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Abstract 
Desensitization is a process characterized by the loss of cellular response to an 
agonist when this is present for a long time. α1D-adrenergic receptor (α1D-AR) 
desensitization is important since this receptor is involved in the contraction 
of large caliber arteries, such as the aorta. The aim of this research was to 
evaluate the desensitization of α1D-AR due to the endogenous release of nore-
pinephrine in cultured rat aorta. Wistar rat aorta was incubated for 2 h or 24 
h in DMEM at 37˚C, and then subjected to isometric tension and the action 
of added norepinephrine, in concentration-response curve (CRC). In some ex-
periments, BMY-7378 (α1D-AR antagonist) or 5-methylurapidil (α1A-AR anta-
gonist) was used to identify the α1-AR involved in the response, or BMY-7378 
to protect the α1D-AR from desensitization. Results showed that α1D-AR was 
desensitized when the aorta was incubated for 24 h, since the CRC to ex-
ogenous norepinephrine showed lower maximal contraction and the curve 
was displaced to the right, indicating that the receptor involved in contrac-
tion was not the α1D-AR, as compared to the aorta incubated 2 h. The recep-
tor stimulated by norepinephrine at 24 h was neither the α1A-AR, as shown by 
the lack of displacement of the curve by 5-methylurapidil, but rather it seems 
that α1B-AR is inducing contraction. When the aorta was incubated with 
BMY-7378 for 24 h, the α1D-AR antagonist protected the receptor from de-
sensitization. Endogenous norepinephrine desensitizes α1D-AR in the cultured 
aorta, and the α1D-AR is protected by BMY-7378. 
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1. Introduction 

Receptor desensitization is a phenomenon defined as the reduction in a cell’s 
response to persistent stimulation by either an endogenous or exogenous agonist 
[1] [2] [3]. Receptor desensitization is a relevant physiological process that shuts 
off G protein-coupled receptors (GPCRs) from overstimulation, in case of pro-
longed agonist occupancy, attenuating or terminating its signaling. Typically, 
this phenomenon has been evidenced by administering an exogenous agonist to 
the cell, organ, or organism, and then measuring the attenuated response to the 
same agent after prolonged exposure [3] [4]. Various receptor systems exhibit 
receptor desensitization, including ion channels [5] [6] [7], GPCRs [4] [8], and 
tyrosine kinase receptors [9] [10]. Furthermore, there are two main modes of 
desensitization: homologous and heterologous. Homologous desensitization is 
triggered by a high concentration of the agonist targeting a specific receptor, of-
ten mediated by GPCR kinases (GRKs) [11]. In contrast, heterologous desensiti-
zation manifests as a diminished response to one or multiple agonists/receptors, 
typically mediated by protein kinases or downstream components in the signal-
ing pathway [11] [12] [13] [14] [15]. 

With respect to GPCRs, it is known that the central nervous system releases 
norepinephrine (NE) from the terminals of noradrenergic neurons to target 
cells, such as other neurons, muscle cells, and various other cell types [3] [16] 
[17]. Upon release, NE accumulates in the synaptic cleft, stimulating postsynap-
tic adrenergic receptors (α1-AR or β-AR), and may either be reuptake by the 
presynaptic neuron or act on α2-AR on the presynaptic neuron to inhibit further 
NE release [16] [18]. This desensitization, also called tachyphylaxis, is commonly 
observed in intensive care units of hospitals, but it also occurs continuously in 
our cells. 

Numerous studies have delineated the molecular mechanisms involved in 
adrenergic receptor desensitization. Here, the administration of exogenous adre-
nergic agonists, such as norepinephrine, phenylephrine, and amidephrine, among 
others, has been shown to induce a weakened cell or tissue response [2] [3] [4] 
[19] [20] [21] [22] [23] [24]. For example, Rat-1 fibroblasts expressing α1D-AR 
show low calcium mobilization when incubated with phorbol myristate ace-
tate, a PKC activator, and then stimulated with NE, resembling α1D-AR block-
ade/desensitization (heterologous type) [2]. 

Contrastingly, there is no documented desensitization for the endogenous 
stored and released neurotransmitter (NE) at the neuromuscular junction, spe-
cifically when it acts on postsynaptic vascular smooth muscle α1-ARs. A key 
query arises regarding whether released NE could lead to desensitization of the 
predominant α1-AR in rat aorta, i.e. the α1D-AR [25] [26] [27]. Since aorta is a 
poorly innervated conductance artery and expresses α1D-AR as the predominant 
functional receptor that responds with high sensitivity to NE stimulus, it is very 
important to comprehend how the α1D-AR desensitization in this vessel could 
prevent sudden changes due to contraction-relaxation. The goal of this study 
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was to assess the potential desensitization induced by stored norepinephrine on 
the α1D-AR of rat aorta, in order to seek α1-AR regulation when the main recep-
tor is downregulated. 

2. Materials and Methods 
2.1. Animals and Ethical Statement 

Male Wistar rats, aged 3 months and weighing between 250 - 300 g, were housed 
under pathogen-free conditions with maintained parameters (40% - 60% humidi-
ty, 22˚C ± 2˚C and a 12 h light/dark cycle), in our animal facilities. They were pro-
vided food ad libitum. All animal care and experimental procedures complied 
with the Mexican Regulations of Animal Care and Use (NOM-062-ZOO-1999, 
SAGARPA, Mexico), and adhered to the Guide for the Care and Use of Labora-
tory Animals as set forth by the U.S. National Institutes of Health [28]. The In-
stitutional Ethics Committee of FES Iztacala, UNAM approved all procedures 
under Protocol 1497. 

2.2. Procedures 
2.2.1. Incubation Conditions 
Rats were euthanized, following which the thoracic aorta was carefully dissected 
and cleared of adjacent adipose tissue. The isolated aorta was positioned within a 
Petri dish inside a laminar flow hood. Subsequently, it was sectioned into rings 
measuring 4 - 5 mm in length. To ensure the exclusion of potential contribu-
tions from endothelium-derived factors in the mechanical response, the endo-
thelium was removed by gently rubbing the intima using a metal instrument. 
The effectiveness of endothelium removal was confirmed by the absence of re-
laxation in response to carbachol (1 × 10−6 M) [29]. 

The aortic rings were then submerged in 3 ml of Dulbecco’s Modified Eagle 
Medium (DMEM), within a 6-well culture plate. The plates were subsequently 
placed in a BB 150 CO2 incubator set at 37˚C (Thermo Scientific, Waltham, MA, 
USA), maintaining an atmosphere of 95% air and 5% CO2, for durations of both 
2 h and 24 h. 

2.2.2. Concentration-Response Curve (CRC) 
The arterial rings were placed in 10 ml chambers filled with Krebs solution, 
composed of (in mM): NaCl, 118; KCl, 4.7; CaCl2, 2.5; MgSO4, 1.2; KH2PO4, 1.2; 
NaHCO3, 25; and glucose, 11.1. The solution was maintained at 37˚C with a pH 
7.4 and continuous oxygenation (O2/CO2 ratio of 95%/5%). Each arterial ring 
was secured at its base within the chamber and linked to an isometric FT03E 
Grass force displacement transducer (Astro-Med, Inc., West Warwick, RI, 
USA). This transducer was then connected to a MP100A data acquisition sys-
tem (Biopac Systems Inc., Santa Barbara, CA, USA), to capture the isometric 
tension developed by the aortic rings. Based on preliminary trials, the arterial 
rings were set to an initial optimal tension of 3 g. This tension was achieved by 
methodically increasing the initial tension until the optimal value was identified 
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[25] [26]. 

2.2.3. α1-Adrenergic Receptor Agonism 
Upon completion of incubation periods (either 2 h or 24 h) in DMEM, the aortic 
rings were transferred to the incubation chamber. They were exposed to norepi-
nephrine (1 × 10−7 M) in the simultaneous presence of propranolol (1 × 10−7 M) 
and rauwolscine (1 × 10−7 M), to antagonize β- and α2-adrenergic receptors, re-
spectively. This environment was refreshed every 30 min for 2 h, termed the sta-
bilization period. Subsequently, a reproducible cumulative CRC to norepineph-
rine was established, ranging from 1 × 10−9 M to 1 × 10−5 M using half logarithm 
increments (termed the control curve). 

In a separate experimental series, aortic rings were immersed in DMEM for 
duration of either 2 h or 24 h. This immersion was accompanied by escalating 
concentrations of norepinephrine (1 × 10−8.5 M to 1 × 10−6.5 M, applied in half 
logarithm increments). Following this treatment, these rings were placed in the 
incubation chamber and subsequently challenged with norepinephrine, using 
concentrations ranging from 1 × 10−9 M to 1 × 10−5 M, in half logarithm steps. 

2.2.4. α1-Adrenergic Receptor Antagonism 
To assess the tissue response to α1-adrenergic receptor (α1-AR) stimulation 
under varying incubation conditions, aortic rings that had been incubated in 
DMEM for either 2 h or 24 h were subjected to increasing concentrations of se-
lective antagonist. Specifically, these included the α1A-AR selective antagonist, 
5-methylurapidil; the α1D-AR selective antagonist, BMY-7378; and chloroethyl-
clonidine, which serves as a selective but alkylating antagonist for α1B-AR. The 
purpose of this regimen was to identify the specific α1-AR involved in the con-
tractile response to norepinephrine. 

2.2.5. Materials 
All reagents were prepared either in Krebs solution or distilled water. Solutions 
were freshly prepared for every experiment. Reagents, including (±) Norepi-
nephrine-HCl, (±) Propranolol-HCl, Rauwolscine-HCl, Carbachol chloride, 
5-methylurapidil (5-MU, 5-Methyl-6[[3-[4-(2-methoxyphenyl)-1-piperazinyl]-
propyl]amino]-1,3-dimethyluracil), Chloroethylclonidine (CEC, 2-[2,6-Dichloro(N- 
β-chloroethyl-N-methyl)-4-aminomethyl]phenylimino-2-imidazolidine dihydro- 
chloride), and BMY-7378 (BMY, 8-[2-[4-(2-Methoxyphenyl)-1-piperazinyl]ethyl]- 
8-azaspiro[4.5]decane-7,9-dione dihydrochloride) were sourced from Sigma- 
Aldrich (St. Louis, MO, USA). DMEM was obtained from Gibco (Life Technolo-
gies Co., Grand Island, NY, USA). All other reagents were of analytical grade 
and were purchased from local suppliers. 

2.2.6. Statistical Analysis 
Values for pD2 (-log EC50) were derived using nonlinear regression, while pA2 
values were determined through Schild analysis [30]. Data are expressed as 
means ± standard error of the mean (SEM) of 8 rats per group. Statistical evalu-
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ations were performed using analysis of variance (ANOVA) or Student’s t-test, 
with differences statistically significant at p < 0.05. 

3. Results 

To assess the viability of aortic tissue after incubation (2 h and 24 h at 37˚C in 
DMEM), contractions were induced using high KCl (80 mM) for each time 
interval. High KCl is known to depolarize the membrane, facilitating Ca2+ en-
try into muscle cells and thus initiating contraction, a process that is recep-
tor-independent [31]. As shown in Figure 1, high KCl induced contraction in 
aortic rings for both incubation periods, suggesting that the incubation condi-
tions did not affect tissue responsiveness. Separate incubation of the aorta for 24 
h in Krebs solution at 4˚C gave a pD2 of 8.7 when activated by NE (data not 
shown). 

In contrast, Figure 2 displays the concentration-response curve (CRC) for 
norepinephrine after incubation times of either 2 h or 24 h at 37˚C in DMEM. 
The aortic response to norepinephrine demonstrated both higher efficacy (3.71 
± 0.26 g vs. 2.57 ± 0.26 g, respectively) and potency (pD2: 8.62 ± 0.11 vs. 6.64 ± 
0.13, respectively) for tissues incubated for 2 h as compared to those incubated 
24 h. Such findings suggest that a 24 h incubation in DMEM leads to α1-AR de-
sensitization, likely due to endogenous norepinephrine release at the neuromus-
cular junction, resulting in 30% decrease in maximal contraction and 2 orders of 
magnitude in potency. Consequently, we explored the impact of adding ed nore-
pinephrine during incubation, followed by CRC construction. 

As shown in Figure 3, introducing varying norepinephrine concentrations to 
the incubation medium across both time intervals led to a further reduction in  

 

 
Figure 1. Time-course of aortic contraction induced by high KCl (80 mM) following in-
cubation for 2 h at 37˚C (●) and 24 h at 37˚C (○), both in DMEM. n = 8 rats. 
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Figure 2. Concentration-response curve to norepinephrine (NE) in the aorta following 2 
h and 24 h incubation in DMEM. The curve with (●) represents NE-induced contraction 
in the aorta after 2 h incubation, while the curve with (○) depicts NE-induced contrac-
tion after 24 h incubation. n = 8 rats. 

 

 

Figure 3. Concentration-response curves to norepinephrine (NE) in the aorta incubated 
in DMEM, for either 2 h (a) or 24 h (b) with different concentrations of added NE. (a) 
The dotted line with (●) signifies the NE-induced contraction in aorta following a 2 h 
incubation, referencing the control in Figure 2. (b) Similarly, the dotted line with (●) 
indicates the NE-induced contraction in the aorta after 24 h incubation, corresponding to 
the control in Figure 2. n = 8 rats. 

 
efficacy in response to norepinephrine. However, the potency of the agonist re-
mained unchanged at each interval (Table 1). Notably, the pD2 for NE was high 
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in 2 h incubation (8.62) and lower after a 24 h incubation (6.64), denoting its af-
finity for α1D-AR and α1A/B-AR, respectively. 

To discern which α1-AR mediated the action of norepinephrine at the two in-
cubation times, we employed highly selective antagonists: 5-methylurapidil 
(5-MU, α1A-AR), and BMY-7378 (BMY, α1D-AR). As shown in Figure 4, in-
cubating with different concentrations of 5-MU slightly shifted the CRC to the  

 
Table 1. pD2 values derived from tissues incubated for either 2 h or 24 h at 37˚C with va-
rying concentrations of norepinephrine (ranging from 0 (control) and NE 1 × 10−8.5 M to 
NE 1 × 10−6.5 M, in half-log increments). The tissues were subsequently tested using a 
concentration-response curve (CRC) with norepinephrine. NE = norepinephrine, n = 8 
rats. 

Incubation in DMEM at 37˚C 2 h pD2 (Mean ± S.E.) 24 h pD2 (Mean ± S.E.) 

Control (without NE) 8.73 ± 0.11 6.74 ± 0.13 

NE 1 × 10−8.5 M 8.63 ± 0.50 6.36 ± 0.09 

NE 1 × 10−8.0 M 8.78 ± 0.33 6.53 ± 0.06 

NE 1 × 10−7.5 M 8.80 ± 0.47 6.67 ± 0.10 

NE 1 × 10−7.0 M 8.68 ± 0.29 6.65 ± 0.10 

NE 1 × 10−6.5 M 8.14 ± 0.61 6.91 ± 0.12 

Average 8.62 ± 0.38 6.64 ± 0.11 

 

 
Figure 4. Concentration-response curves to norepinephrine (NE) in aorta incubated in 
DMEM for 2 h and 24 h with increased concentrations of α1A-AR antagonist, 5-MU. (a) 
Representation of NE-induced contraction after 2 h incubation is marked with (●) for 
the following 5-MU 1 × 10−8.5 M (○), 5-MU 1 × 10−8 M (▼), 5-MU 1 × 10−7.5 M (△). (b) 
NE-induced contraction following a 24 h incubation is denoted with (●), 5-MU 1 × 10−8.5 
M (○), 5-MU 1 × 10−8 M (▼), 5-MU 1 × 10−7.5 M (△). n = 8 rats. 
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right in response to NE after 2 h of incubation (pA2 = 7.46, Figure 4(a)). In con-
trast, after 24 h of incubation, the CRC for norepinephrine was shifted to the 
right with a reduced maximal effect, and 5-MU exhibited minimal rightward 
shift, suggesting α1A-AR was not primarily activated by NE (pA2 = 6.91, Figure 
4(b)). Conversely, a 2 h incubation followed by NE-induced contraction, anta-
gonized with BMY-7378 caused a rightward shift in the CRC, signifying that the 
α1D-AR predominantly mediates contraction in this vessel (pA2 = 8.3, Figure 
5(a)). A 24 h incubation, however, diminished the maximal contraction to NE, 
and BMY-7378 did not significantly shift the CRC rightward (pA2 = 7.4, Figure 
5(b)). In another experiment set, we examined the influence of the α1B-AR alkylat-
ing antagonist CEC on the aorta incubated for 24 h; introducing CEC 40 min before 
NE stimulus completely abolished the contractile response (data not shown). 

Seeking to uncover the underlying reason for the observed desensitization due 
to varied incubation duration (2 h vs. 24 h), the aorta was incubated with 
BMY-7378 for 24 h. At the end of this period, upon antagonist removal and 
subsequent NE challenge, the tissue’s response to the adrenergic agonist was 
identical to the control curve. This suggests that endogenous norepinephrine, po-
tentially released by the nerve endings in the vasa vasorum, but it had no desensi-
tizing action, presumably due to α1D-AR’s protection by BMY-7378 (Figure 6). 

 

 
Figure 5. Concentration-response curves to norepinephrine (NE) in aorta incubated in 
DMEM for 2 h and 24 h, subjected to varying concentrations of the α1D-AR antagonist, 
BMY-7378. (a) Representation of NE-induced contraction following a 2 h incubation is 
marked with (●), and for the subsequent BMY-7378 concentrations: BMY 1 × 10−8.5 M 
(○), BMY 1 × 10−8 M (▼), BMY 1 × 10−7.5 M (△). (b) NE-induced contraction after a 24 
h incubation is denoted with (●). The responses in the presence of different BMY-7378 
concentrations are represented as: BMY 1 × 10−8.5 M (○), BMY 1 × 10−8 M (▼), BMY 1 × 
10−7.5 M (△). n = 8 rats. 
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Figure 6. Concentration-response curves to norepinephrine (NE) in aorta incubated for 
24 h in DMEM, both in the absence or the presence of BMY-7378 (10 μM). The NE-induced 
contraction in the aorta without any incubation is denoted by (●) and serves as the con-
trol curve. Contractions following 24 h of incubation are marked with (○), while res-
ponses after a 24 h incubation in the presence of BMY-7378 (10 μM) are represented by 
(▼). n = 8 rats. 

4. Discussion 

The α1-adrenergic receptors (α1-ARs) constitute a subfamily of GPCRs that are 
ubiquitously distributed throughout the organism. Upon stimulation by cate-
cholamines, epinephrine and norepinephrine, they execute several functions. 
Chronic sympathetic activation of these receptors results in the contraction of 
vascular beds, thereby playing an integral role in modulating peripheral vascular 
resistance and blood pressure [32] [33]. Among the various α1-ARs, α1D-AR has 
been identified as the predominant receptor responsible for the contraction of 
large blood vessels, including the aorta and the carotid [25] [27]. Additionally, 
the α1D-AR’s phosphorylation and desensitization have been investigated in the 
context of norepinephrine-induced (homologous desensitization), and phorbol 
ester and tyrosine kinases action (heterologous desensitization) in transfected 
Rat-1 fibroblasts [2] [10] [19]. It also serves as a model for studying inverse 
agonism due to its notable overexpression and constitutive activity [34] [35] [36] 
[37]. 

Our findings unambiguously demonstrate that endogenously released nore-
pinephrine from nerve endings in the vasa vasorum leads to vascular α1D-AR 
desensitization (a form of homologous desensitization). This desensitization is 
circumvented when tissues are incubated with the α1D-AR antagonist BMY-7378 
over time. In contrast, many studies have reported α1-ARs desensitization re-
sulting from the addition of agonists, mimicking both homologous (e.g. norepi-
nephrine, epinephrine, phenylephrine, oxymetazoline) and heterologous desen-
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sitization (e.g. phorbol ester, and growth factors stimulating tyrosine kinases re-
ceptors) [2] [10] [19] [20] [24]. 

The observed pD2 for NE after a 24 h incubation (6.74), is noteworthy. It sug-
gests that the receptor, which is activated by norepinephrine under these incuba-
tion conditions (and thus desensitized), is not antagonized by 5-MU (an α1A-AR 
antagonist). This finding is unexpected, especially considering that in the α1D-AR 
null mouse model, the α1A-AR assumes the contractile function in the aorta [38]. 
Therefore, besides α1D-AR desensitization due to endogenous norepinephrine, an 
unresolved question persists: Which α1-AR subtype mediates adrenergic-induced 
contraction in cultured aorta? Although the alkylating α1B-AR antagonist CEC 
abolished the contractile response to NE, in aortas incubated for 24 h (data not 
shown), we suggest that another receptor (perhaps α1B-AR or α1L-AR) or a dis-
tinct mechanism could be implicated [39] [40]. In support of this, research indi-
cates that even though α1A-AR and α1B-AR display similar densities in neonatal 
cardiomyocytes, the function of α1B-AR is not known, particularly since its 
blockade with CEC amplifies the role of α1A-AR in these cells [41]. Hence, addi-
tional experiments are needed to elucidate which α1-AR is activated by norepi-
nephrine under desensitized conditions. 

5. Conclusion 

Our study reveals that endogenous norepinephrine induces desensitization of 
the α1D-AR in the aorta. However, this desensitization can be mitigated by the 
selective antagonist BMY-7378. It still needs to determine which specific α1-AR 
remains functional after 24 hours of aorta incubation. Further studies are neces-
sary to solve this enigma and provide a better understanding of the mechanisms 
involved. 
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