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Abstract 
The paper describes some implementation aspects of an algorithm for ap-
proximate solution of the traveling salesman problem based on the construc-
tion of convex closed contours on the initial set of points (“cities”) and their 
subsequent combination into a closed path (the so-called contour algorithm 
or “onion husk” algorithm). A number of heuristics related to the different 
stages of the algorithm are considered, and various variants of the algorithm 
based on these heuristics are analyzed. Sets of randomly generated points of 
different sizes (from 4 to 90 and from 500 to 10,000) were used to test the 
algorithms. The numerical results obtained are compared with the results of 
two well-known combinatorial optimization algorithms, namely the algo-
rithm based on the branch and bound method and the simulated annealing 
algorithm. 
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1. Introduction 

Combinatorial optimization problems and methods for solving them are constantly 
evolving and improving; one such problem is the traveling salesman problem 
(TSP), which belongs to classical NP-complete problems [1]. It should be noted 
that the combinatorial optimization methods used to solve this problem can be 
used more widely—for optimization, search and processing of complex data and 
other combinatorial objects. 
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A large number of numerical methods for approximate solutions have been 
developed for the traveling salesman problem [2]. We discuss various aspects of 
the implementation of an algorithm that has received relatively little attention in 
the literature. This is the contour algorithm, or “onion husk” algorithm, which 
can be applied to approximate the solution of the so-called geometric TSP for 
which not only the distance matrix, but also the points themselves (“cities”) in the 
plane are given. The contour algorithm is based on the construction of nested con-
vex contours connecting the initial points (Figure 1) and the subsequent integra-
tion of these contours into a final closed path. The advantage of this algorithm is 
its high speed, while the obvious disadvantage is the approximate nature of the 
solution. At the same time, by applying additional heuristics at the main stage of 
the algorithm—merging the initial convex contours into the final closed path—it 
is possible to improve the results obtained. 

2. Construction of a Set of Convex Contours and Related  
Cutoff Heuristics 

We start with brief discussion of the ways of implementing the first stage of the 
contour algorithm where a family of nested convex contours is constructed. The 
problem of constructing a convex hull is a classical problem in computational 
geometry, and there are a number of efficient algorithms for its solution, in par-
ticular the Graham and Jarvis algorithms. 

The Graham algorithm consists of two stages. At the initial stage (preprocess-
ing), the initial set of points is sorted by a certain characteristic (increasing angle 
formed by the given point and some fixed point). At the main stage (traversal), 
the sorted points are bypassed and the required convex hull is constructed. Due 
to the preprocessing step, the complexity of this algorithm is O (n log n), where 
n is the number of points. 

The Jarvis algorithm, also called the “gift wrapping” algorithm, also consists of 
two stages. In the first stage (preprocessing), some edge point of the set (e.g. the  

 

 
(a)                                   (b) 

Figure 1. Set of points (a) and their union into convex contours (b). 
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point with minimum abscissa min (X)) is chosen; this point is obviously included 
in the convex hull. In the second stage (traversal), the remaining points of the 
convex hull are successively constructed by analyzing the angles formed by one 
or two last obtained points of the hull and all points of the original set. Thus, the 
complexity of this algorithm is O (nq), where q is the number of points in the 
constructed convex hull (when finding each of the q points of the convex hull, all 
n points of the original set are processed, see Figure 2). 

To implement the first stage of the contour algorithm described in this paper, 
the Jarvis algorithm was chosen, and two heuristics were considered to speed up 
this algorithm. These heuristics cut off a part of the source points that are guar-
anteed not to be included in the convex hull. For this purpose, the set of edge 
points of the initial set is defined, after which all points of the initial set are ana-
lyzed and those that lie strictly inside the convex hull constructed by the edge are 
discarded. Thus, the implementation of this heuristic is a generalization of the 
preprocessing stage of the Jarvis algorithm, in which several points are found in-
stead of one edge point, after which an additional cutoff is performed. Obvious-
ly, the complexity of this stage is O (kn), where k is the number of edge points. 

In the simplest version of this heuristic (Cutoff4), a set of four edge points is 
selected: with minimum and maximum abscissa and ordinate (min (X), max (X), 
min (Y), max (Y)). In special cases, two of these points may coincide, resulting 
in a set of three points, but this will not affect the subsequent stages of the algo-
rithm (although it will result in cutting off fewer points). Figure 3 shows the re-
sult of this heuristic for a set of 90 points. The edge points are highlighted with 
black circles; their number is 4. The cutoff points are marked with red circles; 
their number is 51. The remaining 35 points, which are likely to be included in  

 

 
Figure 2. The main stage of the Jarvis algorithm. 
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Figure 3. The Cutoff4 heuristic example. 

 
the convex hull, are highlighted with blue circles, with labels indicating at which 
stage they were selected (e.g. label “0” means that these points are located “above” 
the segment connecting the min (X) and max (Y) points). 

Given a uniform random distribution of points in a square region, we can ex-
pect that the Cutoff4 heuristic will, on average, halve the number of points to 
construct a convex hull. In the above example, 39 points out of 90 (including 
edge points) were selected. 

A more significant reduction of points can be achieved if in addition to the 
specified edge points with the characteristics min (X), max (X), min (Y) and max 
(Y), we add points with the characteristics min (X + Y), max (X + Y), min (X − 
Y), max (X − Y). These edge points with respect to the lines with angles 45˚ and 
−45˚ are also obviously included in the convex hull. In this case, the final num-
ber of edge points can vary from 3 to 8. We will denote this heuristic by Cutoff8. 

Figure 4 shows an example implementation of the Cutoff8 heuristic for the 
same set of source points as in Figure 3. In this example, the number of edge 
points is 7 because it turned out that the same point has the characteristics min 
(Y) and max (X − Y). The number of cutoff points is 76, the number of remain-
ing points for the second stage of the Jarvis algorithm is 14 (including 7 edge 
points), i.e. reduced by more than 6 times. 
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Figure 4. The Cutoff8 heuristic example. 

 

 
Figure 5. Average number of processed points for the original Jarvis algorithm and its 
versions with cutoffs (OX axis is the size of the initial set of points). 

 
Figure 5 summarizes the results of different algorithms for constructing a 

family of convex contours for different numbers of initial points. The original 
Jarvis algorithm and its two modifications, supplemented with Cutoff4 and Cu-
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toff8 heuristics, were used. For each number of points, 20 sets generated randomly 
in a square with side 1 were processed. The average number of points used in the 
main stage of the Jarvis algorithm (i.e. traversal) for all contours constructed is 
indicated. The average running times of these versions (in milliseconds) are sum-
marized in Figure 6. 

Because of the additional time spent on finding the edge points and on per-
forming the cutoff actions, the acceleration of the algorithms with cutoff heuris-
tics is not as large as one would expect based on the analysis of Figure 5, but it is 
significant enough to make it worthwhile to apply these modifications of the ba-
sic algorithm for a large number of points. 

3. Merging Two Contours into a Single Path and Handling 
Special Cases 

After finding a set of convex contours, we need to combine these contours into a 
single closed path. To do this, it is sufficient to select segments [a1, b1] and [a2, 
b2] of two neighboring contours and replace these segments with two new seg-
ments connecting the corresponding ends of the removed segments ([a1, a2] and 
[b1, b2] or [a1, b2] and [b1, a2]). The choice of segments [a1, b1] and [a2, b2] should 
ensure the “minimality” of the obtained closed path. The simplest variant of 
such a choice, which we will call Simple, is the variant in which the added seg-
ments have total minimum length, i.e. the expressions dist (a1, a2) + dist (b1, b2) 
or dist (a1, b2) + dist (b1, a2) are minimal. As an example, Figure 7(a) shows a set 
of two contours (the points have coordinates between 0 and 1, as usual) and 
Figure 7(b) shows the result of their merging using the Simple algorithm (the 
segments of the contours connection are represented by lines of greater thick-
ness). The total length of the resulting path is 3.05. 

However, this method does not take into account the lengths of the contour  
 

 
Figure 6. Average running time (in milliseconds) for the original Jarvis algorithm and its 
versions with cutoffs (OX axis is the size of the initial set of points). 
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segments to be removed. Therefore, a more optimal variant is the one that mi-
nimizes the expressions dist (a1, a2) + dist (b1, b2) − dist (a1, b1) − dist (a2, b2) or 
dist (a1, b2) + dist (b1, a2) − dist (a1, b1) − dist (a2, b2), in which the lengths of the 
removed segments are included with “+” sign, and the lengths of the added seg-
ments are included with “−” sign. The result of such a variant of the algorithm, 
which we will call AddSub, is shown in Figure 7(c). In this case, the total path 
length is 2.77. 

When programmatically implementing the algorithms of contours merging, it 
is convenient to use the contours descriptions in the form of a cyclic chain of 
points included in each contour. In the example shown in Figure 7, the outer 
contour is described by the chain (1, 4, 3, 2, 1) and the inner contour by the 
chain (6, 7, 5, 6). Note that exactly such chains are constructed in the Jarvis algo-
rithm if the point with minimum abscissa min (X) is chosen as the initial point 
of the contour. In the Simple algorithm, link (2, 1) is removed from the first 
chain, link (5, 6) is removed from the second chain, and links (1, 6) and (2, 5) 
are added to the resulting path. In the AddSub algorithm, link (1, 4) is removed 
from the first chain, link (6, 7) is removed from the second chain, and links (1, 
6) and (4, 7) are added to the resulting path. All other links of the original chains 
are retained; the result, for example, for the AddSub algorithm is the following 
change in the set of links (deleted links are underlined): 

(1, 4, 3, 2, 1), (6, 7, 5, 6) → (4, 3, 2, 1), (7, 5, 6) + (1, 6), (4, 7) 

The same actions are required in the two special cases where the inner “con-
tour” consists of one or two points (it is clear that for any set of nested convex 
contours there can be at most one such special contour). If we use representa-
tions of contours as cyclic chains, then the Simple and AddSub algorithms de-
scribed above do not require any modifications. Figure 8 and Figure 9 illustrate 
these special cases. Note that in the case shown in Figure 9, the Simple and Add-
Sub algorithms lead to the same result. 

In the first case, we have cyclic chains (1, 4, 3, 2, 1) and (5, 5), while in the 
second case, we have (1, 4, 3, 2, 1) and (6, 5, 6). In all special case, we still remove 
two links from the original chains and add two links. For example, in the Simple 
algorithm, for the first case, we remove links (2, 1) and (5, 5) and add links (2, 5) 
and (1, 5): 

 

 
(a)                       (b)                      (c) 

Figure 7. The original contours (a) and their merging by Simple (b) and AddSub (c) al-
gorithms. 
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(a)                       (b)                     (c) 

Figure 8. Case of degenerate single point inner contour: the original contours (a) and 
their merging by the Simple (b) and AddSub (c) algorithms. 

 

    
(a)                          (b) 

Figure 9. Case of a degenerate two-point inner contour: the original contours (a) and 
their merging by the Simple and AddSub (b) algorithms. 

 
(1, 4, 3, 2, 1), (5, 5) → (1, 4, 3, 2), () + (1, 5), (2, 5) 

In both algorithms for the second case, links (2, 1) and (6, 5) are removed and 
links (1, 6) and (2, 5) are added. Note that we retain the link (5, 6) of the second 
chain, as in the general case: 

(1, 4, 3, 2, 1), (6, 5, 6) → (1, 4, 3, 2), (5, 6) + (1, 6), (4, 7) 

Thus, the algorithm for merging two contours does not need to provide any 
additional handling of special cases. 

4. Merging Several Contours into a Single Path: Algorithm 
Variants and Comparison of Their Efficiency 

If there are more than two contours, then the merging process described above 
can be performed, for example, for each pair of neighboring contours, starting 
from the pair of outermost contours to the pair of innermost contours. When 
processing each subsequent pair of contours, the segment of the outer contour 
removed in the previous step must be excluded from consideration. 

Figure 10 shows the image of a set of contours taken from Figure 1 and the 
result of applying the AddSub algorithm to this set in the direction from the 
outer contours to the inner contours (we denote this variant by the Up algo-
rithm). 

Note, however, that the choice of connecting segments reduces the number of 
possible choices for the next pair of contours. This may result in the loss of the 
optimal connection for the next pair of contours. Therefore, we can consider two 
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more modifications of the contour algorithm: in one of them (the Down mod-
ification) connections are built in the reverse direction (from inner to outer con-
tour), and in the other (the “greedy” Mid modification) at each step all pairs of 
neighboring contours that have not been joined yet are analyzed and the contours 
of the pair for which the value of the AddSub expression described above is mi-
nimal are merged. 

Examples of application of the Down and Mid modifications are shown in 
Figure 11. For this set, all three modifications give different results, and the Mid 
algorithm gives the best result. 

A numerical study of the above described Up, Down and Mid modifications 
of the contour algorithm was carried out. We use 20 randomly generated sets of 
90 points located in a square with side 1. The initial parts of these sets consisting 
of 4, 6, 8, 10, 12, 15, 20, 25, 30, 35, 40, 50, 60, 70, 80 and 90 points were analyzed. 
Figure 10 and Figure 11 show an example of 35 points for one of the test sets. 

The value  
 

  
(a)                                 (b) 

Figure 10. Merging a set of contours (a) into a single path (b) by the Up algorithm. 

 

  
(a)                                 (b) 

Figure 11. Merging a set of contours into a single path by the Down (a) and Mid (b) al-
gorithms. 
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Di = 100 (Si − S0)/S0                       (1) 

was used to characterize the efficiency of the contour algorithm modifications, 
where S0 is equal to the length of the final path obtained with the Simple algo-
rithm (by enumerating the contours from outer to inner), and Si is the length of 
the path obtained by one of the three modifications (Up, Down, Mid) of the Add-
Sub algorithm. Thus, this value shows by how many percent the result has im-
proved (i.e. decreased) compared to the Simple algorithm. The average values of 
Di for the 20 test sets are summarized in Figure 12. 

Thus, on average, the Mid algorithm gives the best results and Up algorithm 
comes next in terms of efficiency. However, the differences in the efficiency of 
these algorithms are negligible (of 1% - 2%). 

5. Comparison of the Contour Algorithm with Other  
Approximate Algorithms for TSP Solving 

It has been noted above that for the contour algorithm, results close to optimal 
cannot be expected. For a more accurate assessment of the applicability of this 
algorithm, we compared it with two known and quite efficient approximate al-
gorithms for solving the traveling salesman problem. The first one is based on a 
variant of the method of branches and bounds [3] [4], and the second one uses 
the simulated annealing algorithm [5]. Both of these algorithms are real-time 
algorithms and provide the current pseudo-optimal solution at any point in their 
execution. 

 

 
Figure 12. Improvement (in percent) of the results of Down, Up, Mid algorithms com-
pared to Simple algorithm (OX axis is the size of the initial set of points). 
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Each of these algorithms was applied to the same test point sets as the contour 
algorithm. The Branch-bound algorithm was constrained to have a maximum 
number of branches of 100,000. A software implementation of the branch-and- 
bound method by one of the authors of this paper (B. F. Melnikov) was used. 

Simulated annealing is a stochastic minimization method based on random 
wandering through space at successively lower temperatures, where the proba-
bility of performing a step is determined by the Boltzmann distribution [5]. For 
the simulated annealing algorithm, we used the function gsl_siman_solve of the 
GNU Scientific Library (GSL) with the following parameters: initial temperature 
T_INITIAL = 5000, final temperature T_MIN = 5.0e−6, Boltzmann constant 
K_B = 1.0, temperature reduction factor MU_T = 1.03. 

Figure 13 shows the results of these algorithms for the set of 35 points previously 
considered for the contour algorithm (see Figure 10 and Figure 11). 

The Branch-bound algorithm, which showed the best results, was used as the 
base algorithm. Among the versions of the contour algorithms, the Mid algo-
rithm was selected. To determine the relative efficiency of the Anneal and Mid 
algorithms compared to the Branch-bound algorithm, the previously described 
characteristic Di (1) was used, for which in this case the final path length obtained 
by the Branch-bound algorithm was used as S0 and the path length obtained by 
the Anneal and Mid algorithms was used as Si. Here, this characteristic is posi-
tive and shows by how many percent the results deteriorated compared to the 
Branch-bound algorithm. The average values of Di for the 20 test sets are sum-
marized in Figure 14. 

Figure 15 summarizes the minimum path values found by Branch-bound, An-
neal and Mid algorithms for the first test set. 

Thus, although the Branch-bound and Anneal algorithms give better results, 
the deterioration of the Mid algorithm results does not exceed 90% even for 90 
points. 

Large sets of points (500, 1000, ..., 10,000) were also analyzed. In this case, the 
branch and bound method was able to process only sets of size 500 and 1000, as  

 

   
(a)                                 (b) 

Figure 13. Paths obtained by Branch-bound (a) and Anneal (b) algorithms. 
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Figure 14. Deterioration (in percent) of Anneal and Mid algorithm results compared to 
the Branch-bound algorithm (OX axis is the size of the initial set of points). 

 

 
Figure 15. Results of Branch-bound, Anneal and Mid algorithms for the first test set (OX 
axis is the size of the initial set of points). 

 
the available memory was insufficient for larger sets. It should also be noted that 
the running time of the simulated annealing method varied from 98 seconds (for 
500 points) to 45 minutes (for 10,000 points), while the Mid algorithm ran less 
than 1 second for all sets. 

Figure 16 summarizes the results for the first larger test set. The number of 
contours varied from 31 (for 500 points) to 225 (for 10,000 points). 

The numerical results of the algorithms for large size point sets show that  
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Figure 16. Results of Branch-bound, Anneal and Mid algorithms for the first test set of 
large size (OX axis is the size of the initial set of points). 

 

  
(a)                                  (b) 

Figure 17. Segments of the two outer contours remaining after executing the Up algo-
rithm (a) and a variant of the more efficient merging two outer contours (b) for a set of 
90 points. 

 
starting with point sets of a certain size, the Mid algorithm performs better than 
other approximate algorithms and also runs much faster. 

6. Conclusions 

The paper considers various aspects of the implementation of the contour algo-
rithm related to both the first stage (construction of a set of convex contours) 
and the second stage (merging contours into a closed path). Numerical compar-
ison with other known algorithms for approximate solution of the traveling sa-
lesman problem shows that for a small number of points, the deterioration of the 
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results obtained using the described variants of the contour algorithm does not ex-
ceed 90%. For a large number of points (starting from 6000), the contour algo-
rithm allows to obtain better results, and for a very short running time (about 1 
s). 

The main problem with the considered variants of the contour algorithm is that 
neighboring contours are bypassed completely except for one or two removed 
segments (Figure 17(a)). It can be expected that the inclusion of additional heu-
ristics in the algorithm to provide a more efficient merging of neighboring con-
tours (Figure 17(b)) will significantly improve its performance. The development 
and analysis of such heuristics is the subject of future research. 
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