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ABSTRACT 
Cross entropy is a measure in machine learning and deep learning that assesses the differ-
ence between predicted and actual probability distributions. In this study, we propose cross 
entropy as a performance evaluation metric for image classifier models and apply it to the 
CT image classification of lung cancer. A convolutional neural network is employed as the 
deep neural network (DNN) image classifier, with the residual network (ResNet) 50 chosen 
as the DNN architecture. The image data used comprise a lung CT image set. Two classifica-
tion models are built from datasets with varying amounts of data, and lung cancer is catego-
rized into four classes using 10-fold cross-validation. Furthermore, we employ t-distributed 
stochastic neighbor embedding to visually explain the data distribution after classification. 
Experimental results demonstrate that cross entropy is a highly useful metric for evaluating 
the reliability of image classifier models. It is noted that for a more comprehensive evalua-
tion of model performance, combining with other evaluation metrics is considered essential. 

 

1. INTRODUCTION 
In 2023, it is estimated that there will be nearly 2 million new cancer cases and approximately 610 

thousand cancer-related deaths in the United States. The leading cause of cancer-related deaths for both 
men and women is lung cancer [1]. Lung cancer is broadly categorized into small cell lung cancer and 
non-small cell lung cancer (NSCLC) based on histological type. NSCLC accounts for approximately 80% - 
85% of all lung cancer cases [2]. Further classification of NSCLC is based on histology, leading to subtypes 
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such as lung adenocarcinoma (LUAD), lung squamous cell carcinoma (LUSC), large cell carcinoma 
(LULC), and others, each exhibiting unique characteristics. LUAD represents 85% of NSCLC cases, and 
most of the patients often face challenges in survival due to drug resistance and recurrence [2]. LUSC con-
stitutes around 30% of all NSCLCs and is strongly linked to smoking, characterized by a high overall mu-
tation rate of 8.1 mutations per megabase (1,000,000 base pairs long) and significant genomic complexity 
[3]. LULC has a molecular profile characteristic of adenocarcinoma, and this profile is more similar to 
adenocarcinoma than squamous cell carcinoma [4]. Additionally, the prognosis is worse than other types 
of non-small cell lung cancer. Even within the broad category of NSCLC, the characteristics vary depend-
ing on the subtype. Therefore, early identification of the histological type is crucial for treatment strategies 
and reducing mortality. 

Low-dose computed tomography (LDCT) screening proves valuable for early lung cancer detection 
[5-9]. Nevertheless, the rapid evolution of computed tomography (CT) equipment has led to the identifi-
cation of numerous microscopic nodules, intensifying the workload for radiologists. Consequently, the 
implementation of computer-aided diagnosis (CAD) systems is anticipated to help radiologists ease their 
burden. Broadly, CAD is categorized into two types: computer-aided detection (CADe), focusing on lesion 
detection (presence diagnosis), and computer-aided diagnosis (CADx), aiming to analyze lesions (defini-
tive diagnosis, such as benign/malignant differentiation). Extensive research in chest CT CAD, dating back 
to the 1960s, has been conducted for nodules and lung diseases, yielding some positive outcomes [10-14]. 
However, challenges persist, including a higher rate of false positives compared to physicians [11] and li-
mitations in enhancing system accuracy [13]. Conversely, image recognition using deep neural networks 
(DNN) has exhibited significant advancements in the past decade. 

In recent years, it has been reported that amazing recognition accuracy can be obtained with the at-
tention mechanism developed for natural language processing [15] and vision transformer, which applies 
a transformer-like model to image processing [16]. These advancements have eliminated the need for the 
traditionally challenging feature extraction process in CAD research, thus enabling the development of 
highly accurate and robust designs. Consequently, research on artificial intelligence-assisted CAD systems 
targeting pulmonary diseases using deep neural networks (DNN) has progressed significantly [17-20]. 

These papers discuss pattern detection of interstitial lung diseases [17, 18] and histological classifica-
tion of lung cancer [19] using convolutional neural networks (CNNs). In both cases, to enhance the mod-
el’s performance, the accuracy of the DNN model is evaluated from various perspectives, including accu-
racy, precision, recall, F-measure, receiver operating characteristic (ROC) curve, and area under the ROC 
(AUC), all considered gold standards. However, these existing evaluation metrics have problems such as 
lack of transparency in DNN inferences and inability to estimate uncertainty regarding results. As specific 
examples, there are issues such as uncertainty arising from facing out-of-distribution data [21], over-confident 
problems, and covariate shift [20]. 

Furthermore, in image classification tasks utilizing DNNs, it is common to employ the softmax func-
tion to represent the output as a probability value. However, one issue with DCNN is that calibration is 
often insufficient, making it difficult to interpret the model’s output directly as a probabilistic measure 
[22]. 

Evaluating model uncertainty is essential for enhancing the transparency and reliability of predic-
tions, improving data quality, and reducing misjudgments. Bayesian neural network (BNN) and Monte 
Carlo dropout (MCDO) [23] are recognized methods for estimating uncertainty in neural networks. BNN 
expresses the weights of a network model as a probability distribution, making it possible to estimate un-
certainty in addition to prediction results. MCDO is a type of BNN, and is a method that enables approx-
imate modeling of the probability distribution of weights by representing the weights of a network model 
using a Bernoulli distribution. However, both methods encounter the challenge of excessive computational 
costs when applied to DNNs. 

In this study, we suggest employing cross entropy as a performance evaluation metric to quantify un-
certainty in DNN image classifiers, applying it specifically to the classification of lung cancer in CT im-
ages. Cross entropy is typically utilized as a cost function during the training phase of DNN model con-
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struction. However, in this study, we use it as one of the performance evaluation metrics for the classifica-
tion model. 

2. MATERIALS AND METHOD 
In this study, we use a CNN as a DNN image classifier and perform finetuning. Two classification 

models are constructed using two data sets with different numbers of data. Each model undergoes a 
10-fold cross-validation to perform a four-class classification task. In this experiment, alongside compu-
ting the proposed cross-entropy metric, we also calculate existing evaluation metrics for comparison. Ad-
ditionally, we visualize the data distribution after classifying the classes. 

2.1. Image Date Sets 

The data used comprise a lung CT image set classified into four classes: LUAD, LULC, LUSC, and 
normal. This dataset is publicly available on the web for non-profit purposes, as provided by the research 
community [24]. Consequently, ethical concerns do not arise in this study, and obtaining informed con-
sent is not necessary. An illustration of the image data is presented in Figure 1. 

In the experiment, two models were constructed: “Model A”, which was trained on a total of 1000 
images with imbalanced data counts for each lesion, and “Model B”, which was trained on a total of 748 
images with balanced data counts for each lesion. Both models undergo a 10-fold cross-validation, where 
90% of the data is allocated for training and the remaining 10% for validation. The distribution and total 
numbers of the data are detailed in Table 1. 

2.2. Multioutput Classification Model Used 

In this study, we employ the residual network (ResNet) 50 architecture [25] for the deep convolution-
al neural network (DCNN) and conduct learning through fine-tuning. Typically, in DCNNs, accuracy 
does not improve unless the number of stacked layers is sufficiently large. However, when the number of 
layers surpasses a certain threshold, the vanishing gradient problem arises, leading to a deterioration in 
accuracy. In ResNet, the introduction of a mechanism called shortcut connection solved the vanishing 
gradient problem by directly adding the input of the preceding layer to the subsequent layer [25]. Conse-
quently, this allows for the realization of a deep network, and ResNet50 is considered highly effective for 
medical imaging applications [26]. 

In the fine-tuning process of this experiment, we utilize the pre-trained ResNet50 model on natural 
images, retraining the entire network using lung CT images. In other words, fine-tuning is executed with-
out placing a frozen (no weight updates) layer, and a four-class classification is conducted. Consequently, 
the final fully connected layer and the last classification layer are replaced and trained with new configura-
tions tailored to the number of categories. To meet the structural requirements of ResNet50, the input data 
size needs to be 224 × 224. Therefore, bicubic interpolation is employed to standardize the overall image 
size. The mini-batch size is set to 10, and the optimizer used is Adam (combining momentum SGD + 
RMSprop). In the retraining with CT images, parameters are adjusted so that the learning rate increases in 
the newly replaced fully connected layer, decreases in the transfer layer, and decreases after completion of 
every 5 epochs. To prevent overfitting, an L2 regularization term is incorporated into the cost function 
(loss function). The number of epochs is determined by evaluating accuracy validation after each iteration. 
Retraining is halted if the accuracy falls below the highest accuracy achieved in the last 5 consecutive vali-
dations. 

In this experiment, with a focus on model interpretability, we visualize the distribution of post-classifica- 
tion data. To achieve this, we employ t-distributed stochastic neighbor embedding (t-SNE) [27]. t-SNE is a 
dimension reduction method that condenses data into a low-dimensional space while preserving distances 
in high-dimensional data, allowing for nonlinear mapping. In this experiment, all high-dimensional acti-
vation data points in the final softmax layer are visualized through a two-dimensional mapping. 
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(a)                (b)                (c)                 (d) 

Figure 1. An example of image data. (a) LUAD (adenocarcinoma). (b) LULC (large cell 
carcinoma). (c) Normal. (d) LUSC (squamous cell carcinoma). 

 
Table 1. Breakdown of the image dataset used. 

Class Model A Model B 
LUAD (adenocarcinoma) 338 187 

LULC (large cell carcinoma) 187 187 
LUSC (squamous cell carcinoma) 260 187 

Normal 215 187 
Total 1000 748 

2.3. Cross Entropy 

Cross entropy serves as a metric for gauging the dissimilarity between two probability distributions 
[28-33]. In the realm of machine learning and deep learning, it is commonly used to assess the gap be-
tween the predicted probability distribution produced by a model and the true, ground truth probability 
distribution. Fundamentally, cross entropy quantifies the degree of disparity between these two distribu-
tions. 

The cross entropy between these two distributions is given by the following formula: 

( ) ( ) ( ), logexH p q p x q x= −∑                               (1) 

where p is the true distribution, q is the predicted distribution, and x ranges over all possible outcomes.  
Cross entropy indicates the amount of information lost when utilizing the predicted distribution to 

infer the real one [28-33]. Essentially, it offers insights into the effectiveness of a classification model that 
provides probabilities ranging from 0 to 1. Put simply, it reveals the proximity of the predicted distribution 
to the actual one. A perfect match results in zero cross entropy, while significant differences yield a higher 
value. Consequently, cross entropy serves as a versatile metric for evaluating the performance of classifica-
tion models. 

The following provides a simplified numerical example of utilizing cross entropy for the quality eval-
uation of a deep learning classifier in a multi-class classification context [31, 33]. Let’s consider a case 
where we have a deep learning classifier trained for a multi-class classification problem with three classes: 
apple, orange, and pear. The model has undergone training, and now our objective is to assess its perfor-
mance using cross entropy. 

Assume we have a small test dataset with three samples and the true class labels are: 
Sample 1: True label = apple.   
Sample 2: True label = orange. 
Sample 3: True label = pear. 
Now, let’s say the model’s predictions for these samples produce the following class probabilities: 
Sample 1: Predicted probabilities = [0.7, 0.15, 0.15]  
(70% confidence in apple, 15% in orange, 15% in pear). 
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Sample 2: Predicted probabilities = [0.1, 0.8, 0.1]  
(10% confidence in apple, 80% in orange, 10% in pear). 
Sample 3: Predicted probabilities = [0.25, 0.25, 0.5]  
(25% confidence in apple, 25% in orange, 50% in pear). 
Using Equation (1), we calculate the cross entropy for each sample and then the average cross entropy 

for the entire test dataset: 
Sample 1—True label: [1, 0, 0], Predicted label: [0.7, 0.15, 0.15],  
Cross entropy = −(1) loge (0.7) = 0.3567. 
Sample 2—True label: [0, 1, 0], Predicted label: [0.1, 0.8, 0.1],  
Cross entropy= − (1) loge (0.8) = 0.2231. 
Sample 3—True label: [0, 0, 1], Predicted label: [0.25, 0.25, 0.5],  
Cross entropy = − (1) loge (0.5) = 0.6931. 
Then, we calculate the average cross entropy for the entire test dataset: 
Average cross entropy = (0.3567 + 0.2231 + 0.6931)/3 = 0.4243. 
In this example, the average cross entropy for the test dataset is approximately 0.4243. A lower cross 

entropy implies that the model’s predicted probabilities are closer to the true class probabilities, indicating 
better model performance. 

When evaluating the classification performance of two CNN models using cross entropy, the entropy 
values for both models are compared. A lower entropy suggests that the model is more confident in its 
predictions, leading to higher accuracy. Conversely, a higher entropy indicates more uncertainty and lower 
accuracy. 

2.4. Merits of Using Cross Entropy as an Evaluation Metric for Classification Models 

Using cross entropy for quality evaluation of a deep learning classifier provides several advantages 
[28-34]: 

• Cross entropy, rooted in information theory, can be perceived as a measure of information gain or 
loss. It quantifies the information gained when the true class label is disclosed, taking into account the 
predicted probabilities. 

• Cross entropy is very sensitive to prediction errors. Incorrect predictions made with confidence are 
penalized more heavily than predictions closer to the correct answer. This sensitivity makes it a valuable 
indicator when accurate classification is a priority. 

• Cross entropy takes into account the probability distribution predicted by the classifier. It assesses 
the dissimilarity between the predicted probabilities and the true class labels. This approach offers a more 
detailed evaluation of the model’s confidence in its predictions. 

• Cross entropy directly quantifies the likelihood of observed data based on predicted probabilities. 
This measurement evaluates how well the model’s predicted probabilities match the actual class labels and 
aids in the probabilistic interpretation of the classifier’s output. 

• Cross entropy applies a logarithmic scaling to errors. This means that it penalizes even minor pre-
diction errors, thus motivating the model to have greater confidence in its predictions.  

3. RESULTS 
The average accuracy of “Model A”, trained on 1000 images with imbalanced data for each lesion, and 

that of “Model B”, trained on 748 images with balanced data, was 0.974 and 0.954, respectively. The AUC 
values were 0.996 and 0.988 for “Model A” and “Model B”, respectively. The confusion matrices for both 
models are presented in Figure 2. The confusion matrices in the figure are cross tables that count the re-
sults of 10 subsets of the 10-fold cross validation. Table 2 and Table 3 show the results of cross entropy 
and the existing evaluation metrics (precision, recall, F1, and specificity) when each lesion is considered 
positive for Models A and B, respectively. The values in the last row of the respective table represent the 
average values for each metric. 
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(a)                          (b) 

Figure 2. Confusion matrices. (a) Model A: accuracy 0.974, AUC 
0.996, the value with the orange color is the number of correct 
answers. (b) Model B: accuracy 0.954, AUC 0.988, the value with 
the blue color is the number of correct answers.  

 
Table 2. Cross entropy and existing evaluation metrics for Model A. 

 
Cross Entropy Precision Recall F1 Specificity 

LUAD 0.136 0.962 0.976 0.969 0.980 
LULC 0.204 0.972 0.941 0.957 0.994 

Normal 0.004 0.995 0.995 0.995 0.991 
LUSC 0.122 0.973 0.977 0.975 0.991 

Average 0.117 0.976 0.972 0.974 0.989 
 

Table 3. Cross entropy and existing evaluation metrics for Model B. 

 
Cross Entropy Precision Recall F1 Specificity 

LUAD 0.313 0.921 0.930 0.926 0.921 
LULC 0.270 0.962 0.952 0.957 0.988 

Normal 0.139 0.989 0.989 0.989 0.996 
LUSC 0.268 0.947 0.947 0.947 0.982 

Average 0.247 0.955 0.955 0.955 0.972 
 
Table 4 displays the accuracy and cross entropy for each of the 10 subsets in Model A. The “Average” 

in the last row represents the average cross entropy in each subset, while the “Average” in the rightmost 
column signifies the average cross entropy for each lesion prediction. Additionally, as an illustration of the 
existing evaluation metrics, Table 5 and Table 6 respectively present the calculated values for subsets No. 2 
and No. 8, where accuracy was equivalent among the 10 subsets in Table 4. Figure 3 illustrates the dimen-
sionality reduction data distribution map after class classification for subsets No. 2 and No. 8, respectively. 

4. DISCUSSION 
Generally, classification results obtained using the DCNN model are computed by tallying the num-

ber of correct answers/incorrect answers and summarizing them into a confusion matrix. Subsequently, 
various evaluation metrics are calculated. In this experiment, we created a confusion matrix (Figure 2) 
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and computed various existing metrics (columns 3 to 6 of Table 2 and Table 3). In addition to accuracy 
and AUC metrics, as evident from these tables, all the average values of the existing metrics are higher for 
Model A than for Model B. Consequently, when all metrics exhibit high values, it is generally straightfor-
ward to conclude that Model A is more accurate. However, it is crucial to selectively use evaluation metrics 
based on the specific purpose of the classification task. For instance, in the case of a 4-class classification of 
lung cancer with LULC as the positive class, as shown in the third row of the two tables, the recall for 
Model A is 0.941, while for Model B, it is 0.952, indicating a higher value for Model B. Conversely, preci-
sion and specificity are higher for Model A, and the F1 score remains the same. In such cases, it becomes 
challenging to determine which model can accurately distinguish LULC. 

Furthermore, when considering “Normal” as the positive class, as indicated in the fourth row of Ta-
ble 2 and Table 3, Model B exhibits high specificity. In this case, Model B can be considered to be able to 
more accurately identify lung cancer from a group of lung cancer images. Consequently, relying solely on 
existing evaluation metrics derived from the confusion matrix has its limitations when assessing the per-
formance of a model. Moreover, there is an issue wherein existing evaluation metrics do not furnish in-
formation about the distribution of probabilities, which represent the model outputs. Consequently, it is 
not possible to evaluate reliability based on confidence. 
 
Table 4. Accuracy and cross entropy for Model A. 

Subset No. 1 2 3 4 5 6 7 8 9 10 Average 
Accuracy 0.970 0.980 0.960 0.940 1.000 1.000 0.990 0.980 0.990 0.930 0.974 

LUAD 0.013 0.160 0.032 0.233 0.009 0.005 0.015 0.210 0.000 0.688 0.136 
LULC 0.492 0.002 0.641 0.237 0.005 0.001 0.015 0.032 0.146 0.467 0.204 

Normal 0.000 0.000 0.000 0.000 0.000 0.000 0.041 0.000 0.000 0.000 0.004 
LUSC 0.603 0.108 0.026 0.185 0.000 0.000 0.012 0.028 0.000 0.256 0.122 

Average 0.277 0.067 0.175 0.164 0.004 0.002 0.020 0.068 0.037 0.353 0.117 
 

Table 5. Calculated values for subset No. 2 of the 10 subsets from Table 4, where the accuracy of the 
subset is 0.98. 

 
Cross Entropy Precision Recall F1 Specificity 

LUAD 0.160 0.971 0.971 0.971 0.985 
LULC 0.002 0.950 1.000 0.974 0.988 
LUSC 0.108 1.000 0.962 0.980 1.000 

Normal 0.000 1.000 1.000 1.000 1.000 
Average 0.067 0.980 0.983 0.982 0.993 

 
Table 6. Calculated values for subset No. 8 of the 10 subsets from Table 4, where the accuracy of the 
subset is 0.98. 

 
Cross Entropy Precision Recall F1 Specificity 

LUAD 0.210 1.000 0.941 0.970 1.000 
LULC 0.032 0.947 1.000 0.973 0.988 
LUSC 0.028 0.963 1.000 0.981 0.986 

Normal 0.000 1.000 1.000 1.000 1.000 
Average 0.068 0.978 0.985 0.981 0.994 
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(a)                                         (b) 

Figure 3. Two-dimensional data mapping after class classification. (a) Distribution of 2D data for 
subset No. 2. (b) Distribution of 2D data for subset No. 8. 
 

The second column in Table 2 and Table 3 represents the cross entropy for each class calculated us-
ing the probability distribution output by the model. Cross entropy indicates how closely the predicted 
probability distribution aligns with the true distribution, with lower values indicating proximity to the true 
distribution and higher values indicating deviation from it. In essence, it quantitatively demonstrates the 
reliability of the model’s predictions. From the two tables, the average cross-entropy values are 0.117 for 
Model A and 0.247 for Model B. This result suggests that Model A is closer to the true probability distri-
bution, signifying lower uncertainty. Similarly, even when considering any of the lesions as positive, it can 
be stated that Model A exhibits lower uncertainty. By employing cross entropy as an evaluation metric in 
this manner, it becomes possible to compare the uncertainty between multiple models and assess their re-
liability. 

In DCNN classification, the classification results may be influenced by the imbalance in the training 
data. Table 4 illustrates the cross entropy for each subset in the 10-fold cross-validation of Model A. In 
subset No. 1, the cross-entropy value (0.603) for LUSC is significantly higher compared to LUSC in the 
other subsets. Regarding LUAD, the value in subset No. 10 (0.688) is comparably high. These findings 
suggest that predictions for these lesions are uncertain (ambiguous), indicating a bias in the data. This 
outcome implies that using cross entropy as a metric can prompt a reevaluation of the data, leading to an 
improvement in data quality. For example, the accuracy for both subsets No. 5 and No. 6 is 1.0, but their 
respective cross entropy values differ. This result demonstrates that even if all class classifications are cor-
rect, varying levels of uncertainty exist. Table 5 and Table 6 compare subsets No. 2 and No. 8, both having 
an accuracy of 0.98. With existing evaluation metrics, interpreting which specific metrics should be used to 
assess performance becomes challenging. 

On the contrary, utilizing cross entropy facilitates a straightforward comparative evaluation. In sub-
sets No. 2 and No. 8, the average cross entropy for the 4-class classification is 0.067 and 0.068, respectively, 
indicating nearly equivalent performance. However, the cross-entropy values for each class of lesions dif-
fer, signifying distinct predictive uncertainties. For instance, in the prediction of LUAD, the cross-entropy 
value (0.210) in subset No. 8 (Table 6) is higher than that (0.160) in subset No. 2 (Table 5). A similar pat-
tern is observed in the case of LULC, where the cross-entropy value is higher in subset No. 8. This implies 
that the predictions for LUAD and LULC are more ambiguous (with higher uncertainty) in subset No. 8, 
as compared to subset No. 2. As for LUSC, the cross-entropy value is higher in subset No. 2, indicating 
greater uncertainty in the predictions for this subset. 
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The visualization of these data distributions is presented in Figure 3. In subset No. 8 (Figure 3(b)), 
two LUAD data points (blue) are intertwined with the clusters of LULC (red) and LUSC (purple). The 
cross entropy for LUAD in this subset is 0.210, indicating the highest level of uncertainty in the predic-
tions. With this mixture, it can be inferred that the uncertainty of LULC (red) and LUSC (purple) has in-
creased. In subset No. 2 (Figure 3(a)), there are isolated points in LUAD (blue) and LUSC (purple) re-
spectively. From the distribution of LUAD (blue) data points, it is apparent that there is little influence on 
other clusters, but there is some uncertainty in the predictions. On the other hand, the isolated points in 
LUSC (purple) indicate uncertainty in the predictions and may also affect the prediction of LUAD (blue). 
Thus, cross entropy has the capability to capture the uncertainty (ambiguity) in class-specific predictions, 
which cannot be determined by existing evaluation metrics. Based on these results, we believe that cross 
entropy is a highly useful metric for evaluating model reliability. 

The accuracy of cross-entropy used for classifying lung cancer in CT images depends on various fac-
tors, including the quality of the dataset, the complexity of the model architecture, and the overall experi-
mental setup. However, the main purpose of our paper is to use cross entropy as a performance metric for 
quantifying uncertainty in DNN image classifiers. Thus, we have refrained from delving into detailed dis-
cussion on this matter as it lies beyond the scope addressed in this work. Forecast uncertainty in medical 
image classification tasks can arise from various factors. For example, limited data availability, data quality 
and variability, class imbalance, artifact presence, model complexity, etc. Since our paper mainly focus on 
the application of cross entropy to classification of lung cancer, discussion on what factor contribute to 
prediction uncertainty was not detailed conducted. 

Cross entropy is considered a useful evaluation metric for the performance of a multi-class classifier. 
However, it does have some limitations. First, it is somewhat sensitive to class imbalance. If there is a sig-
nificant imbalance in the distribution of classes in the dataset, the model may be biased towards the ma-
jority class. Second, while cross entropy provides a measure of how well the predicted probabilities match 
the true distribution of classes, it does not offer direct interpretability. Third, cross entropy assumes that 
the predictions for each class are independent of each other. In some real-world scenarios, classes may be 
correlated, and this assumption may not hold. In spite of these limitations, cross entropy is considered a 
valuable model evaluation metric due to its simplicity and effectiveness. However, it is essential to com-
plement its use with other evaluation metrics for a more comprehensive assessment. 

5. CONCLUSION 
In this study, we proposed the utilization of cross entropy, known as the loss function for DNN mod-

els, as one of the performance evaluation metrics for the models. We applied this metric to the classifica-
tion of lung cancer in CT images. As a result, we demonstrated that it is possible to quantitatively depict 
the uncertainty of predictions based on the differences in probability distributions in the model’s output. 
Particularly in multi-class classification tasks, it was possible to demonstrate uncertainty for each class. 
Furthermore, by mapping the class classification results into two-dimensional data, we were able to vi-
sually interpret the prediction uncertainty indicated by cross-entropy values. Based on these results, cross 
entropy is considered a very useful metric for evaluating model reliability. However, for a more compre-
hensive evaluation of DNN model performance, it is essential to use cross entropy in conjunction with 
other evaluation metrics. 
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