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ABSTRACT

The present study evaluates the effects of occlusal loading on an implant-supported dental
implant with external hexagon dental implant-abutment systems, using the finite element
method analysis. Tensile analyses were performed to simulate different axial and obliquous
masticatory loads. The influence of the variations in the contouring conditions of the inter-
faces was analyzed to weigh the osseointegration with linear and non-linear cases, by means
of a parametric design. The geometry selected to place the prostheses was a jaw section,
considering the properties of the set of cortical and trabecular bones. The results show that
for non-linear contour conditions, the stress presents smaller value distributions and signals
a different place in the screw-implant interface as the factor of the greater weight in this
study. The location indicated that von Mises stress concentrations are not exclusive to the
contact regions studied, moving to an area that is not in direct contact with the non-linear
contact interfaces. In addition, the direction of load with an angle of 15 degrees presented
the highest values of von Mises stress.

1. INTRODUCTION

The most common complications in the use of implant-supported prostheses on all single-tooth res-
torations are related to the biomechanical conditions of the interfaces.

Data according to several authors suggests the most common causes of failure for implant-supported
prostheses are loss of tightness in the upper abutment screw, which precedes the fracture of the implant, at
around 7% [1]. For external hexagonal systems [2] finds failure rate to be approximately 38%. About 5.3%
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of total implants fail within first year, while screw loosening rate is around 5.8% - 12.7% after five years
[3]. It was reported that around 26% - 43% of intermediate screw required retightening in the first 5 years
and 11% of screws loosened in 10 cases [2, 4]. Several studies show mechanical complications with exter-
nal hexagonal connections, as they present a limited resistance to oblique parafunctional loads. In the ap-
plication of preload in non-passive bolted prostheses, they generate bending moments and axial forces in
osseointegrated systems, producing overloadings and a fracture of components and intermediate screws,
and also microfractures of the trabecular bone resulting in the functional loss of the implant [5]. Previous
studies using the finite element method show differences in values and distribution of tensions between
the types of interfaces in the contact for fixed bond, slip contact, contact friction and non-linear contact.
These simulations of finite elements with non-linear contact conditions present an advantage for evaluat-
ing the vital parameters in the components of the prosthesis [6, 7]. A friction coefficient in the attrition
interface (v = 0.3) increases the tensions between 28% - 63% if compared to a bonded interface.

The aim of this study was to evaluate the influence of a load mastication under conditions of linear
and non-linear contact interface, and to assess the distribution of tensions in the assembly of a prosthesis
implant supported with external hexagon dental implant-abutment systems, through the finite element
method.

2. MATERIALS AND METHODS

A CAD (3D) model of an implant-supported dental implant with external hexagon and bolted con-
nection was generated by Inventor 2017 software (Autodesk) by acquiring data from a 3D scanner to gen-
erate surfaces (NURB) and reverse engineering of parts with a microscope. The model of the implant was
integrated into the section of the mandible obtained by a CT [8], with dimensions of 10 mm in length, 25
mm of frontal height and 21 mm in final height. Dimensions obtained for approximate cortical bone were
1.88 mm to 2 mm in the trabecular bone with dimensions 4 mm up to 6.50 mm for a total width of ap-
proximately 11 mm in the pre-molar region. The geometries of the cortical and trabecular bone regions
were considered. Implants were placed exactly at the same distance relative to the most coronal section of
the cortical bone with surgical recommendations [9].

2.1. Finite Element Modeling

The assembled model was imported into ANSYS v16 software (Canonsburg, PA, USA) considering
three regions of the contact for the analyses. Figure 1 a shows surfaces chosen to insert the contact ele-
ments. The contact elements selected for the surfaces were CONTA175 and TARGET170 [10], with the
ability to simulate plasticity and non-linearity. The FEM model is formed by the element SOLID87, which
is a 10-node tetrahedron with three degrees of freedom from the Ansys library (ANSYS Inc., Canonsburg,
USA), the interpolation function is quadratic; the geometric shape of the element adapts the irregular
geometries and ensures the geometric characteristics. A numerical convergence analysis was performed to
determine the sensitivity of the model to different mesh densities in the stress distributions. The numerical
convergence criteria were used to obtain a value less than 5% in the difference in the value of the von Mis-
es stress.

The total number of tetrahedron elements was 2,456,157, with a total of 90,969 contact elements in
the regions shown in Figure 1. A summary of the components in contact are shown in Table 1.

For the representation of the tightening forces in the modeling, a residual stress was introduced into
the screw, generating a reaction that traction the body. [1, 11, 12]. Calculating was done on the clamping
force on the intermediate screw by the Equation (1), its diameter (d) was 2.00 mm and the torque usually
employed in this screw was 200 N-mm [13]. The value to generate the tightening force (traction) was 686
N. The behavior of the materials was represented by a linear and isotropic behavior model. The mechani-
cal properties of the materials used are shown in Table 2.

(1
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Figure 1. Selection and dimensions of the mandibular section for fitting the prosthesis—relation of
the components of the prothesis. The mandible was reproduced by a TAC [8]; Regions of interest
contact bone-implant interface.

Table 1. Summary of the contacts between all components.

Connected pairs Type of the contact

Implant Trabecular bone Frictional

Implant Cortical bone Frictional

Screw Implant Frictional
Screw Metal framework Perfectly bonded
Trabecular bone Cortical bone Perfectly bonded
Oclussal material Metal framework Perfectly bonded

Table 2. Mechanical properties of materials used in the study.

Properties
Material
Young’s modulus (MPa) Poisson ratio Reference

Ti-6Al-4V/Screw 110,000 0.32 [14]
Porcelain 68,900 0.19 [15]
Cortical bone 13,400 0.31 [16]
Trabecular bone 1370 0.31 [17]
Alloy (Co-Cr) 220,000 0.30 [12]
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2.2. Loading Conditions

Static analysis of prostheses is necessary to ensure project safety. A total of nine cases of loading be-
tween axial and oblique loading simulating mastication were performed. Crown occlusion surfaces were
set at 15-degrees intervals in the directions (see Table 3). A force measured clinically with a value equal to
100 N was applied to a rigid element defined by a sphere of 4 mm in diameter. This application of the load
was defined by the contact between the sphere-crown of the prosthesis (see Figure 2 and Table 3). In the
section, the mandible at the base was restricted in all its directions.

3. NUMERICAL RESULT

The von Mises stress distributions along the implant-trabecular bone, implant-cortical bone and im-
plant-screw interfaces were studied for an angle value a = 90° (Table 3) in a state without friction and fric-
tion (u = 0.3), considering the stress values and location of the peak values (Figure 3). That is, the point
marked “Max” was determined to be the highest value or critical point for the two states. The maximum
stress value was 864 MPa in the frictionless state was observed at a point between the implant-screw inter-
face on the first edge of the first screw thread. For the second case, considering the friction between the
interfaces, the maximum stress value was 773 MPa. The location indicated that von Mises stress concen-
trations are not exclusive to the contact regions studied, moving to an area that is not in direct contact
with the non-linear contact interfaces.

F =-100N Contact Area

-1~
7 N
ST \

Figure 2. Representation of axial and oblique loading.

Table 3. Values of load angles evaluated.

Angle value (a) Force X (N) Force Y (N)
90° -100 0
60° =50 —86.60
45° -70.71 -70.71
30° —-86.60 =50
15° —-25.88 -96.59
-60° =50 86.60
—45° -70.71 70.71
-30° —-86.60 50
-15° -96.50 25.88
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Figure 3. Distribution of von Mises stresses for bonded and friction conditions on an axial load, re-
spectively.

The stress distributions of von Mises in a sagittal cut for axial loading are shown in Figure 3. The
maximum stress values are above, the propagation of the stress occurs up to the first or second thread of
the implant.

The stress distributions of Max Principal, Min principal and von Mises are evaluated at the highest
critical point considering the different angular values (Table 3). Comparing the result of the von Mises
stress analysis on the implant vs all the angular values (Table 3), the maximum stress value found was 550
MPa for loading with angle of 15°, about 12% higher than referent angle value 90° (Figure 4).

Figure 5 represents the distribution of the stress in the Screw for all values of load angles. Maximum
value was 567 MPa for loading with angle of 15°, about 16% higher than reference load angle (a=90").

Finally, Figure 6 represents the distribution of the stress in the Metal Framework for all angles values
(Table 3), maximum value was 828 MPa for loading with angle of 15°, about 48% higher than reference
angle value 90°.

4. DISCUSSION

This study on the location of the stress concentration area innovated when considering the non-linear
contact interfaces, not considered in previous studies [18-21]. This method allowed to evaluate the stress
distribution in the assembly of some components of prothesis (implant, screw, and metal framework).

The occlusal force is a factor that has a direct to implant longevity, according to the contact between
teeth and implants creates a type of loading that is transmitted up to interfaces of the components, espe-
cially the bone-implant interface. In the perimplantar region the loss of natural bone is the consequence of
excessive occlusal forces that exceed the interface’s ability to absorb tension, the implant will fail [10, 14].

Some author [10, 14, 22] make a point of attention to the different loading cycles result in alternation
between contact and separation of components of prothesis causing bone loss. The analysis by 3D finite
element methods was used in this study, because it allows the consideration of real geometries and more
realistic physical conditions to nonlinear phenomena considered in this study [6, 7, 23].

The masticatory loads simulated in this study were 100 N, representing an average for the study be-
cause there is a large variation of forces reported for patients with implant ranging from 0 to 400 N axial
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Figure 4. Comparison of stresses results for the implant. The maximum von Mises stress of implant
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Stress distribution in the metal framework
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Figure 6. Comparison of stress results for metal framework. The maximum von Mises stress of im-
plant and the peak minimum principal stress for different values of load angles.

force [13]. There are numerous reports of experiment evidence suggesting that ideal occlusal loading for
analysis of the prothesis in the resultant should be placed 1 mm from axial of symmetry a 11.3° inclination
[13, 24].

Analyzing the load application angle, a trend was observed of higher equivalent von Mises stress at an
angle of 15° with higher concentration of stresses in the interface screw-implant in the first and second
threads of the implant. This result confirm clinical studies, in which the most common complication
found are in the screw, presenting loosening and/or fracture of the screw [25-27].

Our results showed that it possible to evaluate in detail the magnitude and tension in the interfaces
studied for nonlinear boundary conditions considering the friction factor. In this study, static behaviors of
the components of prothesis are investigated under conditions for different loading. For the conditions
studied, the maximum stress values are lower than the material yield stress for the evaluated materials. It
can be said that for the static analysis the implant is durable.

Finally, it can be affirmed the computational numerical model using the finite element method ap-
plied for the supported dental implant prothesis through the techniques described in this work and com-
bined to computational simulation can be used as an acceptable predictor of life to the dental prothesis
supported implant.

5. CONCLUSIONS

This study found that the interfaces assumption of the perfectly bonded to components of prothesis.
This assumption does not appear realistic for the clinical condition.

To incorporate the effect of screw preload into the finite element model, the preload condition may
be specified by the Equation (1) and a coefficient of friction of 0.3 between all contacting surfaces. In gen-
eral, overloading occurs near the superior region of screw, and it is mainly caused by the normal and later-
al components of the occlusal forces.
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The assumption of fully bonded interfaces may lead to erroneous result. However, adding the friction

in surfaces contacting may be recommend to dental to get better prothesis designs and contributing opti-
mization of the implant.
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