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Abstract 
Because of their high efficiency, antibiotics have long been the primary 
treatment for infections, but the rise of drug-resistant pathogens has become 
a therapeutic concern. Nanoparticles, as novel biomaterials, are currently 
gaining global attention to combat them. Drug-resistant diseases may need 
the use of nanoparticles as a viable therapeutic option. By altering target loca-
tions and enzymes, decreasing cell permeability, inactivating enzymes, and 
increasing efflux by overexpressing efflux pumps, they can bypass conven-
tional resistance mechanisms. Therefore, understanding how metal and metal 
oxide nanoparticles affect microorganisms that are resistant to antimicrobial 
drugs is the main objective of this review. Accordingly, the uses of metal and 
metal oxide nanoparticles in the fight against drug-resistant diseases appear 
promising. However, their mechanism of action, dose, and possible long-term 
effects require special attention and future research. Furthermore, repeated 
use of silver nanoparticles may cause gram-negative microorganisms to ac-
quire resistance, necessitating additional study. 
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1. Introduction 

Following the discovery of penicillin in 1928, many additional antibiotics were 
discovered and commercialized. Antimicrobial components and therapy, on the 
other hand, have marked a watershed moment in medicine, saving millions of 
lives. The rise in morbidity and mortality associated with microbial infections 
has been related to the evolution of multidrug-resistant microorganisms. Anti-
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microbial resistance has become serious in recent years, posing a major public 
health hazard worldwide. The absence of novel and effective antimicrobials is 
linked to the rise in multidrug resistance. Although antibiotic resistance exists 
naturally, it has been rapidly spreading in recent decades due to incorrect anti-
biotic use [1]. This has led to global initiatives to identify novel and more effec-
tive antimicrobial agents in addition to discovering novel and effective drug de-
livery and targeting methods. 

Antibiotics have long been the preferred strategy for treating infections due to 
their high efficacy, but the emergence of multidrug-resistant bacteria has be-
come a major clinical issue. Super bacteria, which evolved as a result of antibiotic 
overuse, are currently gaining attention due to their resistance to practically all an-
tibiotics [2]. Even though developing new antibiotics is costly and time-consuming 
[3], several studies have found that routinely used antibiotics are the primary 
cause of crucial multidrug-resistant pathogens [4]. Recently, multidrug-resistant 
pathogenic strains have appeared where most of the available antibiotics are not 
effective against these pathogens. Due to increasing microbial resistance to 
standard frontline antibiotics, studies on the antimicrobial activity of nanopar-
ticles have improved [5]. 

Nanotechnology is an attractive area in current biomedical applications and is 
recognized as the usage of nanoscale (1 - 100 nm) materials. Due to their prop-
erties, these materials can provide enhanced physicochemical and biological 
properties. Considerable attention has been given to nanomaterials due to their 
wide application in agriculture, pharmaceuticals, consumer products, transpor-
tation, energy, cosmetics, and, more importantly, antimicrobial agents. Metals 
and their oxide nanoparticles are naturally sourced materials that have been 
used against infectious pathogens since ancient times because of their therapeu-
tic and blocking effects [2]. Metals have been employed as antibacterial agents 
for thousands of years, with the oldest mention of copper salts as an astringent 
dating back to 1500 BC [6]. Metals and their oxide nanoparticles appear to hold 
the most promise of all nanoparticles and have piqued the curiosity of numerous 
researchers. Nanoparticles, as novel biomaterials, are currently attracting global 
attention as a way to fully achieve this feat. Drug-resistant illnesses may require 
the use of nanoparticles as a feasible therapeutic alternative [7]. The goal of this 
review is to learn more about the effects of metal and metal oxide nanoparticles 
on antimicrobial drug-resistant pathogens. 

2. Overview of Metallic and Metal Oxide Nanoparticles 

Nanotechnology is used in creating antibacterial, antifungal, antiplasmodial, an-
ti-inflammatory, anticancer, antiviral, antidiabetic, and antioxidant drugs in 
medicine. Microbes are less likely to develop resistance to nanoparticles (NPs), 
which implies they might be utilized to tackle the growing problem of antibiotic 
resistance, according to researchers [8] [9] [10]. They have antimicrobial action 
that can overcome common resistance mechanisms, such as enzyme inactiva-
tion, decreased cell permeability, alteration of target sites/enzymes, and en-
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hanced efflux through overexpression of efflux pumps, to escape antibacterial 
activity [11]. The use of nanoparticles could be a viable technique for treating 
infections caused by multidrug-resistant organisms (MDROs) [12]. 

Metallic nanoparticles have piqued the interest of scientists for over a century, 
and they are now widely used in biomedical research [13]. Nanotechnology em-
ploying nanoparticles has been the subject of extensive research in recent years. 
Nanoparticles such as copper, gold, and silver as well as zinc oxide, magnesium 
oxide, and titanium dioxide have been employed and modified for diagnostic 
and therapeutic purposes over the years. They are also efficient against sensitive 
and multidrug-resistant bacterial strains as nanobactericides and nanocarriers 
[14]. The electrical, optical, physical, chemical and thermal properties of NPs in-
fluence the production and utility of metal-derived materials. Some of these 
properties are important for medical applications, whereas others offer oppor-
tunities for industrial and environmental applications. 

NPs can be made in a variety of ways. The technique of synthesis determines 
the size, chemical composition, and form of these NPs. They might be biological 
or inorganic. Organic NPs, such as polymeric NPs, lipid-based nanocarriers, li-
posomes, carbon-based nanomaterials, and solid lipid NPs, are biodegradable, 
but inorganic NPs are made of inorganic materials such as metals and metal 
oxides such as silver oxide and zinc oxide [15]. However, controlling the size and 
form of monodispersed NPs with greater stability during synthesis is a major 
problem. Interestingly, various parameters, including NP size, shape, and con-
tent, influence the interaction between NPs and living cells/tissues [16]. They 
can be made in a variety of ways, including top-down and bottom-up approach-
es. The numerous methods for synthesizing NPs and their applications are de-
picted schematically in Figure 1. 

2.1. Silver Nanoparticles 

Among all nanoparticles, silver nanoparticles (AgNPs) are the most studied and 
commonly employed. They are currently regarded as next-generation antibiotics 
due to their excellent efficiency in suppressing bacteria [17]. It is the most fre-
quently used inorganic NP, accounting for more than 25% of all consumer items 
[18]. AgNPs are active antibacterial agents and can suppress the growth of anti-
biotic-resistant organisms at very low concentrations. It binds to membrane pro-
teins and bacterial DNA that contain phosphorus and sulfur complexes that at-
tract AgNPs. It also has antibacterial and bactericidal capabilities that are effective 
against Gram-positive and Gram-negative bacteria as well as methicillin-resistant 
strains [19]. The use of silver nanoparticles as antiseptics has resurfaced due to 
challenges and demands, which may be related to their broad-spectrum activity 
and lower potential to promote microbial resistance than antibiotics. AgNPs have 
also the following advantages: they can be synthesized using a variety of methods, 
can be used as biosensor materials, have optical properties, can improve wound 
healing, and can be used in the medical industry because of their antibacterial, an-
tifungal, antiviral, anti-inflammatory, and osteoinductive properties [20]. 
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Figure 1. A schematic illustration of several nanoparticle fabrications and application methods.  

 
The exact antibacterial actions of silver nanoparticles are unknown; nanopar-

ticles can continuously emit silver ions, which could be the process of germ-killing. 
Silver ions can stick to the cell wall and cytoplasmic membrane due to electrostatic 
attraction and affinity for sulfur proteins. The attached ions can increase the 
permeability of the cytoplasmic membrane, causing the bacterial envelope to be 
disrupted. Respiratory enzymes can be disabled once free silver ions are taken 
into cells, resulting in reactive oxygen species but no adenosine triphosphate 
synthesis [21]. Cell membrane rupture and deoxyribonucleic acid (DNA) alte-
ration can be triggered by reactive oxygen species. Because sulfur and phos-
phorus are key components of DNA, the interaction of silver ions with these 
elements can create issues with DNA replication, cell reproduction, and even 
microorganism death. Furthermore, silver ions can prevent protein production 
by denaturing ribosomes in the cytoplasm [21]. Silver nanoparticles can not 
only release silver ions but can also kill germs directly. After anchoring to the 
cell surface, silver nanoparticles can aggregate in pits that form on the cell wall 
[22]. 

Despite being regarded as next-generation antibiotics, research has shown that 
gram-negative microbes might become more resistant to silver nanoparticles af-
ter repeated exposure. The formation of the sticky protein flagellin by the flagel-
lum protein causes the nanoparticles to combine, which causes resistance. Only 
phenotypic alteration required to modify the colloidal equilibrium of the nano-
particles and, as a result, remove their antibacterial activities is this resistance. 
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AgNP may be stabilized as an alternative to polymers or surfactants to get past 
the resistance mechanism. However, the generation of flagellin is considerably 
reduced when pomegranate rind extract is used [23]. 

2.2. Gold Nanoparticles 

Because of their long history of medicinal applications, gold nanoparticles are 
the most important metal nanoparticles. Gold NPs come in a variety of sizes 
ranging from 2 to 100 nm, although particle sizes between 20 and 50 nm indi-
cated the best cellular uptake. 40 - 50 nm particles have been found to cause spe-
cific cell toxicity. During their synthesis and functionalization with different 
groups, the size can be controlled. The thiol/gold ratio determines the size of the 
conjugated nanoparticles [24]. The particle size will be small when the amount 
of thiol is large. Gold nanoparticles can be employed in a variety of applications, 
including odor elimination and the removal of hazardous carbon monoxide 
from rooms, emission management, water purification, power cells, and impor-
tant medicinal applications. These particles can enter tissues and assault im-
mune cells, such as lymphoid tissues, due to their small size, making them po-
tentially beneficial in immunotherapy [25]. Gold NPs have the following advan-
tages: they have unique physical and chemical features that improve drug effec-
tiveness, drug loading, biocompatibility, easy access to the targeted region with 
blood flow, are noncytotoxic to normal cells, and may be produced using a va-
riety of processes [26]. 

2.3. Copper Nanoparticles 

Copper nanoparticles have been shown to be highly effective antimicrobial 
agents. They are therefore of tremendous interest to scientists due to their 
unique biological, chemical, and physical properties, as well as their antibacterial 
capabilities and inexpensive cost of synthesis [27]. The synthesis methods are 
chosen to define the properties of CuONPs, which are critical for their applica-
tions in a variety of fields, the most common of which is biomedical research. 
The size of the nanoparticles, which can be modified during synthesis, is the 
most essential property since it allows for customized modeling of their optical, 
catalytic, electrical, and biological capabilities [28].  

They manifest differently depending on the various properties. CuO nanopar-
ticles can be used for a variety of purposes, all of which are influenced by their 
size, surface characteristics, optical, and magnetic properties, with the synthesis 
technique playing a significant role in controlling all of them, as well as their bi-
ological features. Doping materials in semiconductors, such as chemical sensors, 
antimicrobial agents, catalysts for various cross-coupling reactions, anticancer 
formulations, and coating materials, are only a few of these uses. It has potential 
biomedical applications in the future in disease detection, in addition to anti-
bacterial drugs, and could have prospective applications in a variety of other 
fields, such as the diagnosis of diseases [29]. 
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2.4. Zink Oxide Nanoparticles 

Various synthetic methods have been used to generate a variety of ZnO nano-
structures, including nanoparticles, nanowires, nanorods, nanotubes, nanobelts, 
and other complicated morphologies, due to their wide range of applications 
[30]. Zinc oxide has strong antibacterial capabilities. Rings, propellers, belts, and 
wires are just some of the morphologies that ZnONPs can take on [31]. Zinc 
oxide nanoparticles are inorganic metal oxides that can be used safely as medica-
tions, package preservatives, and antibacterial agents. It easily diffuses into food 
materials, killing germs and preventing illness in humans [32]. 

Zink oxide, like other nanoparticles, has a wide range of applications. Because 
biomolecules are extremely sensitive to pH and temperature in solution, metal 
oxide semiconducting nanoparticles are in high demand for applications in bio-
logical sensing, biological labeling, drug and gene delivery, and nanomedicines 
[33]. ZnO nanoparticles, in particular, can provide a superior solution for nu-
merous biological applications due to their ease of production, ecologically 
friendly nature, and nontoxic synthesis technique. The essential requirements 
for biological applications are the water solubility and biocompatibility of ZnO 
nanoparticles. 

Although the mechanisms of action responsible for the antimicrobial activity 
of ZnONPs are still unknown, some proposed mechanisms include the destruc-
tion of cell integrity caused by direct contact between ZnONPs and cell walls, the 
formation of reactive oxygen species (ROS), and the release of antimicrobial 
ions, primarily Zn2+ ions. Nonetheless, because the molecular composition of 
dissolved zinc is affected by media elements, the mechanism of ZnONP toxicity 
is most likely media-dependent. Zinc oxide nanoparticles are known to be anti-
bacterial and hinder the growth of germs by penetrating the cell membrane. Li-
pids, carbohydrates, proteins, and DNA are all damaged by oxidative stress. The 
most crucial factor that leads to changes in the cell membrane is lipid peroxida-
tion. 

2.5. Magnesium Oxide NPs 

By nature, magnesium oxide contains periclase minerals and has antibacterial 
qualities. Gram-positive and gram-negative bacteria are both susceptible to 
MgO’s antibacterial effects [34]. The mechanism of action of MgONPs is by da-
maging the cell membrane, causing the loss of intracellular contents and the 
death of bacterial cells. Additionally, the generation of reactive oxygen species 
has been attributed to the surface alkalinity of MgONPs. Because of their struc-
ture, surface characteristics, and stability, MgONPs with an average size of 20 
nm has considerable potential as antibacterial agents in food safety applications 
[35]. 

2.6. Titanium Dioxide NPs 

Titanium dioxide (TiO2) has fascinated many scientists and has provided a 
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wealth of information on its properties and uses [36]. Recently, researchers have 
focused on modified TiO2 nanoparticles because of their unique physical and 
chemical properties. As a result of increased attention, TiO2 nanoparticles are 
being used more effectively in a variety of areas, including therapeutic and med-
ical applications [37]. The antibacterial properties of TiO2 are determined by its 
crystal structure, shape, and size [38]. The formation of reactive oxygen species 
(ROS) is considered a particularly important process for TiO2 nanoparticles. 
ROS then causes DNA damage at specific sites [39]. 

3. Burden of Antimicrobial Drug Resilient Pathogens 

Antibiotics have dramatically changed the fate of mankind as well as the treat-
ment of infectious diseases. In contrast, antibiotic-resistant infections pose a sig-
nificant global public health threat due to increased prevalence and limited 
treatment options. These infections are primarily associated with extended hos-
pital stays, increased incidence of treatment complications, and extended treat-
ment periods, thus increasing the cost to patients. Antimicrobial resistance 
(AMR) is the ability of bacteria, viruses, fungi, and parasites to circumvent the 
efficacy of drugs that were once sensitive [40]. Antibacterial resistance is in-
creasing rapidly around the world. This growing concern about the public health 
burden of AMR raises conceptual and technical challenges and has driven medi-
cine to advance and save the lives of millions of people. Estimates of the disease 
burden specific to drug resistance are not currently available, but drug resistance 
is believed to contribute significantly to the burden of infectious diseases. Even 
between July 2017 and November 2021, the US Food and Drug Administration 
(FDA), the European Medicines Agency (EMA), or both authorized twelve novel 
antibacterial agents [41]. 

Resistance arises from malaria, HIV, tuberculosis and other bacterial infec-
tious diseases, which together make up a significant portion of the disease bur-
den in developing countries [42]. The global problem of antibiotic resistance is 
especially acute in developing countries, where the burden of infectious diseases 
is high and cost constraints prevent the widespread use of newer and more ex-
pensive drugs. Gastrointestinal, respiratory, sexual, and nosocomial infections 
are the leading causes of illness and death in developing countries, and the 
treatment of all these illnesses is severely affected by the emergence and rapid 
spread of drug resistance [43]. 

AMR has a widespread impact on the treatment of infectious diseases. This li-
mitation of treatment options often results in the need to rely on broad-spectrum 
antibiotics, some of which may be less effective or safer than narrow-spectrum an-
tibiotics. Tolerance also affects empirical treatment. When clinicians choose an-
tibiotics to treat infections without microbiological consequences, they may un-
derestimate the risks associated with certain infections or the use of inappro-
priate antibiotics. For example, meta-analysis results show that patients with 
bacteremia caused by resistant Enterobacteriaceae are five times more likely to 
be delayed in receiving effective treatment than patients infected with suscepti-
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ble strains [44]. This can compromise the long-term efficacy of antibiotics, delay 
access to effective treatments, increase treatment failure rates with associated 
complications, and ultimately lead to higher mortality rates. Research studies 
have consistently shown a longer stay, increased need for surgery, and increased 
mortality from infections caused by resistant Gram-positive and Gram-negative 
bacteria [45]. In 2019, six pathogens were each more causative of over 250,000 
AMR-related deaths: Escherichia coli, Staphylococcus aureus, K. pneumonia, S. 
pneumonia, Acinetobacter baumannii, and Pseudomonas aeruginosa, order of 
death. Together, these 6 pathogens accounted for 929,000 (95% UI 660,000 - 
1,270,000) 1.27 million deaths from AMR (0.911 to 1.71) of the 4.95 million 
deaths and 3.57 million (2.62 - 4.78) (3.62 - 6.57) deaths associated with AMR 
worldwide in 2019 [46]. Consequently, the present clinical pipeline for novel an-
timicrobial treatments, according to the World Health Organization, is insuffi-
cient to combat AMR. As a result, researchers calculated that there were 4.95 
million fatalities worldwide in 2019 (95 percent UI 3.62 to 6.57), in which AMR 
was likely a contributing factor [47].  

4. Effects of Different Metallic and Metal Oxide  
Nanoparticles against Pathogens 

Infectious diseases continue to be one of the world’s top causes of morbidity and 
mortality. Pathogen resistance to antibiotics has recently become increasingly 
common, posing critical health risks. Pathogens resistant to antibiotics have 
emerged as a serious public health problem, spurring a rush of studies to im-
prove current antimicrobial therapies. Metal and metal oxide nanoparticles are a 
class of materials that have been studied for their antibacterial properties [48]. 

Therefore, the antibiotic resistance crisis is one of the most pressing issues in 
global public health. The lack of new antimicrobials is associated with the rise in 
antibiotic-resistant pathogens. This has triggered initiatives worldwide to devel-
op novel and more effective antimicrobial compounds as well as to develop nov-
el delivery and targeting strategies. Antimicrobial resistance has evolved in a va-
riety of methods among bacteria. Enzyme inactivation, reduced cell permeabili-
ty, target protection, target overproduction, changed target site/enzyme, and 
enhanced efflux due to efflux pump overexpression are just a few examples [11]. 
Nanoparticles have several features that make them favorable vectors for drugs 
to combat disease-causing pathogens. These include their enhancement of drug 
solubility and stability; [49] their ease of synthesis; [50] their biocompatibility 
with target agents; and their modulated release, which can be controlled by sti-
muli, such as light, pH and heat [51]. 

4.1. Antimicrobial Effects of Different Metallic and Metal Oxide  
Nanoparticles 

The application of NPs provides a potential strategy to manage infections caused 
by MDROs [12]. In this respect, they have shown therapeutic promise owing to 
their unique physical and chemical attributes [52]. NPs exhibiting antibacterial 

https://doi.org/10.4236/jbnb.2023.141001


G. Waktole, B. Chala 
 

 

DOI: 10.4236/jbnb.2023.141001 9 Journal of Biomaterials and Nanobiotechnology 
 

activities can target multiple biomolecules and have the potential to reduce or 
eliminate the evolution of MDROs [53]. However, the translation of NPs to 
clinical use requires not only appropriate methods for the synthesis of NPs but 
also a thorough understanding of the physicochemical particularities, in vitro 
and in vivo effects, biodistribution, pharmacokinetics, and pharmacodynamics 
of NPs [54]. 

Nanoparticles possess antimicrobial activity that can overcome common re-
sistance mechanisms, including enzyme inactivation, decreased cell permeabili-
ty, modification of target sites/enzymes, and increased efflux through overexpres-
sion of efflux pumps, to escape the antibacterial activity of antimicrobial agents. 
Moreover, they conjugated with antibiotics show synergistic effects against bacte-
ria, prohibit biofilm formation and have been utilized to combat multidrug resis-
tant organisms [3]. The antimicrobial effects of selected metals and their oxide 
nanoparticles are reviewed as follows. 

Silver NPs have shown good antibacterial properties due to the release of Ag+ 
ions, which likely interact with thiol and phosphate groups in proteins and DNA 
of the pathogens. This interaction disrupts the cell wall integrity, impairing es-
sential enzymes, inactivating pathogens’ DNA and RNA, or binding subcellular 
components [55]. Another study found that silver nanoparticles have high anti-
bacterial activity against Escherichia coli, with a minimum inhibitory concentra-
tion of 128 mol/L, but no activity against S. aureus. This high antibacterial activ-
ity is also maintained against two multidrug-resistant E. coli strains [56]. 

Burduniuc et al. [57] demonstrated the high antifungal activity of silver na-
noparticles in vitro against 100 different clinical isolates belonging to 19 species and 
5 genera. They suggest further investigation in vivo and proper standardization, 
stabilization, and toxicology to make them applicable as antimicrobials/antifungals. 
The authors demonstrate that silver nanoparticles have relatively uniform anti-
fungal activity against all tested fungal isolates at relatively close concentrations. 
Mussin and his colleagues demonstrated broad-spectrum antimicrobial proper-
ties with the fungicidal action of AgNPs and their accumulation in affected areas 
with a sustained release profile, which added to the great antifungal activity of 
ketoconazole (KTZ) against Malassezia infections and other superficial mycoses, 
allowed us to obtain a gel based on carbopol formulated with AgNP–KTZ with 
the potential to improve the topical therapy of superficial malasseziosis, reduce 
the number of applications and prevent recurrence [58]. 

Jeremiah et al. [59], evaluated the antiviral effect of AgNPs. They evaluated a 
surplus of AgNPs of different sizes and concentrations and observed that par-
ticles with diameters of approximately 10 nm were effective in inhibiting extra-
cellular SARS-CoV-2 at concentrations ranging between 1 and 10 ppm, while a 
cytotoxic effect was observed at concentrations of 20 ppm and above. A lucife-
rase-based pseudovirus entry assay revealed that AgNPs potently inhibited viral 
entry steps by disrupting viral integrity. These results indicate that AgNPs are 
highly potent microbicides against SARS-CoV-2. Finally, they suggest that it 
should be used with caution due to its cytotoxic effects and its potential to de-
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range environmental ecosystems when improperly disposed of. 
Nguyen et al. [60], compared the efficacy of MgONP against nine prevalent pa-

thogenic microorganisms, including two gram-negative bacteria, three gram-positive 
bacteria with drug-resistant strains, and four yeasts with drug-resistant strains. The 
MIC of MgONP varied from 0.5 mg/mL to 1.2 mg/mL, and the minimal lethal con-
centration (MLC) of MgONP at 90% killing varied from 0.7 mg/mL to 1.4 mg/mL 
against different pathogenic bacteria and yeasts. The most potent concentrations 
(MPCs) of MgONPs were 1.4 and/or 1.6 mg/mL, depending on the type of bacte-
ria and yeasts tested. As the concentration of MgONPs increased, the adhesion of 
bacteria and yeasts decreased. Moreover, S. epidermidis biofilms were disrupted 
at 1.6 mg/mL MgONPs. E. coli and some yeasts showed membrane damage after 
being cultured with ≥0.5 mg/mL MgONPs. Overall, MgONPs killed both plank-
tonic bacteria and disrupted nascent biofilms, suggesting new antimicrobial 
mechanisms of MgONPs. The production of reactive oxygen species (ROS), Ca2+ 
ion concentrations, and quorum sensing likely contribute to the action mechan-
isms of MgONPs against planktonic bacteria, but transient alkaline pH of 7 to 10 
or increased Mg2+ ion concentrations from 1 to 50 mM showed no inhibitory or 
killing effects on bacteria such as S. epidermidis. They suggest further studies to 
determine if specific concentrations of MgONPs at MIC, MLC, or MPC levels 
can be integrated into medical devices to evoke desired antimicrobial responses 
without harming host cells. 

MgONPs have been examined for their antibacterial efficacy and mode of ac-
tion against Campylobacter jejuni, E. coli, and Salmonella enteritidis strains. The 
study found that following exposure to MgONPs, the permeability of the bacterial 
membrane was disrupted, resulting in the presence of hydrogen peroxide, which 
caused cell death. Studies of P. aeruginosa and S. aureus versus MgONPs revealed 
that S. aureus had a larger inhibitory zone than P. aeruginosa. The authors spe-
culate that the bactericidal effect of MgONPs is related to the binding of surface 
oxygen to bacteria. MgONP-modified glass-ionomer cement (GIC) demonstrated 
effective antibacterial and antibiofilm action against two cariogenic microorgan-
isms, according to Noori and Kareem, and could be considered for further re-
search as a biocompatible antibacterial dental restorative cement [61]. 

Additionally, MgONPs were tested against the gram-negative bacteria Escheri-
chia coli and Pseudomonas aeruginosa (500 and 1000 g/ml) and the gram-positive 
bacterium Staphylococcus aureus (1000 g/ml) by Pugazhendhi et al. [62], Ultra-
sound-induced lipid peroxidation in liposome membranes was increased by 
MgONPs. The mechanism of action in this situation could be connected to the 
existence of surface flaws or a lack of oxygen in the NP, which causes lipid pe-
roxidation and the generation of reactive oxygen species. The permeability of the 
bacterial membrane was decreased following exposure to MgONPs, the presence 
of hydrogen peroxide was detected, and finally, cell death occurred. 

Usman et al. [63] evaluated the antibacterial and antifungal activities of 
Cu-chitosan nanoparticles on several microorganisms, including methicil-
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lin-resistant S. aureus, B. subtilis, P. aeruginosa, Salmonella choleraesuis, and C. 
albicans, and indicated the high potential of these nanoparticles as antimicrobial 
agents. However, the rapid oxidation of Cu nanoparticles upon exposure to air 
limits their application. Additionally, the antibacterial activity of CuO nanopar-
ticles against Klebsiella pneumoniae, P. aeruginosa, Salmonella paratyphi and 
Shigella strains was evaluated by Mahapatra et al. [64], who reported the poten-
tial antibacterial activity of nanoparticles against the mentioned bacterial strains. 
They also believe that bacterial cell membrane crossing ability and then damag-
ing the vital enzymes bacteria of the nanoparticles might be the main factor for 
bacterial death. 

Additionally, other researchers also investigated and reported the antibacterial 
activities of CuO nanoparticles against two gram-positive bacteria (S. aureus and 
B. subtilis) and two gram-negative bacteria (Pseudomonas aeruginosa and E. co-
li). Accordingly, they concluded that CuO nanoparticles exhibited inhibitory ef-
fects against both groups of the mentioned bacterial strains, and the bactericidal 
activity of these nanoparticles depended on their size, stability, and concentra-
tion added to the growth medium [65]. CuONPs showed excellent antimicrobial 
activity against various bacterial strains (Escherichia coli, Pseudomonas aerugi-
nosa, Klebsiella pneumonia, Enterococcus faecalis, Shigella flexneri, Salmonella 
typhimurium, Proteus vulgaris, and Staphylococcus aureus). Moreover, E. coli 
and E. faecalis exhibited the highest sensitivity to CuONPs, while K. pneumonia 
was the least sensitive [24]. Another study revealed that VeA-CuO NPs were 
synergistic in their influence versus bacterial strains, S. aureus, E. coli, P. aeru-
ginosa, and E. aerogenes. The uppermost zone of inhibition of 15 mm was ob-
served for E. aerogenes. The bioactive compounds capped around the CuO NPs 
served an effective role in disrupting the cell wall of bacterial strains [66]. 

ZnO nanoparticles showed bactericidal effects on gram-positive and 
gram-negative bacteria as well as spores that are resistant to high temperature and 
high pressure [67]. The improved antibacterial activity of ZnO nanoparticles 
compared to its microparticles was related to the surface area enhancement in 
the nanoparticles. Janaki et al. [68] investigated the antibacterial activity of ZnO 
nanoparticles with various particle sizes. Their results demonstrated that the 
bactericidal efficacy of ZnO nanoparticles increased with decreasing particle size. 
A comparative investigation of the antimicrobial activity of ZnO, CuO, and 
Fe2O3 nanoparticles against gram-negative (E. coli and P. aeruginosa) and 
gram-positive (S. aureus and B. subtilis) bacteria was reported by Azam & Oves 
[65]. According to their results, the most bactericidal activity was reported for 
the ZnO nanoparticles, while Fe2O3 nanoparticles exhibited the least antibacteri-
al effect. Meron and her colleagues synthesized ZnO nanoparticles using Lippia 
adoensis leaf extract and obtained promising results against both Gram-positive 
and Gram-negative bacterial strains with maximum inhibition zones of 14 mm 
and 12 mm, respectively, using the uncalcinated form of the synthesized ZnO 
nanoparticles [69]. 

Jesline et al. [70], evaluated the effect of TiO2 nanoparticles with different an-
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tibiotics against methicillin-resistant S. aureus (MRSA). They reported that TiO2 
nanoparticles improved the antimicrobial effect of beta lactums, cephalosporins, 
aminoglycosides, glycopeptides, macrolides, lincosamides, and tetracycline 
against MRSA. In another experiment, the antimicrobial resistance of MRSA 
against various antibiotics decreased in the presence of TiO2 nanoparticles. 
Carré et al. [71], considered that antibacterial photocatalytic activity was ac-
companied by lipid peroxidation that enhanced membrane fluidity and dis-
rupted cell integrity. However, the use of TiO2 nanoparticles under UV light is 
restricted because of genetic damage in human cells and tissues. 

Ansari and his colleagues presented an innovative and creative sustainable 
technique for the fabrication of titanium (TiO2) using Acorus calamus leaf ex-
tract as a new biogenic source, as well as a capping and reducing agent. The an-
timicrobial efficacy of the prepared nanoparticles was investigated using the disc 
diffusion technique. Furthermore, biosynthesized TiO2 showed excellent anti-
microbial activity against selected gram-positive staining (B. subtilis, S. aureus) 
against gram-negative (P. aeruginosa, E. coli) pathogenic bacteria in comparison 
to bare TiO2 [72]. 

The antibacterial property of gold (AuNPs) has recently been a major research 
topic, making them good candidates for antibiotic complementation. The anti-
bacterial activity of AuNPs is mediated by the development of holes in the bac-
terial cell wall, resulting in cell death due to the loss of cell contents. Further-
more, AuNPs can inhibit multidrug-resistant pathogens by attaching to bacterial 
DNA and blocking the uncoiling of DNA during transcription by binding to 
bacterial DNA. The antibacterial activity of PG-AuNPs was found to be strong 
against gram-negative bacteria and moderate against gram-positive bacteria. 
Based on the results, it was concluded that AuNPs could be used to combat anti-
biotic drug resistance. In addition, in vitro and in vivo toxicity studies of AuNPs 
should be conducted [73]. 

An antimicrobial strategy using self-therapeutic AuNPs to combat multi-
drug-resistant bacteria was reported by Li and his colleagues. Cationic and hy-
drophobic functionalized AuNPs effectively suppressed the growth of 11 clinical 
MDR isolates, including both Gram-negative and Gram-positive bacteria. The 
NP ligand structure-activity relationship revealed that surface chemistry played 
an important role in AuNP antimicrobial properties, providing a design element 
for the prediction and rational design of new antibiotic NPs. Because of their ef-
fective antibacterial action on MDR bacteria, excellent biocompatibility, and 
gradual development of resistance, cationic hydrophobic nanoparticles are a 
promising long-term method for treating multidrug-resistant bacteria, a major 
healthcare concern [74]. 

4.2. Anti-Parasitic Effects of Different Metallic and Metal Oxide  
Nanoparticles 

In vitro and in vivo, Adeyemi and his colleagues examined the anti-parasite po-
tential of nanoparticles. They tested numerous nanoparticles (NPs) for antipara-

https://doi.org/10.4236/jbnb.2023.141001


G. Waktole, B. Chala 
 

 

DOI: 10.4236/jbnb.2023.141001 13 Journal of Biomaterials and Nanobiotechnology 
 

sitic activity against several Trypanosoma species as well as Toxoplasma gondii 
[75]. Biogenic production of metallic NPs such as silver, gold, copper, and zinc 
using different biological materials has antimalarial potential against diverse 
Plasmodium species. Anselmo et al. [76], reviewed that the Mosquitocidal activ-
ity of metallic NPs has been described at different stages of the insect’s life cycle 
with increased pesticide efficacy compared to plant-based preparations. Thus, 
the half-lethal concentration, LC50, of synthesized AgNPs estimated for eggs, 
larvae, pupae, and adults is between 1 and 40 mg·ml−1, which is a much lower 
value than that observed for the corresponding plant extracts. AgNPs have been 
mainly applied as larvicides but are also active as ovicides, adulticides, and pupi-
cides. It is important to note that they do not show toxicity for nontarget organ-
isms. Other effects of AgNPs are to reduce mosquito longevity and fecundity as 
well as to act as a lure and kill approach. This has been observed for AgNPs syn-
thesized from a plant that provides capping with metabolites that are attractive 
to a kind of mosquito. 

Glc-NCs are glucose-based ultrasmall gold nanoparticles that bind to the 
cysteine-rich areas of Plasmodium falciparum surface proteins. Glc-NCs bind 
selectively to extracellular and intraerythrocytic phases of P. falciparum, accord-
ing to microscopy. As shown with ciprofloxacin, a weakly soluble antibiotic with 
low antimalarial action, Glc-NCs can be employed as drug delivery agents. Ci-
profloxacin conjugated to Glc-NCs is more water-soluble and powerful than the 
free drug. Malaria prevention and therapy could benefit from glyco-gold nano-
particles that target parasite cysteine-rich domains [77]. 

There is a wide range of metallic nanoparticles that are being used for anti-
leishmanial activity, providing minimal toxicity and high efficacy [78]. Zinc 
oxide nanoparticles (ZnONPs) are massively produced and used. A study was 
conducted in which ZnONPs were employed in varying concentrations (0.18, 
0.37, 0.75, and 1.5 µg/mL) against the amastigote form of Leishmania, L. dono-
vani, in in vitro culture. The results were analyzed by colorimetric assay, which 
suggested that ZnONPs exerted a cytotoxic effect on the amastigote cells, caus-
ing hindrance in their proliferation and suppression of the activity of L. donova-
ni. The study suggests that ZnONPs could be a cost-effective means against an-
ti-leishmanial drug development [79], prepared ZnONPs from Verbena officina-
lis and Verbena tenuisecta plant leaf extracts. The results suggest that V. offici-
nalis had a higher phenolic content. Both plant ZnONPs were tested for an-
ti-leishmanial activity, whereas the V. officinalis ZnONPs had better activity due 
to the greater phenolic content and smaller size compared to V. tenuisec-
ta-mediated ZnONPs [80]. 

5. Limitations of Metallic and Oxide NPs 

Metal and metal oxide NPs have innumerable applications in addition to acting 
as antimicrobials in end uses as varied as medical diagnostics, therapeutics, sen-
sors, cosmetics, solar cells, and coatings. Despite the high benefits and frequent 
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use of these particles, there are still concerns about their potential risks and side 
effects. Some particles have boosted toxicology in this area, owing to the impor-
tance of trying to minimize the potential risks of these drugs and materials on 
human cells and tissues, as well as the environment [81]. 

In contrast, concerns with the usage of NPs include local and systemic toxic 
consequences, as well as negative effects on beneficial microbes in humans. He-
molysis and interference with blood coagulation pathways can be caused by both 
NPs and their hazardous breakdown products. Although the specific mechanism 
of toxic consequences is unknown, it has been established that the larger the NP 
is, the higher the chance of negative health effects [3]. Furthermore, it has been 
shown that NPs exert antibacterial activity by releasing heavy metals, which 
cause oxidative stress in humans and can cause a variety of physiological, bio-
chemical, and behavioral dysfunctions. To better understand the harmful con-
sequences of metallic NPs, more research is needed. As a result, the therapeutic 
use of NPs still faces numerous hurdles. 

Among the metallic NPs, the toxicity of AgNPs has been extensively studied. 
Although most studies have been conducted in vitro, it has been shown to be 
more toxic to cell lines [82]. It is well known that AgNPs can accumulate in the 
human body and various organs, especially the brain, due to their ability to cross 
the blood‒brain barrier. AgNP was also identified in the lungs, spleen, kidneys, 
liver, and brain of exposed rats. In mammalian cell lines, zinc-based nanomate-
rials have been shown to produce toxicity and membrane damage, as well as en-
hance oxidative stress [83]. TiO2 is hazardous to DNA damage, genotoxicity, 
pneumonia, and other diseases and hence has a negative impact on nanomor-
phology. In addition, many NPs are coated with a flexible hydrophilic polymer, 
usually containing polyethylene glycol, allowing these particles to circulate long-
er. Oxidative damage to CuONPs and DNA damage induced by ZnONPs or 
TiO2NPs limit their use [51]. Intravenously administered NPs can accumulate in 
the colon. The effects of NP on biological systems are not fully understood. 
Therefore, the harmful effects and limitations of NP need to be carefully studied 
[84]. 

6. Conclusion and Future Perspectives 

The ability of metallic and oxide nanoparticles to inhibit pathogenic strains, as 
well as their mechanisms of action, is, in contrast, less understood. Both nano-
particles seem promising in the fight against drug-resistant diseases because of 
their distinctive properties and low cost of in vitro synthesis. As a result, they 
can lessen the activation of bacterial resistance and boost the effectiveness of an-
timicrobial therapy. Since both efflux pumps and enzymes must be deactivated 
simultaneously, ROS production, permeability changes, protein and DNA break-
down, and cell wall and membrane damage follow. However, gram-negative mi-
crobes may develop a resistance to silver nanoparticles after repeated treatment, 
which may call for further research. Additionally, their mode of action, dose, 
and long-term effects demand additional consideration and research. 
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