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ABSTRACT 
Diadochokinesia pertains to a standard aspect of the conventional neurological examina-
tion, which involves the oscillation between muscle groups with an agonist and antagonist 
relationship. A representative example is the pronation and supination of the forearm. He-
miparesis visibly demonstrates disparity of diadochokinesia, and clinical quantification is 
achieved through the use of an ordinal scale, which is inherently subjective. A conformal 
wearable and wireless inertial sensor equipped with a gyroscope mounted about the dorsum 
of the hand can objectively quantify diadochokinesia respective of forearm pronation and 
supination. The objective of the research endeavor was to apply an assortment of machine 
learning algorithms to distinguish between a hemiplegic affected and unaffected upper limb 
pair based on diadochokinesia with respect to pronation and supination of the forearm. 
Performance of the machine learning algorithms, such as the multilayer perceptron neural 
network, J48 decision tree, random forest, K-nearest neighbors, logistic regression, and 
naïve Bayes, were evaluated in consideration of classification accuracy and time to develop 
the machine learning model. The machine learning feature set was derived from the ac-
quired gyroscope signal data. Using the gyroscope signal data from the conformal wearable 
and wireless inertial sensor the logistic regression and naïve Bayes machine learning algo-
rithms achieved considerable performance capability with respect to both time to converge 
the machine learning model and classification accuracy for distinguishing between a he-
miplegic upper limb pair for diadochokinesia in consideration of pronation and supination. 
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1. INTRODUCTION 
The application of wearable and wireless systems has provided substantial diagnostic acuity for the 

evaluation of neurological status [1-5]. In particular, the gyroscope sensor of the wearable and wireless 
system provides a clinically relevant signal data for evaluating kinematic features pertaining to observa-
tional disparities manifested by hemiparesis. The wearable and wireless system can convey gyroscope sig-
nal data with wireless connectivity to the Internet. With the consolidation of the gyroscope signal data to a 
feature set considerable classification accuracy has been achieved to distinguish between a hemiplegic af-
fected and unaffected limb pair [6-8]. 

In particular, diadochokinesia, which involves the variation between agonist and antagonist muscle 
activation, such as pronation and supination of the forearm, provides valuable insight regarding the inte-
grity of neurological status. A hemiplegic upper limb pair can reveal observationally perceptive disparity of 
diadochokinesia with disfunction pertaining to the affected side [9-11]. As a significant extension beyond 
the domain of expert yet subjective interpretation of a skilled clinician exists the application of wearable 
and wireless systems that are equipped with an inertial sensor package [1-5]. Originally, the smartphone as 
a wearable and wireless inertial sensor platform has been successfully applied regarding the upper limb for 
identifying subject status and therapy intervention technique [7, 12-17]. In particular, the gyroscope sen-
sor provides a clinically recognizable signal regarding subject status [18].  

Recent technology evolutions have considerably transcended the capabilities of the smartphone. For 
example, the BioStamp nPoint constitutes a conformal wearable and wireless inertial sensor system with a 
profile on the order of a bandage. The BioStamp nPoint utilizes the wireless attributes of a tablet and 
smartphone with connectivity to a secure Cloud computing environment [19]. The objective of the re-
search endeavor was to distinguish disparity of diadochokinesia with respect to a hemiplegic upper limb 
pair from the perspective of machine learning classification through the BioStamp nPoint as a conformal 
wearable and wireless inertial sensor system. An assortment of machine learning algorithms was evaluated, 
such as the multilayer perceptron neural network, J48 decision tree, random forest, K-nearest neighbors, 
logistic regression, and naïve Bayes. The performance of these machine learning algorithms was estab-
lished based on classification accuracy attained to differentiate diadochokinesia with respect to a hemip-
legic upper limb pair and the time to develop the machine learning model. 

2. BACKGROUND 
2.1. Fundamentals of Diadochokinesia 

The evaluation of diadochokinesia is a standard aspect of a neurological examination [9]. Diadocho-
kinesia pertains to the alternation between agonist and antagonist muscle groups, such as alternation be-
tween forearm pronation and supination [9, 10]. Disfunction of diadochokinesia is manifested with dis-
turbance to the nervous system, such as from hemiparesis [9-11]. 

2.2. Techniques for Quantifying Diadochokinesia Using Instrumentation 

The characteristics of diadochokinesia involve the application of ordinal scales based on the observa-
tion of a clinical expert. Emphasis is placed upon the determination of angular rotation rate. However, 
Hermsdörfer et al. also recommend other kinematic parameters, such as amplitude and consistency [9]. 
However, the clinical interpretation is inherently subjective in nature [1-5, 9]. Objectively quantified and 
instrumented systems would be beneficial for the quantification of diadochokinesia [9]. 

Okada and Okada applied an instrumented device for acquiring a quantified representation of di-
adochokinesia. The subject would have their hands secured to the protruding handles supported by elastic 
bandages. The pronation and supination of the forearms would generate a quantified voltage signal for 
pending analysis through a local computer. The device is effectively portable and supported by a tripod to 
accommodate a sitting subject. The quantified data demonstrated the capacity to identify statistically sig-
nificant disparity for healthy subjects and subjects with neurological disorders [20]. Although this device is 
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capable of evaluating diadochokinesia, the device is more suitable for a clinical environment, and it is rela-
tively large by comparison to wearable and wireless systems that are conformal.  

Further attempts have been applied for the quantification of forearm rotation. Hermsdörfer et al. ap-
plied ultrasound with specific markers to evaluate the characteristics of diadochokinesia [9, 11]. Other 
three-dimensional techniques, such as an electromagnetic tracking system, have been successfully applied 
[21]. Matsuki et al. 2010 developed a relevant application utilizing radiography to evaluate forearm kine-
matics during dynamic rotation [22]. Although these techniques consist of considerable accuracy, these 
applications are not suitable for personalized use in the context of wearable and wireless systems, especial-
ly conformal wearable devices.  

2.3. Conformal Wearable and Wireless Systems, Such as the BioStamp nPoint, Quantifying  
Upper Limb Health Status 

Preliminary applications of wearable and wireless systems were demonstrated through the smart-
phone that is equipped with both an accelerometer and gyroscope, which can constitute a wearable and 
wireless inertial sensor system through the proper software application. The inertial sensor signal has been 
recorded by the smartphone functioning as a wearable and wireless system, which has then been transmit-
ted wirelessly to the Internet as an email attachment. The email resource represents a functional semblance 
of a Cloud computing resource, for which experimental location and post-processing resources can be lo-
gistically separated anywhere in the world. Post-processing can encompass machine learning classification, 
such as the differentiation of a hemiplegic limb pair and efficacy of movement disorder therapy interven-
tion [7, 12-17]. 

Further evolutions involve the advent of conformal wearable and wireless inertial sensor systems, 
such as the BioStamp nPoint. The BioStamp nPoint is specifically intended for the acquisition of medical 
grade inertial sensor data (gyroscope and accelerometer), and it is certified as an FDA 510(k) medical de-
vice. The BioStamp nPoint is flexible, which enables the device to be conformal to the contours of the 
body. With a mass less than ten grams, BioStamp nPoint mounts to an aspect of the body through adhe-
sive medium. The BioStamp nPoint utilizes the wireless capabilities of the smartphone and tablet, achiev-
ing wireless connectivity to a secure Cloud computing environment for subsequent post-processing [19]. 
The BioStamp nPoint has been successfully applied for differentiating health status with considerable clas-
sification accuracy, such as through the multilayer perceptron neural network [23].  

2.4. Machine Learning for Diagnostics of Wearable and Wireless System Applications 

Machine learning has been successfully applied for distinguishing between disparate movement cha-
racteristics with the use of wearable and wireless inertial sensor systems [7, 12-17, 23]. The Waikato Envi-
ronment for Knowledge Analysis (WEKA) provided an assortment of machine learning algorithms. The 
machine learning algorithms considered for the research objective available through WEKA were: 
● multilayer perceptron neural network 
● J48 decision tree 
● random forest 
● K-nearest neighbors 
● logistic regression 
● naïve Bayes [24-26]  

3. MATERIALS AND METHODS 
The research objective was achieved through an engineering proof of concept perspective by one sub-

ject with chronic hemiparesis. The BioStamp nPoint representing a conformal wearable and wireless iner-
tial sensor device acquired gyroscope signal data of diadochokinesia for hemiparesis with data storage 
through a Cloud computing environment. The signal data was recorded at a sampling rate of 250 Hz. In 
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order to properly record the inherent features of pronation and supination, the conformal BioStamp 
nPoint was secured about the dorsum of the hand for both the hemiplegic affected arm and unaffected 
arm through an adhesive medium. Figure 1 illustrates the mounting technique for the BioStamp nPoint as 
a conformal wearable and wireless inertial sensor system to quantify diadochokinesia in the context of 
pronation and supination for a hemiplegic affected and unaffected arm pair. 

The hemiplegic affected arm and unaffected arm trial data were acquired by the following experi-
mental protocol: 

1) Secure the BioStamp nPoint to the dorsum of both hands (hemiplegic affected and unaffected). 
2) Commence the BioStamp nPoint application to record the gyroscope signal data for approximately 

two minutes and thirty seconds for thirty time slices of five seconds. 
3) Instruct the subject to begin pronation and supination until the recording is completed. 
4) Wirelessly transmit the inertial signal data, such as the gyroscope signal, to the secure Cloud com-

puting environment for subsequent post-processing. 
Machine learning classification was enabled through Waikato Environment for Knowledge Analysis 

(WEKA). Tenfold cross-validation was incorporated [24-26]. The signal data was consolidated to a feature 
set through software automation using Python. 

4. RESULTS AND DISCUSSION 
The gyroscope signal data acquired by the BioStamp nPoint illustrates considerable observable dis-

parity regarding diadochokinesia with respect to the hemiplegic affected forearm by comparison to the 
unaffected forearm. Based on the orientation of the BioStamp nPoint mounting strategy of the hand and 
the pronation and supination, the X-direction of the gyroscope signal was the focal for the post-processing. 
Figure 2 illustrates the gyroscope signal for the affected hemiplegic arm, and Figure 3 represents the gy-
roscope signal for the unaffected arm for the assessment of diadochokinesia with respect to pronation and 
supination. 

In order to conduct machine learning classification using WEKA, the gyroscope signal data requires 
consolidation into a feature set. The feature set was composed of five numeric attributes inclusive of de-
scriptive statistics: 
 

 
Figure 1. Mounting the BioStamp nPoint as a conformal wearable 
and wireless gyroscope platform for the quantification of di-
adochokinesia with respect to pronation and supination. 
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Figure 2. The gyroscope signal acquired by the BioStamp nPoint as a con-
formal wearable and wireless inertial sensor system for measuring diadocho-
kinesia pronation and supination of the hemiplegic affected arm. 

 

 
Figure 3. The gyroscope signal acquired by the BioStamp nPoint as a con-
formal wearable and wireless inertial sensor system for measuring diadocho-
kinesia pronation and supination of the unaffected arm. 
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● Maximum 
● Minimum 
● Mean 
● Standard deviation 
● Coefficient of variation 
The attributes have been successfully applied to other arm and hand mounted scenarios incorporating 
machine learning classification based on wearable and wireless inertial sensor systems [7, 12-17, 23]. 

The operation of WEKA generated a multilayer perceptron neural network that consisted of five in-
put layer nodes, three hidden layer nodes, and two output layer nodes as illustrated in Figure 4. The mul-
tilayer perceptron neural network attained 100% classification accuracy. The machine learning model was 
converged within the bound of 0.05 seconds. Hemiplegic asymmetry regarding diadochokinesia through 
pronation and supination of the forearm was successfully quantified through the BioStamp nPoint as a 
conformal wearable and wireless inertial sensor system, and machine learning through a multilayer per-
ceptron neural network successfully distinguishes the hemiplegic affected and unaffected arm pair for the 
evaluation of diadochokinesia.  

The J48 decision tree was visualized in Figure 5. The J48 decision tree presented in Figure 5 implies 
the significance of the maximum of the gyroscope signal as the most prevalent numeric attribute for dis-
cerning the classes of the feature set. A classification accuracy of 98.3% was achieved with one instance of 
the affected arm misclassified as an instance of the unaffected arm. The machine learning model was con-
verged within less than 0.01 seconds.  

The other four machine learning classification algorithms (random forest, K-nearest neighbors, logis-
tic regression, and naïve Bayes) attained 100% classification accuracy for differentiating between the he-
miplegic affected arm and unaffected arm in the context of diadochokinesia. The random forest required 
0.07 seconds to develop. The machine learning model for K-nearest neighbors was derived within 0.02 seconds. 
The logistic regression and naïve Bayes machine learning models demonstrated the fastest convergence  
 

 
Figure 4. Multilayer perceptron neural network for attaining machine learning classification to dis-
tinguish between a hemiplegic affected and unaffected arm pair for diadochokinesia based on pro-
nation and supination through the application of the BioStamp nPoint as a conformal wearable and 
wireless inertial sensor system. 
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Figure 5. The J48 decision tree for distinguishing between a hemiplegic affected arm and unaffected 
arm for diadochokinesia based on pronation and supination using the BioStamp nPoint as a con-
formal wearable and wireless inertial sensor system. 
 
with less than 0.01 seconds. Therefore, the logistic regression and naïve Bayes machine learning algorithms 
demonstrated the best performance in consideration of 100% classification accuracy for distinguishing 
between the hemiplegic affected arm and unaffected arm with respect to diadochokinesia and machine 
learning model development within the span of less than 0.01 seconds. 

In particular, the BioStamp nPoint as a conformal wearable and wireless inertial sensor system de-
monstrates the utility of Network Centric Therapy, which involves the separation of the experimental site 
and post-processing location through wireless connectivity to the Internet, such as a secure Cloud compu-
ting environment. Rather than addressing the challenges of a prescribed medical appointment with a clini-
cian, a patient can literally conduct an evaluation of diadochokinesia from the vantage of a homebound 
setting. The inertial sensor signal data package can be conveyed by wireless connectivity to the secure 
Cloud computing environment for remotely situated post-processing. This capability enables highly inter-
active and quantified evaluation of a therapy strategy [1, 23]. 

Additionally, the utility of the machine learning application can be further evolved. Further research 
can develop the refined distinction for the severity of hemiplegia based on the quantification of diadocho-
kinesia through the use of conformal wearable and wireless inertial sensor systems with machine learning. 
Alternative numeric attributes warrant investigation to enhance the machine learning classification accu-
racy and the time to develop the model. 

5. CONCLUSION 
Considerable classification accuracy has been attained through the application of an assortment of ma-

chine learning algorithms to distinguish between a hemiplegic affected and unaffected upper limb pair for di-
adochokinesia involving pronation and supination. In particular, the logistic regression and naïve Bayes ma-
chine learning algorithms achieved the optimal performance in consideration of both classification accuracy 
and the time to develop the machine learning model. The gyroscope signal data was provided by the BioStamp 
nPoint as a conformal wearable and wireless inertial sensor system mounted about the hand through an adhe-
sive medium. The significance of this preliminary demonstration was the observation that a subject can per-
form an evaluation of the status of diadochokinesia from a homebound setting with wireless Internet connec-
tivity through access to a secure cloud computing resource to clinical resources anywhere in the world. The 
clinical team can proactively interact with the subject and provide optimal rehabilitation. 
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