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Abstract 
Radiotherapy (RT) is a common and effective non-surgical treatment for 
thoracic solid tumors, and radiation-induced lung injury (RILI) is the most 
common side effect of radiotherapy. Even if RT is effective in the treatment of 
cancer patients, severe radiation pneumonitis (RP) or pulmonary fibrosis (PF) 
can reduce the quality of life of patients and may even lead to serious conse-
quences of death. Therefore, how to overcome the problem of accurate pre-
diction and early diagnosis of RT for pulmonary toxicity is very important. 
This review summarizes the related factors of RILI and the related biomark-
ers for early prediction of RILI. 
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1. Introduction 

Lung cancer is a tumor that occurs in the epithelium or lung cells of the respira-
tory tract. Lung cancer is basically divided into two main categories based on 
pathological type, namely small cell lung cancer (SCLC) and non-small cell lung 
cancer (NSCLC), of which NSCLC accounts for the majority and is subdivided 
into squamous, adenocarcinoma and large cell carcinoma types [1]. Because of 
the differences between different types and stages of lung cancer, the selected the-
rapeutic measures are also different [2]. And RT has a potential role in all stages 
of lung cancer of different types either in controlling progression or in palliative 
care [3] [4]. 

With advances in treatment technology and improvements in radiotherapy, 
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the adverse effects of RT have gradually decreased and the therapeutic efficacy 
has gradually improved, but RILI is inevitable in sensitive normal lung tissue [5] 
[6]. RILI is divided into two stages: acute radiation pneumonitis (RP) and chronic 
radiation pulmonary fibrosis (RPF) [7]. While RP occurs early in RT and is poten-
tially curable, PF occurring later is considered irreversibly harmful [8] [9]. Cur-
rent therapeutic techniques are very limited for the widespread occurrence of RF 
and there is no clear effective clinical treatment, which would severely affect the 
survival time and quality of life of patients [10]. Therefore, determining the early 
occurrence of RILI by biomarkers and treating it aggressively is important for 
the clinical application of RT. 

2. Risk Factors Associated with Radiation-Induced Lung  
Injury 

Due to patient variability, the specific risk of developing RILI after radiotherapy 
for each patient is not known. The factors associated with the development of RILI 
can now be broadly classified into patient-related factors (age, gender, smoking; 
comorbidities, tumor location, etc.) and treatment factors (total radiation dose, 
dose per fraction, irradiated lung volume; chemotherapy; immunotherapy; tar-
geted therapy, etc.) [11] [12]. 

2.1. Patient Factors 

It is clear that older patients are more likely to develop radiation pneumonia 
due to reduced pulmonary function (PF) and more comorbidities than young-
er patients. PF parameters such as percent predicted value of first-second force-
ful expiratory volume (FEV1%), forceful spirometry (FVC) and pulmonary 
carbon monoxide dispersion (DLCO) have been used as primary measures of 
overall lung function. However, there is no consistent evidence to support an 
association between PF parameters and RILI. Only lower baseline FEV1% [13], 
DLCO% [14] [15], and PaO2 [16] are significantly associated with the risk of 
RILI. 

Pre-existing lung disease prior to radiotherapy may also increase the risk of 
RILI. Studies have shown that patients with pre-existing interstitial lung disease 
(ILD) appear to be more susceptible to acute lung injury after radiotherapy, lead-
ing to an exacerbation of acute ILD [17] [18], which can be quantified by FDG 
uptake in the lungs. Lung cancer combined with chronic obstructive pulmonary 
disease (LC-COPD) is a common complication. Recent international expert con-
sensus suggests that LC-COPD should treat both lung cancer and COPD, taking 
into account their interaction in the treatment and monitoring of adverse reac-
tions [19]. It has long been known that patients with comorbid chronic obstruc-
tive pulmonary disease (COPD) also experience higher pulmonary toxicity than 
patients without comorbidities [20] [21]. Therefore, it is very important to eva-
luate and monitor the lung function of LC-COPD patients during radiothera-
py. Before radiotherapy, pulmonary function and emphysema staging should 
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be carefully evaluated to identify potential ILD, and the risks and benefits of 
radiotherapy should be repeatedly weighed. In addition, multi-parameter models 
for prediction [22] and imaging techniques including perfusion imaging, func-
tional imaging, and 4D-CT [23] can be used to guide radiotherapy field settings 
and dose limits, which in turn may further reduce radiotherapy-related lung 
injury. 

And surprisingly, a long history of smoking is a high-risk factor for the preva-
lence and survival of patients with lung cancer [24], but is a protective factor for 
RILI. A study by Jin et al. showed the highest incidence of RP in patients who 
had never smoked (37%) and the lowest incidence in patients who were reported 
as smokers at the time of diagnostic condition screening (14%) [25]. However, 
this result should not be regarded as encouraging patients to smoke. On the con-
trary, smoking cessation is an effective intervention to prevent tumor progres-
sion and improve survival rate [26]. In response to this result, the current possi-
ble explanations mainly include the reduction of inflammatory response in smoke-
rs [27], the role of glutathione in preventing oxidant-induced lung injury [28] 
[29], and the impaired DNA damage repair ability of non-smoking patients with 
lung cancer [30], resulting in increased lung toxicity after radiotherapy. 

The effect of gender on RILI is currently unknown, but the current study sug-
gests that women are at a slightly higher risk of developing RILI [31], possibly 
due to their smaller lung volumes and often combined autoimmune diseases [32] 
[33] [34]. The possible explanation for the more sensitive female population men-
tioned by Ronnett et al. is that radiation pneumonitis is similar to autoimmune 
response and has a greater impact on women, so the likelihood of severe RP in 
women is significantly higher than that in men (p = 0.01) [35]. 

And the current findings indicate that tumor location and tumor size may in-
fluence the risk of developing RILT, while tumor type and tumor stage may not 
be important in predicting the risk of RILT. The results suggest that patients 
with lower lobe lung cancer have a higher risk of RP [36] and larger tumors are 
also important adverse risk factors for RILT. And in recent years, studies have 
suggested the relationship between the risk of RP and the regional dose distribu-
tion of lung cancer patients receiving radiotherapy. The results suggest a higher 
incidence of RP in apical compared to bottom tumors, about 11% and 40%, re-
spectively [37]. Also, some current studies suggest a higher likelihood of severe 
pneumonia in the left lung compared to the right lung during radiotherapy, which 
is considered to be related to cardiac exposure during radiotherapy to the left 
lung, but at present this idea still needs to be supported by more research evi-
dence [38] [39]. 

2.2. Treatment Factors 

Although the risk of developing radiation-induced pulmonary toxicity remains 
unpredictable, it is clear that the likelihood and severity of adverse pulmonary 
effects after radiotherapy are closely related to the dosimetric parameters of the 
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patient’s radiotherapy [40] [41]. In patients with non-small cell lung cancer 
treated with intensity-modulated radiotherapy, an increase in mean lung dose 
(MLD) leads to an increase in the area of lung fibrosis [42] [43]. Meanwhile, 
other studies have highlighted that lung volume receiving 20 Gy (V20) and 30 
Gy (V30), respectively, is the only significant parameter for predicting RP [44] 
[45] [46]. And the daily fraction size of radiotherapy is another key parameter in 
RILI. A fraction > 2.67 Gy increases the risk of RILI compared to a lower daily 
fraction [47]. 

Current studies suggest that for early NSCLC, SBRT has been shown to confer 
survival benefits to patients with severe COPD (GOLD 3 - 4) [48]. For patients 
with locally advanced NSCLC who are not suitable for surgical treatment or are 
not suitable for SBRT, conventional radiotherapy is still considered, intensi-
ty-modulated conformal radiotherapy plus involved field irradiation is performed 
on the primary lesion [49], and the radiation dose of the lung is further limited 
to V20 ≤ 20% and MLD ≤ 12.3 Gy [50]. In addition, more sophisticated radio-
therapy techniques such as proton and carbon ion radiotherapy [51] [52] may 
further reduce pulmonary toxicity and thus help configure the treatment land-
scape of lung cancer. 

Numerous studies have now demonstrated that radiotherapy combined with 
platinum-containing regimens of chemotherapy increases the incidence of RILI 
[34] [35] [53], with a significant survival benefit seen with concurrent radiothe-
rapy compared to sequential radiotherapy for patients with locally advanced 
NSCLC, but at the cost of increased radiotherapy toxicity [54] [55]. The use of 
radiotherapy combined with targeted therapy or immunotherapy is often consi-
dered for patients with advanced NSCLC who are not responding to chemothe-
rapy, and this also increases the incidence of RILI, which is considered to be re-
lated to the development of interstitial lung disease following the use of targeted 
or immunological agents [56] [57] [58]. Therefore, relevant risk factors must be 
identified before drug treatment, and the potential occurrence of drug-related 
lung injury must be closely monitored. Any new or worsening respiratory symp-
toms were closely observed during treatment, and PS scores were dynamically 
assessed. For patients with confirmed or highly suspected RILI, radiotherapy 
should be suspended according to the severity of the disease. 

3. Biomarkers for Monitoring Radiation-Induced Lung  
Injury 

3.1. Pro- and Anti-Inflammatory Cytokines 

Based on the mechanism of radiation lung injury, pro-inflammatory, pro-fibrotic 
and pro-angiogenic cytokines are considered as potential markers of RILI, among 
which the three main classes are Tumor Necrosis Factor-α, Interleukins and 
Transforming Growth Factor-β1 [59] [60] [61]. 

TNF-α is a pro-inflammatory cytokine produced by macrophages that trigger 
the production of other pro-inflammatory cytokines, growth factors, and acute 
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phase proteins. Also, TNF-α is a major trigger of the pro-inflammatory cascade 
response, promoting fibroblast growth, ECM protein secretion and collagen de-
position, and activating other pro-inflammatory cytokines (IL-1, IL-6 and IFN) 
for cascade responses [62] [63]. The enhanced plasma levels of TNF-α after rad-
iation therapy are now well documented to be associated with early apoptosis 
and latent lung function impairment [64] [65] [66]. Despite the correlation be-
tween TNF-α and PR, however, there is still insufficient evidence as to whether 
TNF-α can be used as a predictor of RILT. 

Interleukins can be synthesized by a variety of cells, including monocytes, al-
veolar macrophages, type II pneumocytes, fibroblasts and T lymphocytes, which 
play a crucial role in immune system host defense and tumorigenic processes. 
At present, interleukin is considered to be a potential marker of human RILI. 
The initial process after lung injury includes acute inflammatory response, im-
mune cell recruitment, and the diffusion and migration of epithelial cells on the 
self-secreted temporary matrix. Injuries lead to the release of factors that con-
tribute to the repair mechanism, including IL-1α and IL-6 [67] [68] [69] [70]. 
Studies have demonstrated the feasibility of applying IL-1α and IL-6 to measure 
blood samples to predict RP, where both cytokines had better specificity than 
sensitivity, and IL-6 performed better than IL-1α in predicting RP. In another 
study with follow-up of 90 patients with non-small cell lung cancer, changes in 
IL-6 plasma levels after 2 weeks of radiation therapy were associated with the 
occurrence of RP 6 to 8 weeks after the end of radiation therapy was significantly 
correlated (p = 0.025) [71]. In addition, studies have shown that naringenin im-
proves radiation-induced lung injury by reducing IL-1β levels, thereby further 
verifying the relationship between the interleukin family and RILI [72]. 

TGF-β1 is the most critical inflammatory molecule involved in pulmonary fi-
brosis and exerts its pro-fibrotic effects mainly through binding to transmembrane 
proteins of serine/threonine kinases and activating several signaling pathways 
including ERK/GSK3β/Snail, Smad/Snail, and PI3K/AKT/mTOR axis [73] [74]. 
At the same time, current studies have demonstrated that TGF-β can further ac-
tivate the ERK signaling pathway to promote EMT in alveolar type II epithelial 
cells, thereby exacerbating pulmonary fibrosis [75]. Prior to radiotherapy, elevated 
TGF-β1 levels do not represent an increased risk of RP and subsequent fibrosis in 
patients; however, persistently high TGF-β1 levels after treatment suggest a much 
higher likelihood of radiation-induced inflammation [59] [76]. At present, there is 
no clinical consensus on the treatment based on TGF-β1 level. We believe that this 
is a problem worthy of further study, but it still needs a lot of work to meet the 
publicly recognized standards. In view of the inflammatory response in the acute 
phase of RILI, antioxidant therapy including thiol compounds, antioxidant en-
zymes and plant antioxidants has been applied clinically. 

3.2. Indicators of Pneumocytes Damage 

In addition to inflammatory factors, indicators related to cellular damage are al-
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so closely associated with the development of RILI, such as soluble intercellular 
adhesion molecule-1 (sICAM-1), mucin-like glycoprotein antigen KL-6, and pul-
monary surface-active protein A (SP-A) & D (SP-D). 

A study by Ishii et al. showed significantly higher levels of sICAM-1 in pa-
tients with RP compared to baseline levels (p < 0.05) [75]. Another trial also 
showed that a significant decrease in sICAM-1 levels was seen after a decrease in 
the incidence of RILI [77]. This suggests that sICAM-1 may be a useful marker 
for early detection of radiation pneumonia. 

KL-6 antigen, produced by epithelial cells, particularly AEC II, and released 
from these damaged cells after irradiation, makes KL-6 an indicator of intersti-
tial lung disease and acute lung injury. In patients with NSCLC, serum KL-6 le-
vels have been reported to be almost consistent with the occurrence of grade ≥ 2 
RP and to decrease after steroid administration [78]. Serum KL-6 levels were 
significantly correlated with the severity of pulmonary fibrosis and response to 
therapy [79] [80] [81]. 

SP-A and SP-D are primarily associated with the secretion of lung surface-active 
substances, surfactants that reduce surface tension in the alveoli and promote 
alveolar expansion, thereby allowing normal gas exchange. Surfactant proteins 
stimulate macrophages to produce pro-inflammatory cytokines (TGF-β1, inter-
leukins) and ROS. Radiation-induced degradation of type II pneumocytes leads 
to the release of SP-A and SP-D, which leads to the progression of inflammation. 
SP-D plays a role in host defense, regulating immune response and lung phos-
pholipid levels [82]. The usefulness of SP-A and SP-D in the early detection of 
RP was previously demonstrated by Sasaki et al. [83]. Also, a series of studies 
showed that SP-D is a more sensitive marker of pathological changes in the lung 
than SP-A [84] [85]. 

3.3. Genetic Characteristics 

Even after taking into account dosimetric, therapeutic, clinical and demographic 
factors, late radiotherapy adverse effects show significant differences in inci-
dence and severity across patients, thus considering individual genetic charac-
teristics significantly associated with the development of RILI [86]. Radioge-
nomics has two goals: the first is to identify methods to predict the risk of 
radiation damage in patients after radiotherapy, and the second is to investi-
gate the molecular mechanisms of radiation-induced toxicity in normal tis-
sues. Single nucleotide polymorphisms (SNPs) are a current research hotspot, 
representing a wealth of sequence combinations and variant types in the hu-
man genome, and are a major source of genetic variation between individuals 
[87] [88]. So far, a series of studies have reported a possible correlation be-
tween SNPs and radiosensitivity of clinically normal tissues in patients. This 
usually includes genes encoding DNA repair genes and stress response-related 
genes [89]. Some of the current RP-related SNPs are summarized in Table 1 
below. 
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Table 1. SNPs in genes associated with RP. 

SNPs Function Conclusions Reference 

TOPBP1 rs1051772 DNA repair Decreased risk of RP in NSCLC patients [90] 

ATM rs1801516, ATM 
rs189037, ATM rs228590 

DNA repair Decreased risk of grade ≥ 3 RP in LC patients [91] [92] 

NEIL1 rs4462560,  
NEIL1 rs7402844 

DNA repair 
rs4462560 decreased risk of grade ≥ 2 RP in LC patients, 
rs7402844 increased risk of grade ≥ 2 RP in LC patients 

[93] 

LIG4 rs1805388 DNA repair Increased risk of grade ≥ 3 RP in LC patients [94] 

HIPK2 rs2030712 
Apoptosis, proliferation, 

DNA repair, Inflammation 
Increased risk of grade ≥ 2 RP in LC patients [95] 

TGFbeta1 rs1982073 Inflammation Decreased risk of RP in NSCLC patients [96] 

IL4 rs2243250 Inflammation Increased risk of grade ≥ 3 RP in LC patients [97] 

ITGB6 rs4665162 Inflammation Increased risk of grade ≥ 2 RP in LC patients [98] 

BMP2 rs235768 
BMP2 rs1980499 

Inflammation Increased risk of grade ≥ 2 RP in LC patients [99] 

ATG16L2 rs10898880 Autophagy Increased risk of RP in NSCLC patients [100] 

PAI-1 rs7242 Plasmin system inhibition Increased risk of grade ≥ 3 RP in LC patients [101] 

3.4. MicroRNAs 

MicroRNAs (miRNAs) are single-stranded, highly conserved small noncoding 
RNAs involved in the regulation of gene expression, transcription, translation, 
and epigenetic modifications. The role of miRNAs in radiosensitivity and radi-
otoxicity in patients’ response to radiotherapy has been reported [102] [103]. 
Han et al. showed that exosomal microRNA-26b-5p enhances radiosensitivity of 
lung adenocarcinoma cells and may be a potential marker of radiotherapy sensi-
tivity in lung adenocarcinoma [104]. In recent years, it has also been reported 
that MiR-18-5p and miR-219a-5p enhance the radiosensitivity of NSCLC cells 
by regulating HIF-1α and CD164, respectively [105]. miR-101 acts as a radiosen-
sitizer and its overexpression enhances radiosensitivity by decreasing the levels 
of DNA-PKcs and ATM [106]. 

MiRNAs influence the response to ionizing radiation by participating in regu-
latory mechanisms of the DNA damage response at different levels and through 
three different processes: signaling pathways, checkpoints in the cell cycle and spe-
cific repair processes that restore single- or double-strand breaks (SSB, DSB) [107]. 
It was shown that in the acute phase after radiotherapy, miR-21 inhibits PD-CD4 
expression and activates the phosphatidylinositol 3-kinase (PI3K)/AKT/mTOR 
signaling pathway.MiR-21 overexpression blocks the pro-inflammatory pathway 
of macrophages and reduces the incidence and severity of RILI in patients [108] 
[109]. Similarly, miR-140 is a key protective molecule against RILF by blocking 
TGF-β1 signaling and inhibiting myofibroblast differentiation and inflammation 
[110]. A study by Yin et al. suggested that low expression of let-7 leading to 
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overexpression of its target gene LIN28 could regulate the proliferative capacity 
of NSCLC cells, leading to a let-7/LIN28 dual negative feedback loop disruption, 
thereby promoting resistance to RT or cisplatin treatment [111]. 

Because of its stability in tissues and body fluids and its easy and rapid detec-
tion of expression, microRNA can be considered as an ideal marker to explore 
its value for monitoring RILI and thus provide practical guidance for clinical 
treatment. 

4. Conclusion and Perspectives 

Acute inflammation of the lungs or pulmonary fibrosis is unavoidable side ef-
fects after chest radiotherapy, and pulmonary fibrosis is considered an irreversi-
ble pathological process that can lead to dyspnea, impaired lung function or res-
piratory failure, thereby increasing the financial burden on patients and affecting 
their long-term quality of survival. Therefore, the use of various markers to moni-
tor RT can significantly benefit patients in terms of better prevention and con-
trol of complications. Although some of the molecular mechanisms, risk factors 
and associated markers associated with RILI have been explored in this paper, 
there are still no ideal and reliable indicators or risk models to predict the risk of 
developing pulmonary toxicity in current clinical practice. It is promising that 
more and more prospective or retrospective studies are being conducted to cla-
rify the mechanisms of RILI and that a comprehensive predictive model incor-
porating individualized genetic susceptibility, clinical background parameters and 
biological variants will emerge. 
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