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Abstract Alex He 
This article briefly reviews the history of coronavirus detection and states the 
structural characteristics and pathogenesis of the SARS-CoV-2 strain. Fol-
lowing the conclusion that cellular senescence is thought to contribute to 
SARS-CoV-2 susceptibility, this article continues to review the structure and 
function of telomeres. Finally, it briefly states the link between COVID-19 
and telomeres caused by the SARS-CoV-2 strain. 
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1. Introduction 

Covid-19 outbreaks caused by the SARS-CoV-2 strain have been ongoing glo-
bally for two years since 2020, and the disease has different clinical manifesta-
tions for other age groups. Patients with a global pandemic caused by the SARS- 
CoV-2 virus have been reported to have many different conditions and compli-
cations. Also, its strong contagiousness poses a threat to the elderly. It is thought 
to have the potential to cause inflammation and lead to accelerated ageing. Te-
lomeres, on the other hand, are thought to be closely related to cellular ageing, 
so the SARS-CoV-2 virus may have a way of affecting telomeres. Therefore, this 
article will describe the history, structure, and pathogenesis of the SARS-CoV-2 
strain; the possible associations and effects between it and telomeres will be 
briefly discussed. 

2. COVID-19  
2.1. History of Coronavirus and Introduction to SARS-CoV-2 

Infectious coronaviruses were first discovered in the 1960s when there was little 
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epidemiological, genomic or causative information about these viruses, only that 
they contained membranes surrounded by “spike”-shaped proteins RNA [1]. 
The crowned appearance of these surface “spike” proteins gave the virus family 
its name, corona, Latin for the crown [2]. The earliest coronaviruses identified in 
humans, human HCoV-229E and HCoV-OC43, caused milder symptoms of in-
fection and caused common upper respiratory tract disease [3]. Subsequently, two 
more coronavirus strains were discovered, namely HCoV-HKU1 and HCoV- 
NL63 [4]. Three other strains of coronaviruses (SARS-CoV, MERS-CoV, and 
SARS-CoV-2) were later found that, unlike the four common strains, have the 
potential to cause severe illness and even death [5]. 

The SARS-CoV strain, which first emerged in November 2002 in Guangdong 
Province, China, causes severe acute respiratory syndrome (SARS) with symp-
toms of fever, chills, chills, cough, and headache [6]. In addition, the patient's 
past medical history and age, Etc., will impact the patient outcome. The incuba-
tion period for SARS-CoV strains is 2 - 10 days [7]. The virus was found to tar-
get respiratory epithelial cells and cause damage to the lungs [8]. 

The outbreak caused by SARS-CoV lasted approximately 114 days and caused 
about 8098 infections, including 774 deaths; a total of 29 countries were affected 
[9]. This strain is derived from civet cats and is a zoonotic transfer to humans 
[10]. SARS cases have been dormant since the last case was reported in 2004. 
Extensive isolation measures and quarantine are considered important factors in 
controlling the SARS pandemic and successfully ending its worldwide epidemic 
[11]. 

In June 2012, 10 years after the emergence of SARS-CoV, a novel coronavirus, 
MERS-CoV, was isolated from the sputum of a Saudi Arabian man who died of 
acute pneumonia and renal failure [12]. Like SARS, patient outcomes are af-
fected by age and previous medical history [13]. Still, as a betacoronavirus strain, 
it has a much higher mortality rate than SARS at more than 35% [14]. 

As the seventh known coronavirus strain, the COVID-19 outbreak caused by 
SARS-CoV-2 is thought to have originated in a seafood market in Wuhan, Chi-
na, in December 2019 [15]. It shares similar symptoms of infection as SARS and 
MARS [16] but is more contagious [17], making it more difficult to isolate and 
contain [18]. 

2.2. Structure of COVID-19 

The SARS-CoV-2 strain, the MERS-CoV strain and the SARS-CoV-1 strain be-
long to the Betacoronavirus genus of the family Coronaviridae [15]. 

The genome of SARS-CoV-2 is a positive-stranded single-stranded RNA [(+) 
ssRNA] with a 5'-cap, 3'-UTR poly (A) tail [15]. Viral particles are spherical or 
pleomorphic, with a diameter of about 60 - 140 nm [19]. As shown in Figure 1, 
structural proteins include spike (S), envelope (E), membrane/matrix (M) and 
nucleocapsid (N), as well as accessory proteins [20]. The S, E, and M proteins 
form the virus’s membrane, while the N protein forms the capsid to package the  
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Figure 1. A rough schematic diagram of the structure of SARS-CoV-2. 

 
genomic RNA [9] [21] [22]. In more detail, the S protein is responsible for me-
diating the attachment of the virus to the cell membrane receptor, membrane 
fusion, and finally entering the host cell; the M protein, as the most abundant 
membrane protein, is responsible for the membrane structure of the coronavirus 
together with the E protein [23]. In addition, the new coronavirus has evolved 
into different branches and lineages and has another naming system [15]. 

2.3. Health Problems Led by COVID-19 

At present, virus-containing droplets are considered the main route of SARS-CoV-2 
transmission, and this medium is widely present in human sneezing, coughing, 
and mucosal secretions. Confined spaces (BE) will significantly affect this. Virus 
transmission effect [24]. Under experimental conditions, the virus can persist in 
the air as an aerosol for 3 hours. It can be transmitted mediated by pollutants 
ranging from a few hours to 3 days from cardboard to stainless steel, depending 
on the material. Surfaces of contaminated materials have proven to be conta-
gious [25]. In addition, SARS-CoV-2 has asymptomatic infected individuals, and 
although they do not have the typical onset characteristics of infected individu-
als, they can still transmit the virus [26].  

Most COVID-19 patients have a fever, cough, and shortness of breath [27]. In 
addition, smell and taste dysfunction, sudden sensorineural hearing loss (SSHNL), 
and blood clots may also occur in patients with COVID-19 [28] [29] [30]. COVI- 
19 has also been associated with comorbidities, including hypertension, diabetes, 
cardiovascular disease, and respiratory disease [31]. Patients with these comor-
bidities have a higher risk of infection and a higher rate of severe illness; some 
patients with comorbidities have a higher mortality rate after infection with 
COVID-19, which makes these comorbidities a risk for the severity of COVID-19 
factor [32]. Moreover, age is essential in contracting COVID-19 and its severe ad-
verse health consequences [33]. 

3. Telomere 
3.1. Structure of Telomeres 

A telomere is a protein-DNA complex. It has repetitive tandem TTAGG se-
quences (DNA) and is associated with many proteins. These proteins eventually 
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form protein complexes with DNA-remodeling activity called “shelterins”. This 
protein complex helps stabilise a type of telomeric ring structure (T-loop) de-
veloped by telomeric DNA [34]. Telomeres contain a C-rich lagging strand and a 
G-rich leading strand followed by a terminal 3’ G-rich single-stranded overhang; 
the 3’ G-strand overhang invades double-stranded DNA and forms a D-loop 
while promoting the Formation of T-loops [35] [36], as Figure 2 showed. To 
balance the loss of DNA at the ends of chromosomes, telomerase—a ribonuc-
leoprotein (RNP) reverse transcriptase enzyme that adds telomeric single-stranded 
DNA (i.e., ssDNA) repeats by repeating the reverse-transcribed template sequence 
in its intrinsic RNA is used sequence, under the condition that telomeric DNA is 
still a suitable substrate. The conformation of single-stranded 3’ overhangs of 
telomeres and their folding into secondary structures form a poor substrate, the 
G-quadruplex. G-quadruplexes are formed from G-rich nucleic acids and have a 
secondary structure. G-quadruplexes mainly inhibit telomere elongation con-
trolled by telomerase but are also involved in telomere protection and recombi-
nation inhibition [37]-[42]. 

3.2. The Function of Telomeres 

Telomeres are thought to be protective structures at the ends of linear chromo-
somes that play an essential role in preventing genomic instability. However, as 
cells replicate, telomeres shorten and lead to a permanent cell cycle arrest known 
as “replicative senescence” [43]. Senescence (Aging) is considered a progressive 
and irreversible loss of the proliferative potential of human somatic cells [44]. 
Furthermore, it is thought to be an advanced and phenotypically diverse set of 
cellular states acquired after an initial growth arrest and act on several complex 
biological processes, including development, tissue repair, ageing and age-related 
diseases [45]. While the best explanation for replicative senescence is the short-
ening of telomeres, Harley et al. found that the telomere region gradually short-
ens as cells divide—this is thought to be an inducer of cellular senescence [46]. 
Later in 1998, in experiments where telomerase was introduced into normal 
cells, telomere length was the limiting factor in senescence arrest, and here the 
theory of causality was confirmed [47]. 

In addition, telomeres are thought to protect the ends of chromosome arms 
from inappropriate DNA repair mechanisms and to prevent the degradation of 
genes near the ends of chromosome arms due to incomplete DNA replication. 
As a “buffer system”, telomeres avoid the loss of critical DNA. However, as mul-
tiple mechanisms cause wear and tear, telomeres shorten. The proteins that form 
the Shelterin complex fail to bind to telomere sequences and eventually lose their 
role in capping at the ends of chromosomes [48]. 

Related diseases with Telomeres: 
As an inducer of senescence, future research publications on telomeres will 

further demonstrate the link between telomeres and ageing-related diseases and 
genetics-related diseases. Therefore, this article extracts some of the known te-
lomere-related diseases for presentation. 
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Figure 2. A simple schematic diagram of T-loop and D-loop. 
The 3’ end of the G-rich strand protrudes as a single-stranded 
telomere extension and curls back into a T-loop, then invades 
the 5' double-stranded telomeric duplex, forming a D-loop.  

3.2.1. Cancer 
Cancer is considered an age-related disease because the risk of cancer increases 
as age increases [49]. Cells with malignant potential can adapt and evade repli-
cating senescence by inhibiting DNA damage response mechanisms or over- 
activating telomere maintenance pathways, avoiding apoptosis and becoming 
tumour cells [50]. Telomere length measured in some cancer tissues is shorter 
than telomeres from healthy tissues from the same organ and patient [51] [52] 
[53]. In addition, telomeres in healthy tissues adjacent to cancer cell tissue are 
shorter than telomeres in cells far away from cancer cell tissue [54]. Thus, short-
ened and dysfunctional telomeres can lead to genetic instability and tumorigene-
sis [49] [55] [56]. 

3.2.2. Coronary Heart Disease 
Coronary heart disease is one of the most common causes of human mortality 
worldwide [57], with complex pathogenesis, hypertension, hyperlipidemia, smok-
ing, obesity, and a family history of coronary heart disease are all risk factors for 
coronary heart disease [58]. A standard view is that inflammatory responses and 
oxidative stress reactions may occur in lesion sites such as coronary atheroscle-
rotic plaques in patients with coronary heart disease; As a response, the prolife-
ration of hematopoietic stem cells will accelerate and directly lead to faster 
shortening of telomeres [59] [60]. In addition, risk factors for coronary heart 
disease, such as obesity, can directly shorten telomere length by increasing sys-
temic inflammation and oxidative stress. Inflammation and oxidative stress play 
an important role in regulating telomere length has also been demonstrated by 
studies that can delay telomere shortening at low levels of plasma trans fatty acid 
concentrations or high levels of serum lipophilic antioxidants [61] [62]. There-
fore, telomere length predicts that mortality in patients with stable coronary 
heart disease will be possible [63]. 

In addition, telomeres have also been shown to be associated with many 
chronic diseases, such as stroke [64], high blood pressure [65], atherosclerosis 
[66], dyslipidemia [67], etc. As more research is conducted, more diseases 

https://doi.org/10.4236/jbm.2022.1011012


A. He 
 

 

DOI: 10.4236/jbm.2022.1011012 158 Journal of Biosciences and Medicines 
 

caused or affected by telomeres will likely be detected. 

3.3. COVID-19 and Telomeres’ Link 

Immune response patterns are highly dependent on age, so age-related changes 
in immune cells can affect the efficiency of the immune response [68]. Again, 
ageing is a set of progressive and phenotypically diverse cellular states acquired 
after initial growth arrest and acts on many complex biological processes, in-
cluding development, tissue repair, ageing, and age-related diseases [45]. How-
ever, the solid age alone is insufficient to reflect the physiological data state. Bi-
ological age is more strongly associated with all-cause mortality than actual age, 
and genetic and epigenetic changes over life can affect the biological ageing 
process. They may also increase vulnerability to multiple diseases, such as infec-
tious diseases [69]. Currently, adults over 65 and people with comorbidities are 
at the most significant risk of death and morbidity from COVID-19 [70]. It is 
worth noting that the causal role of DNA damage accumulation in ageing cannot 
be ignored, and several descriptions of genetic defects accelerate ageing in or-
ganisms [71]. Telomeres, in turn, are protective structures at the ends of linear 
chromosomes. Therefore, telomere length and epigenetic characteristics may 
have a specific correlation with susceptibility to viral infection; that is, the host's 
telomere length and epigenetic features affect the likelihood of infection with the 
virus [72] [73]. As a result, cellular senescence is likely to be a key pathological 
mechanism of susceptibility to SARS-CoV-2 infection [74]. 

4. Conclusion and Future Direction 

As one of the most severe public health crises worldwide, the SARS-CoV-2 virus 
has several different variants. Although vaccines are available for common strains, 
further research is needed on the source of the virus and its pathological effects 
on humans. In the COVID-19 outbreak, the elderly and young people have been 
judged to be high-risk susceptible groups, among which some comorbidities 
common to the elderly group are considered common factors in aggravating 
SARS-CoV-2 infection that has a great relationship with cellular ageing and te-
lomere wear. 

Further research on telomeres and SARS-CoV-2 strains will help provide new 
treatment options for comorbid populations, such as immunotherapy, anti-ageing 
therapy, and stem cell therapy, and better understand the long-term impact of 
the COVID-19 pandemic on humans. 
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