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ABSTRACT 
The proposed deep learning algorithm will be integrated as a binary classifier under the 
umbrella of a multi-class classification tool to facilitate the automated detection of 
non-healthy deformities, anatomical landmarks, pathological findings, other anomalies and 
normal cases, by examining medical endoscopic images of GI tract. Each binary classifier is 
trained to detect one specific non-healthy condition. The algorithm analyzed in the present 
work expands the ability of detection of this tool by classifying GI tract image snapshots 
into two classes, depicting haemorrhage and non-haemorrhage state. The proposed algo-
rithm is the result of the collaboration between interdisciplinary specialists on AI and Data 
Analysis, Computer Vision, Gastroenterologists of four University Gastroenterology De-
partments of Greek Medical Schools. The data used are 195 videos (177 from non-healthy 
cases and 18 from healthy cases) videos captured from the PillCam(R) Medronics device, 
originated from 195 patients, all diagnosed with different forms of angioectasia, haemorr-
hages and other diseases from different sites of the gastrointestinal (GI), mainly including 
difficult cases of diagnosis. Our AI algorithm is based on convolutional neural network 
(CNN) trained on annotated images at image level, using a semantic tag indicating whether 
the image contains angioectasia and haemorrhage traces or not. At least 22 CNN architec-
tures were created and evaluated some of which pre-trained applying transfer learning on 
ImageNet data. All the CNN variations were introduced, trained to a prevalence dataset of 
50%, and evaluated of unseen data. On test data, the best results were obtained from our 
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CNN architectures which do not utilize backbone of transfer learning. Across a balanced 
dataset from no-healthy images and healthy images from 39 videos from different patients, 
identified correct diagnosis with sensitivity 90%, specificity 92%, precision 91.8%, FPR 8%, 
FNR 10%. Besides, we compared the performance of our best CNN algorithm versus our 
same goal algorithm based on HSV colorimetric lesions features extracted of pixel-level 
annotations, both algorithms trained and tested on the same data. It is evaluated that the 
CNN trained on image level annotated images, is 9% less sensitive, achieves 2.6% less preci-
sion, 1.2% less FPR, and 7% less FNR, than that based on HSV filters, extracted from on 
pixel-level annotated training data. 

 

1. BACKGROUND 
1.1. Computer Aided Diagnosis Based on Expert Systems, ML, AI 

The last decade, artificial intelligence (AI) has gone through rapid development, it seems that AI 
could provide opportunities for better health care, so it is a challenge to apply AI algorithms in order to 
create CAD tools for automated detection of anomalies and non-healthy deformities in medical images 
(MRI, CT, endoscopy, etc.) and assisted tools for disease diagnosis. The automated medical deci-
sion-making on non-predefined criteria is focusing on the advantage of AI systems that can avoid the typ-
ical fallacies of human psychology (overconfidence, loss aversion, anchoring, confirmation bias, represen-
tativeness heuristics, etc.), and the widespread human inability to process statistical data. However, we 
must have in mind that algorithmic decisions may also be mistaken or discriminatory, reproducing human 
biases and introducing new ones. Since 2018 the European Union General Data Protection Regulation 
(GDPR) has required that AI or other systems CAD tools should be able to explain their decisions. The 
future challenge will consist in finding the best combination between human and automated intelligence, 
taking into account the capacities and the limitations of both [1]. 

Deep learning is a specific example of AI. The power of deep learning is that by back-propagation its 
layers can learn from patterns in the data by discovering implicit features that are not part of human lan-
guage. CNN algorithms look a great tool to assist endoscopists in identifying images of endoscopic capsule 
including anomalies of different forms. In early 1950s, the first neural network machine was developed 
based on ideas developed in the 1940s. The first CNN which is a major form of deep learning, was devel-
oped in the late 1970s.  

The GARVAN-ES1 expert system is an history example of expert system that since 1984 was intro-
duced into routine use at the Garvan Inst. of Medical Research at St Vinncent’s Hospital in Sydney to pro-
vide clinical interpretations for reports from a diagnostic laboratory which measures thyroid hormone le-
vels. The program was written in C, to produce reports that are 99% correct, with higher quality product at 
a lower cost [2]. 

The recent years, different Machine Learning (ML) and AI techniques are applied to the multi-class 
endoscopic images that could reliably be used as CAD assisted tools in clinics. Focusing on AI diagnosis of 
gastrointestinal (GI) diseases, over a period of three consecutive years, the Medico GI challenges, called 
researchers to design classification algorithms on 16 classes of GI real-world dataset. Algorithms on AI 
diagnosis of gastrointestinal (GI) are developed and evaluated for the challenges: Medical Multimedia Task 
at MediaEval 2017, Medico Multimedia Task at MediaEval 2018, and BioMedia ACM MM Grand Chal-
lenge 2019 [3]. The goals of these challenges were to evaluate multi class-classification methods for classi-
fying about 16 classes, such as anatomical landmarks (e.g. z-line, pylorus, cecum), as pathological findings 
(e.g. esophagitis, polyps, ulcerative colitis), as polyp removal cases (e.g. dyed and lifted polyps, dyed resec-
tion margins), and normal and regular cases (e.g., normal colon mucosa, stool, instrument etc.) inside the 
GI tract. 

The last years, researchers are exploring Machine Learning (ML) algorithms for binary classification 
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models like logistic regression and SVM that do not support multi-class classification natively and require 
meta-strategies and researchers that explore CNNs for direct multi classes classifications, or CNNs split-
ting the classification in binary classifiers. The CNNs “One-versus-Rest” strategy splits a multi-class classi-
fication into one binary classification problem per class. As it is mentioned in [4], the “One-versus-All the 
Rest” approach (also called “One-vs-All”), in which we train C binary classifiers, fc(x), where the data 
from class c is treated as positive, and the data from all the other classes is treated as negative. 

The endoscopic image classification ML is a high interest field of research because it approaches the 
missed classification of diseases that subsequently ensure effective early disease detection. The ML algo-
rithms can improve the images reviewing from inexperienced examiners (endoscopists, radiographers, 
etc.) and can reduce the reviewing time in cases such as sequences of images in a video stream. 

1.2. Diagnosis of Angioectasia and Haemorrhages into Gastrointestinal Tract 

Gastrointestinal (GI) disease types of angioectasia and haemorrhages traces refer to any in the ga-
strointestinal tract, in the upper part: oesophagus, stomach and first part of duodenum and the low part: 
small intestine to large intestine colon. Statistically the small bowel bleeding traces is only the 5% of all in 
GI. Abnormal blood vessels, usually veins, is the main cause of bleeding, it is being a common situation in 
the 30% to 40% of population over the age of 50.  

Small bowel capsule endoscopy (SBCE) is a major clinical diagnostic practice, as the next step after a 
standard gastroscopy for the upper GI endoscopy and a colonoscopy for the lower GI endoscopy has failed 
to do, because it is able to look at the whole small bowel. Once capsule swallowed, as travelling inside the 
GI tract, the capsule is capturing minimum two pictures per second (it depends from the model), and is 
transmitting these images by radiofrequency, to a receiver worn by the patient (except in the case of the 
capsule from CapsoCam® where the data are stored within the capsule). The capsule’s travel often last 
from 4 to 8 hours, the capsule’s batteries offer a lifespan of 10 to 15 hours, the capsule during its travel 
takes for a total of about 55,000 images. It is expected that when it will be technologically possible to con-
trol the mobility and the power to feed more sensors, robotic arms and actuators integrated into capsule’s 
small volume, the robotic endoscopic capsule will be used therapeutically in the GI tract [5, 6].  

Until 2021, the way the doctors review the CE video has not changed much since SBCE introduction 
from 2000. Until now, the evaluation of image sequences aiming the localization and classification of le-
sions in small intestine area, is based on the personal experience of doctors and lacks of automation based 
on specific scores to standardize the description of lesions, quantify objectively the lesions in capsule en-
doscopy reports, with potential prognostic and therapeutic impact. The companies in the Endoscopic 
Capsule market tends to support their products with proprietary software for the doctors to use in order to 
automate some aspects of reviewing procedure, mainly to reduce the long review time. This is done by ad-
justing the number of frames viewed simultaneous (dual view or quad view, as either sequential or over-
lapping images), adjusting the speed at which frames are presented, and eliminated the similar consecutive 
snapshots. Moreover, there is the software tool in the RAPID Reader v8.3 program, “suspected blood in-
dicator” (SBI) function which has been developed and evaluated as a computer aided tool for automatic 
detection of bleeding traces into the GI tract [7]. 

AI algorithm trained among 281 patients, 10.3% presented with active haemorrhage while 28.9% pre-
sented lesions with high bleeding potential (angioectasias, ulcers and tumours), the SBI software tool 
achieves a 96.6% sensitivity for active small bowel bleeding, with a 97.7% negative predictive value. Re-
garding high bleeding potential lesions, the SBI displayed an overall sensitivity of 39.5%, being highest for 
ulcerated neoplasias (100%), but significantly lower for angioectasias (38.5%) or ulcers (20.0%) [8]. 

It has been shown that as blood can vary in color, the SBI software tool is likely unable to detect all 
shades of red and so it is a reliable tool to exclude active bleeding and/or major lesions, so the reviewing of 
the CE video by an expert is still important for the detection of lesions responsible for past bleeding [9, 
10]. 

It has been shown that in the cases of patients with few or minor lesions, the diagnosis by reviewing 
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the CE videos by doctors, is dependent from the endoscopist experience [11]. 
At the International Endoscopic Capsule Conference in 2006, there was a consensus that the fastest 

projection rate proved to be acceptable was 15 fps [12]. It is suggested that the novice examiner should 
read the video at 12 - 15 fps [13]. Conversely, an experienced examiner can choose a faster rate (20 fps) if 
Single View mode is used, while selecting Multi View mode can reduce reading time by 30%.  

It has been evaluated the effectiveness of the QuickView Rapid® 5 software: 1) to reduce the video 
stream reading time, 2) to evaluate the number of false negatives in cases of not well experienced endos-
copists, and determine the learning curve for reviewing CE images [14-16]. It has been evaluated that the 
Olympus algorithm called Omni mode, the Omni mode may be appropriate only for detecting major le-
sions [16]. Moreover, it has been noticed that “Quickview” and “Quadview” modes are still unacceptable 
because some significant lesions were not detected, with a diagnostic miss rate ranging from 6.5% to 12% 
[14, 16, 17].  

Concerning the methods that technically maximize color differences in images captured by a capsule, 
are categorized during the process phase either by decomposing the images using simulated blue filter, or 
by decomposing the images using a simulated “chromoendoscopy” algorithm. Fuji Intelligent Color En-
hancement (FICE®) technology decomposes images by wavelengths, and as a result maximizes image dif-
ferences on patterns, such as vascular and mucosal patterns.  

It has been shown that RAPID® 5 Access improves diagnostic yield in the detection rate of denuded 
redness, reducing reading time, as much in the “auto mode”, as in “displaying a single image at 12 fps”. 
RAPID(®) 5 Access improves diagnostic yield, reducing reading time; however, it is still unacceptable be-
cause of the diagnostic miss rate and may be useful as an ancillary reading tool [18].  

The capsule’s images blue filter decomposition versus the FISE decomposition has been compared 
and evaluated for all lesion categories as follows: 1) that blue filter decomposition provided image im-
provement (compared to white light raw images) in 83%, 2) that blue filter offers better image enhance-
ment than FISE in capsule endoscopy [19].  

Blue filter decomposition has been used as Blue Mode (BM) modality for PillCam® and it has been 
achieved detection improvement [20]. 

During an experiment, comparing the diagnosis results of reviewing the same data by two groups of 
endoscopists: one group of experts versus one inexperienced, in each group, the results varied depended 
on the findings, even between experts. In both groups, the accuracies were lower in cases with subtle mu-
cosal lesions, such as erosion, angioectasia, and divertic ulum, and more higher in cases with more promi-
nent intraluminal changes (e.g. active small-bowel bleeding, ulcer, tumor, stenotic lumen) [21]. That 
means that the use of computer aided diagnosis tools will assist to eliminate the factor of doctor’s review-
ing experience. 

The algorithm proposed by our team, based on pixels statistical analysis features, using colorimetric 
image filters in the HSV color space extracted of manually pixel-level annotations of regions of interest 
(ROI) can achieve sensitivity of 99% [22]. 

About the performance of CNN architecture when pretrained with AlexNet, it is shown that using a 
dataset including 8200 non-healthy and 40,000 healthy frames (there is no mention from how many dif-
ferent videos or different patients), can be achieved detection of sensitivity 92.2% (there is no information 
for precision and FPR) [23].  

Another proposed methodology is first step to classify the bleeding samples into active and inactive 
subgroups based on the statistical features derived from the histogram probability of the color space. Then 
for each subgroup, we highlight the blood regions via fully convolutional networks (FCNs) [24, 25]. 

2. AIMS  
The aim of our team is to develop a multi-class CAD tool for diagnosing different GI tract diseases, 

consisting of a number of binary CNNs, each one for a different disease. That, because of the benefits of 
training binary CNNs instead of a multi-class CNN are a quite important (less time intensive, less compu-
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tational complexity, thus achieving better values for sensitivity and accuracy). The proposed algorithm is 
to aid inexperienced endoscopists to identify haemorrhage state or non-haemorrhage state into frames of 
endoscopic videos. Angiectasias are the most common lesions diagnosed in patients with medium GI 
bleeding. Each one of the CNN binary classifiers belonging to this CAD tool is trained to detect a specific 
disease. The input data for each binary CNN are the frames of endoscopic videos showing frames of 
healthy states, and/or frames of different known diseases (such as polyps, angiectasias, etc.). For example, 
the task of another binary classifier from the same system could be to identify polyps, of another could be 
to classify the polyps to adenomatous polyps (adenomas) from non-neoplastics (under publication), and 
so on. Because our proposed CNN models are designed to classify a given image only in two classes, the 
output layer has two neurons. The last fully connected layer, which is a two-dimensional feature vector, is 
given as an input to softmax classifier, which makes the final prediction whether there is an “angiectasia” 
or “not”. The frames classified as “not” can be healthy states or frames showing other diseases than “an-
giectasia”. 

Moreover, we compare the performance of our present proposed CNN for identifying “angiectasia” 
or “not”, using training data on image level annotation versus our recently published CAD algorithm 
based on HSV colorimetric lesions features extracted of manually pixel-level annotations of regions of in-
terest (ROI). We trained and tested both algorithms on the same data. 

3. DATA AND METHODS 
The proposed CAD algorithm is based on a CNN, trained on dataset annotated on image level (not 

pixel), on the same dataset that used by the authors, in their published algorithm based on pixels statistical 
analysis features, using colorimetric image filters in the HSV color space [22]. The data used, are not yet 
publicly available for the research community, consist of 195 capsule endoscopy procedures from patients 
that were referred for obscure gastrointestinal bleeding or for suspected Crohn’s disease. Abnormalities 
were found in 177 (90.7%) of cases, including dark hemorrhage and angiodysplasia(s) in 31 cases (15.9%), 
active bleeding in 8 cases (4.1%)). The completely healthy cases were 18 (9.3%) of cases. All the cases, were 
treated in five Greek national university hospitals. The videos are anonymized, and the confidentiality 
protocol applied complies with current European Union legal regulations.  

All the videos used are taken by the endoscopic capsule PillcamTM SB videos (previously known as 
Given Imaging, Yokneam, Israel), which has the ability to capture 250 × 250 pixels, the exported images 
are of 576 × 576 pixels through the camera’s own extrapolation algorithm (see samples in Figure 1). All 
the patients are diagnosed by the attending expert doctors of four University Gastroenterology Depart-
ments of Medical Schools: 1) of National and Kapodistrian University of Athens, 2) Attikon Hospital and 
3) Laikon Hospital of Athens, and the 4) Aristotle University of Thessaloniki. All the video streams were 
reviewed manually by experts and automated by the capsule’s own diagnostic tool SBITM (Suspected Blood 
Indicator) of RapidTM READER and were annotated by surgeons gastroenterologists with more than 35 
years experience. The team’s expert doctor, in collaboration with the team’s data analysis engineer, elimi-
nated images taken from the same area by applying the capsule’s own software QuickviewTM. The metadata 
from the manually checked annotation process are: 1) lesion ID, 2) size of lesion in mm, 3) lesion diagno-
sis, 4) number of lesions per image.  

The training and testing datasets are balanced, each one consists of 50% video frames showing condi-
tions of GI haemorrhaging and GI angioectasias, and 50% non-haemorrhaging, see Set1 in Table 1. 
Frames identified as taken from the same area of lesion or from the same healthy area, are excluded. There 
is a number of less than ideal video frames (i.e. including foaming and bubbles, processed food, out of fo-
cus imagery, highly light reflections, out of bound lighting conditions). 

For the training procedure are used 130 videos. In detail, 92 videos showing other diseases than hae-
morrhage (non-haemorrhage) cases of 92 patients, 26 videos of 26 patients showing haemorrhage cases 
and 12 videos of complete healthy cases of 12 patients. Frames from the same patient are not used for both 
sets, there is no overlap in content between the training set and the testing set, see Set 2 in Table 1.  
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Table 1. Data used: 195 videos* from endoscopic capsule pillcamtm sb separated into two subsets: set 
1 = {130 videos}, set 2 = {65 videos}. All as positive haemorrhage diagnosed). 

Set 1 (training set): Selected 3200 video frames from 26 videos showing hemorrhage traces and 3200  
relevant video frames (in terms of location in GI tract) from 92 videos showing other diseases than  
hemorrhage cases, and 12 videos showing complete healthy cases. Set 1 used only for training purposes  
of the proposed algorithms. 

Diagnosis Men Women 

Haemorrhage (Small** & Medium***) 23 3 
Non-haemorrhage (healthy) 7 5 

Non-haemorrhage (Polyps/tumors) 16 8 

Non-haemorrhage (Scars) 14 7 

Non-haemorrhage (Ulcer(s)) 10 12 

Non-haemorrhage (Other non-healthy) 9 14 

Set2 (testing set): Selected 1000 frames from 13 videos showing hemorrhage traces and 1000 relevant video 
frames (in terms of location in GI tract) from 46 videos showing other diseases than hemorrhage cases, and 
from 6 videos showing complete healthy cases. Set 2 used only for testing purposes. 

Diagnosis Men Women 

Haemorrhage (Small** & Medium***) 10 3 
Non-haemorrhage (healthy) 3 3 

Non-haemorrhage (Polyps/tumors) 15 6 

Non-haemorrhage (Scars) 4 6 

Non-haemorrhage (Ulcer(s)) 4 5 

Non-haemorrhage (Other non-healthy) 3 3 

*Videos come from Gastroenterology Departments of three Greek public hospitals: Aretaieio Hospital, 
Atticon Hospital, Laiko Hospital, **Small: continuous surface of 800 to 1000 pixels, ***Medium: conti-
nuous surface of 1000 to 3000 pixels. The Extensive bleeding areas, defined by us with more than 3000 
pixel, they are not considered due that are obviously obvious. 
 

The training dataset includes of 6200 video frames (50% of these frames are showing haemorrhage 
conditions. Totally, 3100 video frames are showing non-haemorrhage state (healthy and other diseases) 
are relevant in terms of location in GI tract. All the frames selected manually by expert doctors, in a way to 
be inclusive of different shapes, dimension, active and past hemorrhage traces, see Table 1). Figure 1 illu-
strates a sample of our data. 

Similarly, in order to control the evaluation procedure, to ensure that precision does not depend on 
prevalence, the precision is normalized to a prevalence of 50%. Thus, is introduced the ratio of the number 
of cases in the haemorrhage control group and the number of cases in the non-haemorrhage group, used 
to establish the Negative Predictive Value (NPV) and the Positive Predictive Value (PPV) or Precision, is 
equal to the Prevalence of the diseases in the studied population. The testing group includes total 1000 
frames, of 500 non-haemorrhage frames (healthy or other diseases than haemorrhage) and of 500 hae-
morrhage frames, from patients that do not belong in the training dataset. The training dataset, is named  
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Figure 1. Sample of our CE captured frames: 1st row, from left to right: all cases of bleeding and an-
gioectasia. 2nd row, from left to right: three normal cases, the last two angioectasia. 3rd row, from 
left to right: cases of polyps, the last is normal. 
 
as Set 1, the testing set, named as Set 2, both described in Table 1. For the testing procedure are used 65 
videos (46 showing other diseases, 6 showing healthy cases, 13 showing hemorrhage cases). 

To create a new artificially training data from the existing training data Set 1, the augmentation tech-
nique applied in balanced subset of the data Set 1 (in the training dataset, and not to the validation or test 
dataset). Figure 2 illustrates a sample of augmented data. 

3.1. Preparation of Training Data  

The pool of images that feed the CNN model is determined by shuffling the video frames of Set 1 (see 
Table 1). 

It is ensured that the aspect ratio for all the images used is equal to 1:1 and same resolution, the latern 
ensured by cropping useless pixels around the edges. After this procedure, we end up with 6400 images, of 
224 × 224 pixels.  

The chosen color model is RGB, normalized in the range of [0 - 1] (instead of the usual [0 - 255]). 
From all the above, its obvious that the final payload of each image is 224 × 224 × 3 pixels. 

Data augmentation was applied by the ImageDataGenerator class, using Keras deep learning neural 
network library. The transformations applied upon the dataset are: Rotation: 40, Width Shifting: 0.2, 
Height Shifting: 0.2, Shear Intensity: 0.2, Zoom: 0.2, Horizontal Flip. 

3.2. Creation of Deep Learning Models 

The CNNs training run entirely in the cloud. The Keras API Python library run on top of Tensorflow 
numerical platform in Python. The back propagation is automatically generated by TensorFlow, for opti-
mizer we used Adam with learning rate 0.0001. For Loss is used binary cross entropy. Our methodology to 
create the CNN architecture, was to add the blocks one at a time in order to see the differences in the re-
sults as we going deeper.  
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Figure 2. By applying augmentation technique transformation of Rota-
tion, our original training data is extended. Left up, is shown an original 
healthy video frame, left and down is shown the extracted by rotation 
augmentatio. Similarly, right, is shown a non-healthy case (case showing 
bleeding trace). 

 
The architecture of the CNN model created consists of two parts: a convolutional base and a classifier. 

The convolutional base contains convolutional layers (Conv2D) and Max Pooling layers. Each model has 
different number of Conv2D, all convolutional windows are [3 × 3] with filter size (32, 64, 128, 256) and 
MaxPooling with pooling size (2, 2) (that in order the CNN to be capable of recognizing an hemorrhage as 
an object even when its appearance varies in some way). At the end the CNN model there is a classifier 
consisting of a flatten layer and fully connected layers. The first fully connected layers have 128, 256 or 512 
neurons. The activation function used are the ReLU and Sigmoid: The ReLU used in all layers except the 
output layer and returns 0 for every negative value in the input image while it returns the same value for 
every positive value: R(z) = max(0, z). The Sigmoid used only in the output layer the main reason why we 
use sigmoid function is because it exists between (0 to 1) and we have only two states (Non-showing he-
morrhage traces and showing hemorrhage traces). 

Our proposed CNNs variations are trained: 1) on the original dataset Set 1, and 2) on an artificially 
extended dataset, as it is created by applying data augmentation technique on Set 1. Our chosen data aug-
mentation is performed by: a) rotation range 40, b) width and height shift range 0.2, c) shear range 0.2, d) 
zoom range 0.2, e) horizontal flip.  

During training phase, dropout technique applied (to randomly and temporarily dropping out units, 
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hidden and visible, along with their connections, in a neural network). We applied to classifier: Dropout 
(0.5) and to convolutional base: Dropout (0.2), which means that means that we dropped out randomly 
the 50% and 20% of the CNN’s units. 

By implementing of 22 CNN variations, we have been able to choose the two best performers in terms 
of sensitivity and specificity. Similarly the techniques implemented for those two best performers, where 
data augmentation and Dropout only in the classifier. The architecture of the CNN used data augmenta-
tion (named: Model 1_Ag) consists of: three Conv2D layers with filter size (32, 64, 128), three Max Pool-
ing layers, one flatten layer and two fully connected layers with 128 and 2 neurons respectively. The archi-
tecture of the CNN used Dropout only in the classifier (named: Model 3_DPcl) consists of: four double 
Conv2D layers with filter size (32, 64, 128, 256), four Max Pooling layers, one flatten layer, three fully 
connected layers with 256, 256 and 2 neurons respectively and two Dropout (0.5) layers. 

Some of our CNNs variations were trained using Transfer Learning (TL). The pre-trained models 
used are the VGG16 and RESNET50 trained on ImageNet dataset and fine-tune them on our training data 
Set1. Our transfer learning is applied as follows: First we trained only the classifier and kept the convolu-
tional base freeze of the transferring model, finally we Fine-Tune the transferring model by unfreezing the 
part of convolutional base (block 4 and 5 for the VGG16, and the RESNET50). The RESNET50 performs 
the initial convolution and max-pooling using 7 × 7 and 3 × 3 kernel sizes. 

Respectively, all the models trained for 10 epochs except in TL for 5 epochs. The CNN variations 
where TL was used, their tested performance was identical. 

The algorithms testing was carried out under the guidance of the supervising of our team’s expe-
rienced doctor, at “Aretaieion” Greek University Hospital in Athens. 

3.3. Evaluation Metrics 

For the testing procedure, the indicators used to measure the performance of the proposed algorithms 
are based on statistical metrics of specificity, sensitivity, precision, False Positive Ratio (FPR), False Nega-
tive Ratio (FNR). Equations from (1) to (6) were used for all CNNs. 

Accuracy is the probability of correctly recognizing a frame as True Positive (TP) or True Negative 
(TN) among the total number of cases examined. It is calculated as follows:  

TP TNAccuracy
TP FP TN FN

+
=

+ + +
                             (1) 

Sensitivity (also called the true positive rate, the recall, or probability of detection in some fields) 
measures the proportion of actual positives that are correctly identified as such (e.g., the percentage of sick 
people who are correctly identified as having the condition): 

TPSencitivity
TP FN

=
+

                                  (2) 

Specificity (also called the true negative rate) measures the proportion of actual negatives that are 
correctly identified as such (e.g., the percentage of healthy people who are correctly identified as not hav-
ing the condition): 

TNSpecificity
TN FP

=
+

                                 (3) 

Precision measures the proportion of all positive (TP + FP) identifications was actually correct: 
TPPrecision

TP FP
=

+
                                  (4) 

FPR (False Negative Ratio) or (Type I Error) which is the error of proportion to recognize as bleeding 
(positives) the images that are actually healthy (negatives). We need that to have very low values. It is cal-
culated as following: 
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FPFPR
TN FP

=
+

                                  (5) 

FNR (False Negative Ratio) or (Type II Error) is the error of proportion to recognize as healthy (neg-
atives) the images that are actually bleeding (positives). We have to notice that it is very important in 
medical diagnosis to achieve FNR very low because people that have bleed may not get the proper health-
care because of the results. 

FNFNR
TP FN

=
+

                                  (6) 

For the above equations: 
TP: Is the state that a bleeding image was correctly predicted as bleeding. 
TN: Is the state that a non-bleeding image was correctly predicted as non-bleeding. 
FP: Is the state that a non-bleeding image was falsely predicted as bleeding. 
FN: Is the state that a bleeding image was falsely predicted as non-bleeding. 

4. RESULTS 
The proposed binary classifier based on CNN architecture using data augmentation, identified the 

binary classification of class haemorrhage (frames showing cases of GI haemorrhaging and GI angioecta-
sias abnormalities) and class of non-haemorrhage (frames not showing hemorrhage traces) with FNR 10%, 
FPR 8%, sensitivity 90%, specificity 92%, accuracy 91%, precision 91.8%.  

These performance metrics are compared to their respective values as published by our previous work 
in [22] (CAD method based on color HSV colorimetric filters, trained and tested on pixel-level annota-
tions on the same dataset). We evaluated that our best CNN trained on image level annotated images is by 
9% less sensitive, by 2.6% less precision, by 1.2% less FPR, and by 7% less FNR. 

We verified that the mean reviewing time per patient by the well-experienced doctor was 29 ± 9 min 
by handcrafted reviewing and by 6 ± 2 min by the proposed method. 

Moreover, we verified that our CNNs variations which were trained using Transfer Learning (TL) 
achieved the worst performance (specificity 4%, accuracy 50%, sensitivity 98%). 

5. CONCLUSIONS 
We trained variations of CNN algorithms using image level annotated datasets from endoscopic cap-

sule videos with goal the binary classification, to identify the endoscopic capsule video frames that are 
showing haemorrhage traces due to GI haemorrhaging and/or angioectasias inside the GI tract. The best 
performance of our tested CNN variations will be used as a sub-task classifier under the umbrella of our 
under development CAD tool for different disease in GI tract, among other binary classifiers for other GI 
diseases (i.e. polyps and ulcers.  

Our results of the best CNN binary classifier are compared with our recently published CAD method 
aimed to achieve the same goal, based on feature extraction which requires significantly a more labor in-
tensive approach (manually annotated pixels instead of image level), by creating HSV colorimetric filters. 
Both methods are controlled over the same data collection, where the training procedure. Our previous 
proposed method using HSV colorimetric filters provided higher levels of performance metrics than the 
one currently proposed (CNN CAD) [22]. This can be explained by the fact that the dataset for the ma-
nually selected colorimetric features extraction was based on pixel-level and big enough, as compared to 
the more demanding CNN method of training in terms of absolute number of samples. Both diagnosis 
methods, proved less accurate than the one exercised by the well-experienced doctor. The proposed CAD 
diagnosis methods can be an important assisted tool for less experience doctors. Ιn any case, methods that 
eliminate similar images are necessary to reduce the overview time. 

Concerning the technical aspect of the training of a CNN model, our experience can testify for the 
following: The use of a validation dataset during the training phase is helpful for the train process to en-
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sure the case of having underfit or overfit. The training and the testing dataset must be balanced (showing 
non-angioectasia and non-haemorrhages, and other cases).  

The techniques of Dropout and Augmentation improve the CNN training performance. For the 
Dropout, we had better results when the technique was applied to the classifier. For the Transfer Learning 
we had overtrained, which depends on many factors, one must be that the CNNs pre-training achieved 
using images non-similar of our data (images from GI tract).  

Moreover, we verified that Deeper CNN model by adding more layers doesn’t mean better perfor-
mance. 
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