevic et al. [37] used the training dataset of MARVEL to fine-tune VGG-19 
model [15] pre-trained on ImageNet, then boosted the recognition accuracy by 
3%. Huang et al. [38] exploited low-level and high-level features to classify ship 
categories on VIS images. The proposed method learns the high-level features 
via fine-tuning pre-trained deep CNN model, and incorporates the multi-scales 
rotation invariant features obtained by Gabor filter and multi-scale completed 
local binary patterns (MS-CLBP), then these features are fed into support vector 
machine (SVM) classifier. This method was extended to improve recognition 
performance by replacing SVM with ELM classifier in [39]. Shi et al. [40] pro-
posed a classification framework consists of a multi-feature ensemble based on 
convolutional neural network (ME-CNN). 

Ship recognition on multispectral images. Currently, there are few literature 
about multispectral maritime ship recognition due to the lack of corresponding 
multispectral data. VAIS dataset including VIS and IR images is the only public 
multispectral maritime ship dataset for image classification or object recogni-
tion. Zhang et al. [10] reported the VAIS dataset in detail, and combined the re-
sults of gnostic fields and deep CNN to provide the baseline recognition accura-
cy on this dataset, 87.4% mean per-class recognition accuracy during the day-
time and 61% at nighttime. They also tried to fine-tune the pre-trained VGG-16 
model, but failed in improving recognition performance. Aziz et al. [41] used a 

 

 

1www.shipspotting.com. 
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large-scale visible ship dataset to train a deep CNN, and then fine-tuned their 
pre-trained CNN model with the training images of VAIS dataset. Santos et al. 
[42] proposed a decision level fusion of convolutional neural networks using a 
probabilistic model, in which features are extracted from the last convolutional 
activate map of the pre-trained VGG-19 model. Zhang et al. [43] presented a 
multi-feature structure fusion based on spectral regression discriminant analysis 
(SF-SRDA) by combining structural fusion with linear discriminant analysis, 
and used the pre-trained models VGG-19 and ResNet-152 [17] to achieve a 
promising result. The above work has achieved good ship recognition perfor-
mance. However, they did not consider the difference between each convolu-
tional layer of the pre-training or fine-tuning models for different spectrum im-
age ship recognition, and our work considers this difference and proposes a Hy-
brid fusion model based on this difference. 

3. Proposed Feature Fusion Method 

Intuitively, VIS and IR images provide auxiliary visual information to each other 
in depicting ship objects. Encouraged by the recent tremendous advances in 
deep learning techniques, as well as inspired by the work of multispectral pede-
strian detection [44], we explore the effectiveness of using the VGG-16 model 
pre-trained on ImageNet dataset and fine-tuned on VAIS dataset to perform mul-
tispectral ship recognition. The structure of our method is shown in Figure 1. 

The proposed fusion framework mainly includes four stages: 
1) Image preprocessing: as the pre-trained VGG-16 model expects 224×224 

pixels and three channels images as input, we simply clone the single IR channel 
three times. Meanwhile, both VIS and IR images are resized to 224×224 using 
nearest interpolation. 

2) Feature extraction: there are two feature extraction branches, visible image 
branch (shorted as VGG-16-VIS) and infrared image branch (shorted as 
VGG-16-IR), as shown in Figure 1. Each branch takes the pre-trained or 
fine-tuned VGG-16 model as feature extractor. Besides, image features of both 
branches are extracted from the same layer or different layers of VGG-16 model 
according to feature fusion architectures. 

3) Feature fusion: the features extracted from the two branches are flattened 
to feature vectors, and then are concatenated to produce a multispectral feature 
vector representing the maritime ship. 

4) Classification: before the fused feature vector is fed into a linear SVM clas-
sifier for the final prediction, feature vector is normalized by l2-norm (shorted as 
L2) normalization method. According to Hybrid Fusion, feature vector should 
be normalized before feature fusion because of the large gap of feature values at 
different layers. 

Additionally, the training samples of VIS and IR images in the VAIS dataset 
are used to fine-tune the pre-trained VGG-16 model in an end-to-end way, re-
spectively. Then, the two fine-tuned VGG-16 models are also taken as feature 
extractors. 
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Figure 1. The illustration of overview pipeline for multispectral maritime ship recognition. The proposed fusion frame-
work takes VIS-IR image pair as the input and outputs ship image category. VGG-16-VIS and VGG-16-IR are the VGG-16 
model pre-trained on ImageNet dataset or fine-tuned on VAIS dataset. Features of VIS and IR images are extracted from 
VGG-16-VIS and VGG-16-IR, respectively. C1 denotes the first convolutional layer, the same as to C2, C3, C4 and C5. F6 
and F7 represent the first and second fully connected layers, respectively. 

3.1. Feature Fusion Architecture 

Due to features at different levels of VGG-16 correspond to various levels of se-
mantic information and fine visual details [45], feature fusion at different layers 
would lead to different recognition results. Therefore, the multispectral ship 
recognition task is modelled into a convolutional feature fusion problem, i.e., 
which feature fusion architecture could get best recognition performance. Then, 
we propose a feature fusion architecture called Hybrid Fusion, which combines 
high-level feature of VIS image and middle-level feature of IR image. We inves-
tigate Hybrid Fusion as well as Early Fusion, Halfway Fusion and Late Fusion. 
These fusion architectures integrate two-branch convolutional features at dif-
ferent layers of VGG-16 model, as shown in Figure 2. Each branch represents a 
single spectral image. 

Early Fusion combines the feature maps from VIS and IR images immediately 
after the first and second convolutional layers (C1 and C2 layers) followed by a 
Max Pool layer (this fusion architecture is ignored in Figure 2). Since C1 and C2 
layers capture low-level visual features, such as color, corners and line segments. 
This fusion architecture fuses features at low-level. 

Halfway Fusion also implements feature fusion at convolutional layers. Dif-
ferent from Early Fusion, it fuses the features after the third, fourth and fifth 
convolutional layers (C3 - C5 layers) followed by a Max Pool layer, as shown in 
Figure 2(a). Features from C3 - C5 layers contain more semantic information 
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Figure 2. Feature fusion architectures for multispectral maritime ship recognition. Blue and green boxes represent convolu-
tional and fully connected layers including ReLU layers, respectively. Yellow boxes represent Max Pool layer. Orange boxes 
denote feature fusion at this location. (Best viewed in color.) 

 
than C1 and C2 layers features, while retain some fine visual details. The fusion 
architecture fuses features at middle-level. 

Late Fusion combines features extracted from the first and second fully con-
nected layers (F6 and F7 layers) followed by an activation layer named ReLU, 
which performs feature fusion at fully connected stage, as shown in Figure 2(b). 
Conventionally, F6 and F7 layers features are used as new representations of ship 
objects. This fusion architecture executes high-level feature fusion. 

Hybrid Fusion combines high-level feature of VIS image and middle-level 
feature of IR images, that is F6 and F7 layers features of VIS images and C3-C5 
layers features of IR images, as shown in Figure 2(c), due to different feature 
representation of the VGG-16 model at different levels for each spectral image. 
Hybrid Fusion leverages the feature representation of different levels for multis-
pectral images. 

3.2. Feature Fusion Method 

After extracting two-branch convolutional features from different levels of the 
pre-trained or fine-tuned VGG-16 model, each branch features are flattened to a 
feature vector. Following the work based on multispectral data in [46], concate-
nation fusion method is used to fuse two feature vectors. The fusion goal is to 
integrate two feature vectors VISF  and IRF  to a fused feature vector FF , 
where VISF , IRF  denote feature vector of VIS and IR images, respectively. The 
concatenation fusion method is to directly concatenate two feature vectors, 
which can be defined as: 

( ), ,F concat VIS IRF f F F=                      (1) 
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1 1

F VIS
d dF F=                           (2) 

1 2 2

F IR
D d dF F+ =                           (3) 

where 
1

VIS
dF  denotes the 1

thd  value of VISF , 
2

IR
dF  denotes the 2

thd  value of 
IRF , 

1

F
dF  is the 1

thd  value of FF , 
1 2

F
D dF +  is the ( )1 2

thD d+  value of FF . 

1 11 d D≤ ≤ , 2 21 d D≤ ≤  and 1DVISF ∈ , 2DIRF ∈ , 1 2D DFF +∈ . This fu-
sion method concatenates the dimensions of the two input feature vectors. 

3.3. Normalization and Classification 

In order to evaluate the multispectral ship recognition performance of four fea-
ture fusion architectures, we exploit a linear SVM as classifier. It is crucial to 
normalize the feature vector before putting it into the linear SVM classifier. The 
reason is threefold: First, it avoids the feature characteristic of small value range 
to be over-branched by the feature characteristic of large value range, so as to 
improve the performance of linear SVM classifier. Second, it adjusts values 
measured on different scales to a same scale, and then facilitates data compari-
son and common processing. Third, it reduces numerical value complexity in 
calculation. To normalize the features of train data and test data, we use L2 
normalization method. L2 normalization is a normalization method commonly 
used in machine learning. The main idea is to divide each element in a vector by 
the L2 norm of the vector, that is defined as formulas Equation (4). 

2

2
1

L d
d D

dd

x
x

x
=

=
∑

                       (4) 

where 2L
dx  represents the thd  value of the D dimension feature vector after L2 

normalization, dx  is the thd  value of the D dimension feature vector,  
denotes an absolute operator and 1 d D≤ ≤ . 

4. Experiments 
4.1. Dataset 

To investigate our four feature fusion architectures for ship category recogni-
tion, we use the publicly available VAIS dataset [10]. For now as we know, it is 
the only existing public database of paired VIS and IR ship imagery. The dataset 
contains 2865 images (1623 VIS images and 1242 IR images), in which 1088 
“VIS-IR” unregistered images pairs and 154 nighttime IR images, and includes 6 
categories: cargo ships, medium-other ships, passenger ships, sailing ships, small 
boats and tug boats. However, the images are captured at different distance and 
various times of one day, including dusk and dawn. Therefore, some images are 
high-resolution while a part of images may appear dim and hard to recognize 
even with manual inspection. In the dataset, the paired VIS-IR image set is parti-
tioned into 539 image pairs for training and 549 image pairs for testing. A sam-
ple pairs from VAIS is illustrated in Figure 1 and Table 1 shows the number of 
train and test samples for each class. As followed the baseline method [10], the  
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Table 1. The number of train and test images for each class in the paired images, night-
time and all time IR images of VAIS dataset. 

VAIS Time Cargo Medium-other Passenger Sailing Small Tug Total 

Train set Daytime 83 62 58 148 158 30 539 

Test set Daytime 63 76 59 136 195 20 549 

 Nighttime 34 14 12 15 30 49 154 

 All time 97 90 71 151 225 69 703 

 
same train data and test data are used and the mean per-class recognition accu-
racy is taken as the evaluation measurement in the experiments.  

4.2. Implementation Platform and Details 

Our processing platform is a personal computer with Ubuntu 16.04, with a sin-
gle CPU (4.20 GHz) of an Intel Core i7-7770K with 16 GB random access mem-
ory (RAM). An NVIDIA GTX1080Ti Graphics PU is used for deep CNN com-
putations. The computation environment is a Keras environment with Tensor-
Flow backend, which is a high-level neural network application programming 
interface written in Python. Our experiment is divided into two stages: features 
are first extracted and stored subsequently, then are fed into linear SVM classifi-
er. We use LibSVM toolbox [47], which has been packaged as a module of sci-
kit-learn2, as classifier to implement ship classification, the relaxation coefficient 
C is set to 10, kernel function is set to linear. Due to limited RAM, we did not 
perform experiments on feature fusion at the first convolutional layer, but expe-
riments at the second convolutional layer can reflect the performance of Early 
Fusion. 

It is not easy to fine-tune the pre-trained VGG-16 model end to end on 
small-scale dataset like VAIS, especially on IR images. The main problem is how to 
avoid over-fitting and take into account model convergence during fine-tuning 
model. Some existing regularization techniques [48], such as data argumenta-
tion, dropout and L2 parameter regularization known as weight decay, are used 
to fine-tune the pre-trained model on VIS and IR images. Additionally, in order 
to investigate whether the VGG-16 model learn fusing inputs implicitly, 4 chan-
nels multispectral image consisting of VIS and IR images (shorted as 4C VIS-IR) 
are also taken as inputs to fine-tune the model. In fine-tuning experiment, the 
initial learning rate is set as 0.001 for VIS images and 0.0001 for IR images and 
4C VIS-IR images. Stochastic gradient descent optimizer is utilized for optimiza-
tion, the momentum is set to 0.9, and the decay is set as 0.00001. The train step 
is set to 50 epochs, the batch size is set to 32. Random horizontal flip, random 
vertical flip are used for online data argumentation. Dropout is applied after the 
second fully connected layer and its rate is set to 0.5. L2 weight decay is applied 
on the last fully connected layer and its value is set to 0.1. 

 

 

2https://scikit-learn.org.  
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4.3. Experimental Results 
4.3.1. Evaluation of the Pre-Trained and Fine-Tuned Models 
Firstly, we evaluate the effects of existing regularization techniques during 
fine-tuning VGG-16 model. Table 2 shows the comparison of recognition per-
formance with and without regularization techniques. Accuracy evaluation uses 
the average value together with standard deviation in 10 groups of fine-tuning 
experiments. Figure 3 and Figure 4 give the accuracy and loss curves of fine-tuning 
VGG-16 model on VIS and IR images in one group of experiments, respectively. 
As shown in Table 2, using data argumentation greatly improves the recognition 
accuracy of 4C VIS-IR images, and combining three regularization techniques 
achieves the best results. However, compared to using data argumentation for 
VIS and IR images, fine-tuning with dropout or L2 weight decay has slightly 
higher average value and smaller standard deviation. A combination of two or 
more regularization techniques cannot significantly improve the performance of 
fine-tuned model. Combining dropout and data argumentation even leads to 
model degradation when fine-tuning on VIS images. Furthermore, it can be ob-
served from Figure 3 and Figure 4 that over-fitting problem is worse on IR im-
ages than VIS images. Over-fitting on VIS images is easy to overcome by using 
any of the three regularization techniques, as shown in Figure 3. However, data 
argumentation and dropout make accuracy and loss fluctuate too much for IR 
images, and the being fine-tuned model is difficult to converge, as shown in 
Figure 4. L2 weight decay can restrain the loss ascension of IR images after about 
20 epochs, and model starts to converge. In summary, considering over-fitting 
problem and model convergence, we exploit dropout regularization technique 
for fine-tuning model on VIS images, and L2 weight decay for fine-tuning model 
on IR images. Meanwhile, the fine-tuned models on VIS and IR images, in which 
the accuracy is close to the corresponding average value of 10 groups experi-
ments, are chosen as feature extractor in our fusion method. 

Secondly, we analyze the feature representation ability of different layers on 
the pre-trained VGG-16 model for VIS and IR images. As the horizontal axis 
shown in Figure 5(a), C2 is low-level layer, C3 - C5 are middle-level layers, and  

 
Table 2. The comparison of recognition performance (%) with and without regulariza-
tion techniques during fine-tuning VGG-16 model. 

Type DR L2 
Without data argumentation With data argumentation 

4C VIS-IR VIS IR 4C VIS-IR VIS IR 

Type 1 0.0 0.0 81.2 ± 2.2 85.6 ± 2.7 67.0 ± 2.0 82.5 ± 1.5 85.7 ± 2.0 66.2 ± 2.3 

Type 2 0.5 0.0 81.7 ± 1.0 86.2 ± 1.3 67.5 ± 1.2 83.4 ± 1.5 83.9 ± 3.5 65.9 ± 2.0 

Type 3 0.0 0.1 81.6 ± 1.4 85.7 ± 1.7 67.5 ± 1.6 83.1 ± 1.4 85.5 ± 2.3 67.5 ± 2.4 

Type 4 0.5 0.1 82.9 ± 1.7 85.4 ± 1.7 68.0 ± 2.2 83.6 ± 1.2 83.6 ± 3.4 66.5 ± 1.3 

Notes: Accuracy evaluation uses the average value together with standard deviation in 10 times. Setting 
dropout rate (DR) or L2 weight decay (L2) to 0.0 means that it does not use dropout or L2 weight decay re-
gularization technique. 
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Figure 3. The accuracy and loss curves of the pre-trained VGG-16 model with fine-tuning on VIS images. Rows 1 - 4 correspond 
Type 1 - 4 in Table 2, respectively. Columns 1 - 2 are accuracy and loss curves of model fine-tuned on VIS images without data 
argumentation, and columns 3 - 4 are accuracy and loss curves of model fine-tuned on VIS images with data argumentation. 
 

F6 - F7 are high-level layers. VIS image obtains the more feature representation 
at high-level layers (see block line with squares in Figure 5(a)) due to the 
pre-trained VGG-16 model is trained by a later-scale dataset of VIS image. 
However, IR image obtains more rich features at middle-level layers (see block 
dotted line with squares in Figure 5(a)) than high-level layers for ship recogni-
tion. The main reason is that IR images are different from VIS images, such as 
high contrast, low resolution and insufficient details. Meanwhile, we evaluate the 
effect on recognition accuracy of the two feature vector normalization methods. 
Figure 5(a) shows that L2 normalization improves the recognition performance 
of IR image at almost all layers (see blue dotted line with diamonds in Figure 
5(a)). The main reason may be that IR images have more noise and are more 
blurry than VIS images, and L2 normalization eliminates the influence of these 
small values. 

Thirdly, we evaluate the recognition performance of the fine-tuned models. 
For convenience, the pre-trained VGG-16 model without fine-tuning is shorted  

https://doi.org/10.4236/jcc.2020.811003


X. H. Qiu et al. 
 

 

DOI: 10.4236/jcc.2020.811003 34 Journal of Computer and Communications 
 

 
Figure 4. The accuracy and loss curves of the pre-trained VGG-16 model with fine-tuning on IR images. Rows 1 - 4 correspond 
Type 1 - 4 in Table 2, respectively. Columns 1 - 2 are accuracy and loss curves of model fine-tuned on IR images without data 
argumentation, and columns 3 - 4 are accuracy and loss curves of model fine-tuned on IR images with data argumentation. 
 

 
Figure 5. Evaluation feature representation ability of different layers on the pre-trained and fine-tuned VGG-16 model for VIS 
and IR images. (a) shows the evaluation of L2 normalization based on the pre-trained VGG-16 model without fine-tuning, (b) and (c) 
show the performance evaluation of fine-tuned models. (a) Without fine-tuning; (b) Without normalization; (c) L2 normalization. 
 

as NOFT, the pre-trained VGG-16 model with fine-tuning on VIS images is 
shorted as FTVIS, and the pre-trained VGG-16 model with fine-tuning on IR 
images is shorted as FTIR. Figure 5(b) and Figure 5(c) show the comparison of 

https://doi.org/10.4236/jcc.2020.811003


X. H. Qiu et al. 
 

 

DOI: 10.4236/jcc.2020.811003 35 Journal of Computer and Communications 
 

fine-tuned and pre-trained models without or with normalizations. Fine-tuning 
model on VIS images doesn’t obviously improve the performance of layers on 
VGG-16 model (see red line with rounds in Figure 5(b) & Figure 5(c)). 
Fine-tuning model on IR images also doesn’t obviously improve the perfor-
mance of C2 - C4 layers on VGG-16 model, therefore it indicates that the 
low-level and middle-level layers of pre-trained VGG-16 model has strong ge-
neralization performance. However, it can be found that the recognition accu-
racy of C5, F6 and F7 layers on FTVIS and FTIR fine-tuned models are better 
than those of the NOFT model (see blue dotted line with diamonds and red dot-
ted line with rounds in Figure 5(b) and Figure 5(c)). Thus, NOFT is taken as 
the feature extractor of VIS images, but the feature extractors of IR images are 
NOFT, FTIR and FTVIS. Therefore, the three combinations of feature extractors 
for VIS and IR images are investigated, as shown in Table 3. 

4.3.2. Evaluation of Four Fusion Architectures 
Firstly, we investigate the recognition performance of Early Fusion, Halfway Fu-
sion and Late Fusion by using L2 normalization method along with three com-
binations. Due to feature extraction and feature fusion at the same layer for these 
three fusion architectures, feature is normalized for SVM classifier after features 
are fused. Figure 6 shows the recognition accuracy of three fusion architectures 
by using L2 normalization method. For an intuitive comparison, that of feature 

 
Table 3. The three combinations of the different VGG-16 models taken as feature ex-
tractors for VIS and IR image. 

Combination 
Feature extractors of VIS and IR images 

VIS IR 

Combination 1 NOFT NOFT 

Combination 2 NOFT FTIR 

Combination 3 NOFT FTVIS 

Notes: NOFT denotes the pre-trained VGG-16 model without fine-tuning, FTVIS denotes the pre-trained 
VGG-16 model with fine-tuning on VIS images, and FTIR denotes the pre-trained VGG-16 model with 
fine-tuning on IR images. 

 

 
Figure 6. Evaluation recognition accuracy of Early Fusion, Halfway Fusion and Late Fusion in three combinations. (a) Combina-
tion 1 (VIS-NOFT, IR-NOFT), (b) Combination 2 (VIS-NOFT, IR-FTIR), (c) Combination 3 (VIS-NOFT, IR-FTVIS). (a) Com-
bination 1; (b) Combination 2; (c) Combination 3. 
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fusion without normalization are also shown in Figure 6. As shown in the fig-
ure, using L2 normalization method greatly degenerate the recognition accuracy 
of feature fusion at C4 layer, but significantly improve at C5, F6 and F7 layers. It 
indicates that L2 normalization method facilitates feature representation of se-
mantic information. Moreover, Late Fusion at F6 layer using L2 normalization al-
most achieves the best recognition accuracy among the three fusion architectures. 

Secondly, Hybrid Fusion is compared to Late Fusion, which is the best of the 
above three fusion architecture. Hybrid Fusion integrates high-level feature of 
VIS image and middle-level feature of IR image, and there is the large gap of 
values at different layers, thus the extracted features are normalized before being 
fused. Table 4 shows the recognition accuracy of Late Fusion and Hybrid Fusion 
with L2 normalization method in three combinations. For each combination, 
Hybrid Fusion (F6C3) and Hybrid Fusion (F6C4) are better than Late Fusion 
(F6F6), but Hybrid Fusion (F6C5) is worse than Late Fusion (F6F6). Besides, 
Hybrid Fusion at F7 layer are also better than Late Fusion (F7F7) in all combina-
tions. 

4.3.3. Comparison with Other Reported Methods 
We compare the proposed Hybrid Fusion with four methods for paired images: 
1) the baseline method (CNN + Gnostic Fields) [10], 2) Multimodal CNN [41], 
3) DyFusion [42], 4) SF-SRDA [43], and with three methods for VIS images in 
the paired images: 5) MFL (feature-level) + ELM [38], 6) CNN + Gabor + 
MS-CLBP [36], 7) ME-CNN [40], and with one method for all time IR images: 8) 
ELM-CNN [31]. Table 5 shows the comparison results using the mean pre-class 
recognition accuracy as evaluation measure. As shown in Table 5, Hybrid Fusion 
(F6C3) is 2.2% higher than the baseline method, outperforms the state-of-the-art 
(DyFusion) by 1.4% in daytime, and boosts the baseline method by 3.9% on  

 
Table 4. The recognition accuracy (%) of Late Fusion and Hybrid Fusion with L2 norma-
lization method in three combinations. 

Fusion 
Architecture 

Combination 1 Combination 2 Combination 3 

VIS IR VIS + IR VIS IR VIS + IR VIS IR VIS + IR 

LF(F6F6) 86.9 65.9 88.2 86.9 66.9 85.8 86.9 65.4 88.3 

HF(F6C3) 86.9 69.6 88.7 86.9 69.0 89.6 86.9 67.6 88.5 

HF(F6C4) 86.9 72.9 89.1 86.9 71.4 88.3 86.9 72.5 88.9 

HF(F6C5) 86.9 68.7 85.8 86.9 70.1 85.3 86.9 73.8 87.4 

LF(F7F7) 81.6 64.3 83.1 81.6 67.9 82.0 81.6 66.8 84.5 

HF(F7C3) 81.6 69.6 85.6 81.6 69.0 86.7 81.6 67.6 85.4 

HF(F7C4) 81.6 72.9 88.0 81.6 71.4 86.5 81.6 72.5 87.2 

HF(F7C5) 81.6 68.7 84.3 81.6 70.1 84.3 81.6 73.8 86.3 

Notes: Abbreviated symbol LF (F6F6) represents Late Fusion combining F6 layer features of VIS and IR 
images, the same as to LF (F7F7). Abbreviated symbol HF (F6C3) represents Hybrid Fusion combining F6 
layer feature of VIS and C3 layer feature of IR, the same as to others. Bold denotes the recognition accuracy 
is the best one in the same combination. 
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Table 5. Comparison of recognition accuracy (%) with other results reported on the 
VAIS dataset. 

Method 
Daytime Nighttime 

IR 
All time 

IR VIS IR VIS + IR 

CNN + Gnostic Fields [10] 81.0 56.8 87.4 61.0 - 

MFL (feature-level) + ELM [38] 87.6 - - - - 

CNN + Gabor + MS-CLBP [39] 88.0 - - - - 

ME-CNN [40] 87.3 - - - - 

ELM-CNN [41] - - - - 61.2 

Multimodal CNN [41] 80.2 63.5 86.7 - - 

DyFusion [42] - - 88.2 - - 

SF-SRDA [43] 87.6 74.7 88.0 57.8 71.0 

Combination 1 Late Fusion (F6F6) 86.9 65.9 88.2 46.8 51.7 

Combination 1 Hybrid Fusion (F6C4) 86.9 72.9 89.1 57.1 68.4 

Combination 2 Hybrid Fusion (F6C3) 86.9 69.0 89.6 64.9 68.6 

Notes: For ship recognition on nighttime and all time IR images, Hybrid Fusion (F6C3) extracts the features of 
IR images from the F6 and C3 layers of the per-trained or fine-tuned VGG-16 model, the same as F6C4, but 
Late Fusion (F6) extracts the features of IR images only from the F6 layer. Bold denotes the best one. 

 
nighttime IR images. Furthermore, Hybrid Fusion performs better than Late Fu-
sion (F6F6) on daytime, nighttime and all time IR images. Although SF-SRDA 
method achieves higher accuracy than our proposed fusion models on daytime 
and all time IR images, Hybrid Fusion (F6C3) outperforms it by 1.6% on mul-
tispectral image and by 7.1% on nighttime IR images. Therefore, the proposed 
fusion models are more suitable for ship recognition on multispectral image 
than other methods. Note that combination 1 requires no training at feature ex-
traction stage and is efficient, but combination 2 and combination 3 need a long 
time to fine-tune VGG-16 model, and some training tricks should be well used 
during fine-tuning on small-scale dataset. 

In addition, normalized confusion matrices for Hybrid Fusion (F6C3) of 
combination 2 are shown in Figure 7. As shown in Figure 7(a), all categories 
except for medium-other and tug are above 92% accuracy. Medium-other 
achieves only 64% because it is often confused with passenger and small ships. 
Besides, tug achieves only 60% in Hybrid Fusion (F6C3) due to it has less train 
samples than other classes (see Table 1) and being also confused with passenger 
and small ships. Nighttime IR images provide contour and few details of ship 
due to blur, low resolution and large pixels range, it is difficult to classify ship 
category on them. For normalized confusion matrix on nighttime IR images 
shown in Figure 7(b), Hybrid Fusion (F6C3) performs worst on medium-other, 
which is misclassified as cargo by 50% and as passenger by 43% because they 
have similar contours. This also affects the recognition accuracy on all time IR 
images, as shown in Figure 7(c). Figure 8 gives some visual examples, which are  
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Figure 7. Normalized confusion matrices for the best proposed performing recognition models. (a) Normalized confusion matrix 
for Hybrid Fusion (F6C3) in combination 2, (b) and (c) are normalized confusion matrices for Hybrid Fusion (F6C3) on night-
time and all time IR images, respectively. (a) Hybrid Fusion (F6C3); (b) On nighttime IR images; (c) On all time IR images. 
 

 
Figure 8. Some visual examples are misclassified by using either of VIS and IR images 
while correctly classified by using multispectral images. (a) Hybrid Fusion (F6C3) in 
combination 2; (b) Hybrid Fusion (F6C4) in combination 1. 

 
misclassified by using either of VIS and IR images, but correctly classified by 
using multispectral images. 

5. Discussion 

It is not an easy work to use small-scale dataset to fine-tune the VGG-16 model 
trained on large-scale dataset like ImageNet, specifically for IR images because of 
the differences in imaging principle and technique between them. Some existing 
regularization techniques are used to avoid over-fitting problem in our experi-
ment, however, data argumentation using image transformation causes strong 
correlation between samples, and don’t improve the performance of model for 
small-scale dataset. Besides, early stopping is also taken as regularization tech-
nique to avoid over-fitting in our experiment, but it often stops before the model 
converges when we fine-tune the pre-trained model on IR images. L2 weight de-
cay is sensitive to the manual value, if the value is set too small, it cannot restrain 
the loss raise. In a word, if small-scale dataset like VAIS is used to fit the 
large-scale parameters of deep CNN like VGG-16, data argumentation is neces-
sary. Generative adversarial networks [49] [50] may be an effective tool to pro-
duce the paired VIS-IR images and increase training samples. 
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We investigate the feature fusion performance of the pre-trained and fine-tuned 
VGG-16 models for multispectral images, and no techniques are used to project 
high-dimension feature into fewer dimension space. Our work is meaningful to 
future work for multispectral maritime ship recognition. For example, our work 
based on the pre-trained VGG-16 model, can be easily extended on the other 
pre-trained deep CNN models, such as VGG-19 model, Inception model [16] 
and ResNet model [17]. Besides, researchers can leverage unsupervised feature 
learning methods to reduce feature dimension, such as principal components 
analysis, and also embed Network-in-Network (NIN) [51] for fine-tuning the 
well-known pre-trained deep CNN models. Furthermore, the baseline method 
and the state-of-the-art method [42] adapt the decision level fusion for ship rec-
ognition, and extract features from the last fully connected layer of the 
pre-trained VGG-16 model and the last convolutional layer of the pre-trained 
VGG-19 model, respectively. Based on our experimental results, features ex-
tracted from the same layer of the pre-trained deep CNN model are not the best 
for both VIS and IR images. We believe that our work can be further investi-
gated in the decision level fusion. 

6. Conclusion 

In this paper, we take advantage of the deep CNN model and multispectral data, 
and model multispectral ship recognition task into a convolutional feature fu-
sion problem. We propose a feature fusion architecture, namely Hybrid Fusion, 
and investigate it as well as other three feature fusion architectures by exploiting 
L2 normalization method. Meanwhile, we use existing regularization techniques 
to fine-tune the pre-trained VGG-16 model on VIS and IR images in VAIS da-
taset, and investigate the ship recognition performance of three combinations. 
Experimental results demonstrate that feature representation ability is strong at 
high level of the pre-trained VGG-16 model for VIS image, and middle level for 
IR image. In the four feature fusion architectures, Hybrid Fusion performs better 
recognition accuracy than the other three feature fusion architectures. Besides, 
fine-tuning the pre-trained VGG-16 model can learn semantic information of 
ship, and slightly improve the recognition performance of Hybrid Fusion. The 
best Hybrid Fusion achieves 89.6% mean per-class recognition accuracy, and 
outperforms the state-of-the-art method. Our future work focuses on unsuper-
vised feature learning and decision level fusion. 
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