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Abstract 
In this paper, the inverse spectral problem of Sturm-Liouville operator with 
boundary conditions and jump conditions dependent on the spectral para-
meter is investigated. Firstly, the self-adjointness of the problem and the ei-
genvalue properties are given, then the asymptotic formulas of eigenvalues 
and eigenfunctions are presented. Finally, the uniqueness theorems of the 
corresponding inverse problems are given by Weyl function theory and in-
verse spectral data approach.  
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1. Introduction 

Inverse spectral problems are motivated to recovering operators from the priori 
known spectral characteristics. These problems often appear in mathematics, 
physics, mechanics, electronics, and some other sciences and engineering prob-
lems, and, hence, are very important to understanding the real world. Significant 
progress has been made in the inverse problem theory for regular self-adjoint or 
nonself-adjoint Sturm-Liouville operators [1] [2] [3] [4]. 

The inverse problem of Sturm-Liouville operator was initiated by Ambarzu-
mian [5] and Borg [6], after that, there are various generalizations on the inverse 
problems of Sturm-Liouville operators. Besides the classical regular Sturm- 
Liouville operators [2] [3], in recent years there have been a lot of inverse prob-
lems for Sturm-Liouville operators with eigenparameter-dependent boundary 
conditions and Sturm-Liouville operators with transmission conditions [7]-[10]. 
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Fulton has studied the inverse spectral problem with boundary conditions li-
nearly dependent on the spectral parameter [7]. Binding et al. discussed boun-
dary conditions that depend nonlinearly on the spectral parameter [9]. Hald has 
studied the discontinuous Sturm-Liouville problem and shown the direct and 
inverse spectral theory on the Sturm-Liouville problem with internal disconti-
nuous point conditions [10]. The corresponding direct problems of boundary 
value problems with transmission conditions and/or eigenparameter-dependent 
boundary conditions, we refer to [20]-[25] and the references therein. 

Recent years, the boundary value problems with eigenparameter-dependent 
transmission conditions have drown scholars’ much attention and have achieved 
significant progress, including direct and inverse spectral theory and half inverse 
spectral theory [26]-[35]. In 2005, Akdogan et al. investigated the discontinuous 
Sturm-Liouville problems, where the spectral parameter not only appears in dif-
ferential equations, but also in boundary conditions and one of the jump condi-
tions, they got the asymptotic approximation of fundamental solutions and the 
asymptotic formulae for eigenvalues of such problems [27]. In 2012, Ozkan et al. 
considered the spectral problems for Sturm-Liouville operator with both boun-
dary and one of the jump conditions linearly dependent on the eigenparameter, 
and studied the inverse problem of this operator [28]. In 2014, Guo et al. inves-
tigated the inverse spectral problem of Sturm-Liouville operator with finite 
number of jump conditions dependent on the eigenparameter [29]. In 2016, Wei 
et al. investigated the inverse spectral problem for Dirac operator with boundary 
and jump conditions dependent on the spectral parameter. Through inducting 
the generalized normal constants they have proved the uniqueness theorem, 
then a construction method for solving this inverse problem was given [30]. In 
2018 and 2021, Bartels et al. presented Sturm-Liouville problems with transfer 
condition Herglotz dependent on the eigenparameter, and showed the Hilbert 
space formulation of the problem and calculated out the eigenvalue and eigen-
function asymptotic formula on this problem [31] [34]. Zhang et al. studied the 
finite spectrum of Sturm-Liouville problems with both jump conditions depen-
dent on the spectral parameter [35]. 

Since then the Sturm-Liouville problems with jump conditions containing the 
spectral parameter have been widely studied, however, for the problems with 
both jump conditions containing the spectral parameter attach less attention, 
which often appear in heat transfer, electronic signal amplifiers and other issues 
of sciences, hence have high research significance. It’s also a good complement 
to the study of spectral and inverse spectral problems of boundary value prob-
lems of differential equations. 

In this paper, we mainly investigate the inverse spectral problem of Sturm- 
Liouville operator in which the spectral parameter not only appears in the diffe-
rential equation, but also appears in both of the jump conditions and the boun-
dary conditions. While the spectral parameter appears in equation and boundary 
conditions and transmission conditions, hence it is much complicated. The stu-
dies on such problems play an important role in differential equations and spec-
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tral theory. To show the inverse spectral theory of this problem, the operator 
formulation of this problem is constructed and some spectral properties are 
given, next the asymptotic behavior of the solutions and eigenvalues is provided, 
then several uniqueness results for this inverse spectral problem are given. The 
uniqueness theorem is very important in inverse spectral theory of boundary 
value problems, and there are many approaches to solve the uniqueness theorem. 
In this paper, we will use three general methods to solve the uniqueness theorem, 
which are equivalent to each other, i.e. the Weyl function theory, two spectra 
and spectral data approach. To analyze this inverse spectral problem, the de-
pendence of eigenvalues of such problems is the theoretical basis of it, and the 
corresponding results the reader may refer to [36].  

2. Notation and Basic Properties 

Consider the following boundary value problem (denoted by L) consisting of the 
following Sturm-Liouville equation  

 ( ) ( ) [ ) ( ]: ,  0, , ,l y y q x y y x J c cλ′′= + = ∈ = ∪ π−  (2.1) 

together with boundary conditions (BCs)  

 ( ) ( ) ( )( ) ( ) ( )( )1 1 2 3 4: 0 0 0 0 0,l y y y y yλ α α α α′ ′= + − + =  (2.2) 

 ( ) ( ) ( )( ) ( ) ( )( )2 1 2 3 4: 0,l y y y y yλ β β β βπ π′ π ′− + π= + =  (2.3) 

and jump conditions with spectral parameter  

 ( ) ( ) ( ) ( )1 1 0,y c y c y cλη ξ− − +′ ′+ − + =  (2.4) 

 ( ) ( ) ( ) ( )2 2 0,y c y c y cλη ξ− + +′ ′− + − =  (2.5) 

where ( ) ( )2q x L J∈  is real valued, 0 c< < π , , , , i i k kα β η ξ ∈ , 0kη > ,  

1 2 3 1 4 0d α α α α= − > , 2 1 4 2 3 0d β β β β= − > , 1, 2k = , 1, 2, 3, 4i = . Here λ  is a 
spectral parameter. 

In order to describe the self-adjointness of the operator corresponding to the 
problem L, firstly, let us consider the set associated with the functions consi-
dered in the present paper as  

( ) ( ) ( ) ( ){ }2 2: , , ,locU y L J y y AC J l y L J′= ∈ ∈ ∈  

where ( )locAC J  denotes all local absolutely continuous functions on J, then we 
can introduce an inner product in the Hilbert space ( )2 4:  L J= ⊕  as  

 ( ) 1 1 2 2 1 3 3 2 4 40
1 2

1 1, d d ,
c

c
F G fg x fg x f g f g f g f g

d d
π

η η= + + + + +∫ ∫  (2.6) 

for arbitrary  

( ) ( )T T
1 2 3 4 1 2 3 4, , , , , , , , , .F f f f f f G g g g g g= = ∈  

To facilitate the description, the following notation need to be listed. For 
y U∈ , let  

( ) ( ) ( ) ( ) ( ) ( )1 3 4 1 1 20 0 ,  0 0 ,M y y y M y y yα α α α′ ′= + = +  
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( ) ( ) ( ) ( ) ( ) ( )2 3 4 2 1 2,  ,M y y y M y y yβ β β βπ π π′ ′= + = + π  

( ) ( ) ( ) ( ) ( ) ( )3 1 3
1

1 , ,M y y c y c y c M y y cξ
η

− − + − ′ ′ ′= − − = 
  

( ) ( ) ( ) ( ) ( ) ( )4 2 4
2

1 , ,M y y c y c y c M y y cξ
η

+ + − + ′ ′ ′= + − = 
  

then the boundary conditions (2.2), (2.3) and jump conditions (2.4), (2.5) can be 
written as  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 1 2 2 3 3 4 4,  ,  ,  .M y M y M y M y M y M y M y M yλ λ λ λ= = = =     

In the Hilbert space   we define a linear operator : →    as  

 

( )
( )
( )
( )
( )

( ) ( )
( ) ( )

( ) ( ) ( )

( ) ( ) ( )

3 4

1 3 4

2
1

13

4
2

2

0 0

,1

1

f qf
l f f f

M f f f
F M f

f c f c f c
M f
M f f c f c f c

α α
β β

ξ
η

ξ
η

− − +

+ + −

′′− + 
   ′+    ′+    = =   ′ ′− −             ′ ′+ −  

π



π







  (2.7) 

and the domain of the operator   as  

( ) ( )( ){ ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )}

T

1 2 3 4

0 0

1 1 2 2 3 3 4 4

: , , , , : , and have finite limits

lim , lim ,

, , , .
x c x c

D F f x f f f f f x U

f c f x f c f x

f M f f M f f M f f M f

± ±

→ ± → ±

= = ∈ ∈

′ ′= =

= = = =

 

 

Thus, the problem L can be written as the following form  
,F Fλ=  

where ( ) ( )T
1 2 3 4, , , ,F f f f f f D= ∈  . 

Then it can be proven that the following theorem about the self-adjointness of 
the operator   holds.  

Theorem 1. [27] The linear operator   is self-adjoint in the Hilbert space 
 .  

Define two fundamental solutions ( ) ( ), , ,x xϕ λ χ λ  of Equation (2.1) on 
whole [ ) ( ]0, ,c c∪ π  satisfying the jump conditions (2.4), (2.5) and the follow-
ing initial conditions, respectively  

( )
( )

( )
( )

2 4 2 4

1 3 1 3

0, ,
,   .

0, ,
λα α λβ βϕ λ χ λ
λα α λβ βϕ λ χ λ
− + − +      

= =      ′ ′− −      π 

π
 

Since these solutions ( ),xϕ λ  and ( ),xχ λ  satisfy the jump conditions (2.4) 
and (2.5), the following relations  

( )
( )

( ) ( ) ( )
( ) ( )

( )
( )

( ) ( ) ( )
( ) ( )

, 1 , ,
,

, , ,

, , 1 ,

, , ,

c a b c b c

c a c c

c a c a b c

c c b c

λ λ λ

λ

λ λ λ

λ

ϕ λ ϕ λ ϕ λ

ϕ λ ϕ λ ϕ λ

χ λ χ λ χ λ

χ λ χ λ χ λ

+ − −

+ − −

− + +

− + +

   ′− −
   =
   ′ ′− −   
   ′− + −
   =
   ′ ′−   
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hold, where 1 1 2 2,a bλ λλη ξ λη ξ= − = − . 
For each x J∈ , these solutions satisfy the relation ( ) ( )1 2 0l lϕ χ= = . Then 

the characteristic function can be introduced as  

 ( ) ( ) ( ) ( ) ( ) ( ) ( ), , , , , , , ,x x x x x xλ ϕ λ χ λ ϕ λ χ λ ϕ λ χ λ′ ′∆ = = −  (2.8) 

according to the Liouville’s theorem, the Wronskian ( ) ( ), , ,x xϕ λ χ λ  is an 
entire function in λ  and the zeros namely nλ  of ( )λ∆  coincide with the ei-
genvalues of the problem L. Substituting x = π  into (2.8) we get  

 ( ) ( ) ( )( ) ( ) ( )( )1 2 3 4, , , , .λ λ β ϕ λ β ϕ λ β ϕ λ β ϕ λ′ ′∆ = + − +π π π π  (2.9) 

The normal constants nρ  of the problem L can be defined as follows  

 
( ) ( ) ( ) ( )( )

( ) ( )( ) ( ) ( )

22 2
1 20

1

2 2 2
1 2 1 2

2

1, d , d 0, 0,

1 , , , , .

c
n n n n nc

n n n n

x x x x
d

c c
d

ρ ϕ λ ϕ λ α ϕ λ α ϕ λ

β ϕ λ β ϕ λ η ϕ λ η ϕ λ

π

− +π π

′= + + +

′ ′ ′+ + + +

∫ ∫
 (2.10) 

If the functions ( ), nxϕ λ  and ( ), nxχ λ  are the eigenfunctions of the prob-
lem L, then there exists a sequence { }nϖ  such that  

 ( ) ( ) ( ) ( )1 2

1

0, 0,
, , , where .n n

n n n nx x
d

χ λ α χ λ α
χ λ ϖ ϕ λ ϖ

′+
= = −  (2.11) 

Theorem 2. Let nλ  be the zeros of the function ( )λ∆ , then  

 ( ) .n n nλ ϖ ρ∆ =  (2.12) 

where ( ) d
d

λ
λ
∆

∆ = , and ,n nρ ϖ  are defined by (2.10) and (2.11), respectively.  

Proof. Let us write the following equations  

 ( ) ( ) ( ) ( ), , , ,x q x x xχ λ χ λ λχ λ′′− + =  (2.13) 

 ( ) ( ) ( ) ( ), , , .n n n nx q x x xϕ λ ϕ λ λ ϕ λ′′− + =  (2.14) 

Let (2.13), (2.14) multiplied by ( ), nxϕ λ  and ( ),xχ λ , respectively, and sub-
tracting them, then the equality  

 ( ) ( ) ( ) ( ) ( )d , , , , ,
d n n nx x x x
x
ϕ λ χ λ λ λ ϕ λ χ λ= −  (2.15) 

is obtained. Integrating over the interval J  

( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( )( )( ) ( ) ( )

0

1 2 1 2

1 1 2 2

1 2 2

1 2 2 2 2 2

, , d , , d

, , 0, 0,

, , , ,

, ,

, , .

c
n n nc

n n n n

n n n n

n n n

n n n

x x x x x x

c c c c

c c

c c

π
λ λ χ λ ϕ λ χ λ ϕ λ

λ λ λ β ϕ π λ β ϕ π λ λ λ α χ λ α χ λ

λ λ η ϕ λ χ λ λ λ η λη ξ ϕ λ χ λ

λ λ η λ η ξ ϕ λ χ λ

λ λ η λ η ξ λη ξ η ϕ λ χ λ

+ + + +

+ +

+ +

− +

′ ′= −∆ − − + + − +

′− − + − −

′+ − −

′ ′− − − − +

∫ ∫

 

Dividing both sides of the above equality by nλ λ− , and let nλ λ→ , then we 
have  
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( ) ( ) ( ) ( ) ( )
( ) ( )( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

0

1 2 1 2

1 1 2 2

1 2 2

2
1 2 2 2

, , d , , d

, , 0, 0,

, , , ,

, ,

, , .

c
n n n n nc

n n

n n n n n

n n n

n n n

x x x x x x

c c c c

c c

c c

λ χ λ ϕ λ χ λ ϕ λ

β ϕ λ β ϕ λ α χ λ α χ λ

η ϕ λ χ λ η λ η ξ ϕ λ χ λ

η λ η ξ ϕ λ χ λ

η λ η ξ η ϕ λ χ λ

+ + + +

+ +

+ +

π
−∆ = − −

′ ′− + + +

′ − + − 
′ + − 

  ′ ′− − +

π

 

π
∫ ∫

 

Using (2.11)  

( ) ( ) ( ) ( )
( ) ( )( ) ( ) ( )( )

( ) ( )( ) ( ) ( )( )

( ) ( ) ( ) ( )( ) ( )
( )

2 2 2
10

1 2 1 2

2

1 2 1 2

1
2 2

1 2 2 2 2 1

2
2

, d , d ,

, , , ,

0, 0, 0, 0,

2 , , ,

,

c
n n n nc

n n n n

n n n n

n n n n n

n

x x x x c

d

d

c c c

c

λ ϕ λ ϕ λ η ϕ λ

β ϕ λ β ϕ λ β χ λ β χ λ

α ϕ λ α ϕ λ α χ λ α χ λ

η λ η ξ ϕ λ ϕ λ λ η ξ η ϕ λ

η ϕ λ

+

+ + +

+

π
∆ = + +

′ ′+ −
+

′ ′− −
+

′ ′− − + −

π

′+

π π π
∫ ∫

 

         

( ) ( ) ( ) ( )( )

( ) ( )( ) ( ) ( )

22 2
1 20

1

2 2 2
1 2 1 2

2

1, d , d 0, 0,

1 , , , ,

.

c
n n n n nc

n n n n

n n

x x x x
d

c c
d

ϖ ϕ λ ϕ λ α ϕ λ α ϕ λ

β ϕ λ β ϕ λ η ϕ λ η ϕ λ

ϖ ρ

π

− +


′= + + −




′ ′ ′+ − + + 


=

π π

∫ ∫

 

Thus the equality (2.12) holds.  
 

3. Construction and Asymptotic Approximation of  
Fundamental Solutions and Eigenvalues 

In this section, we will obtain the asymptotic approximation of fundamental so-
lutions and eigenvalues of the problem L.  

Lemma 1. Let iρ λ σ τ= = + . Then the following asymptotics hold. 
When 2 0β ≠ , one has  

 
( ) ( ) ( )

( )( )( ) [ )

7
2 1 2

6

d d, cos sin
d d

exp ,  0, ,

k k

k k

k

x c x c
x x

O x x c

χ λ ρ β ηη ρ ρ

ρ τ+

= − −

+ − ∈

π

π
 (3.1) 

( ) ( ) ( )( )( ) ( ]12
2

d d, cos exp ,  , .
d d

k k
k

k kx x O x x c
x x

χ λ ρ β ρ ρ τ+π −π− − + ∈ π=  (3.2) 

When 2 = 0β , one has  

 
( ) ( ) ( )

( )( )( ) [ )

6
1 1 2

5

d d, cos cos
d d

exp , 0, ,

k k

k k

k

x c x c
x x

O x x c

χ λ ρ βηη ρ ρ

ρ τ+ −

π

π

= − −

+ ∈
 (3.3) 

 ( ) ( ) ( )( )( ) ( ]1
d d, sin exp ,  , .
d d

k k
k

k kx x O x x c
x x

χ λ ρβ ρ ρ τπ −π− + ∈ π=  (3.4) 
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Where 0,1k = .  
Proof. When 2 0β ≠ . Let ( ) ( )0 0, , ,f x g xλ λ  be the solutions of (2.1) under 

the conditions  
( ) ( ) ( ) ( )0 0 0 0, 1, , 0, , 0, , 1.f f g gλ λ λ λ′ ′= = =π π =π π  

According to [37], one has  

 

( ) ( ) ( ) ( ) ( )

( ) ( )

( ) ( ) ( )

0 0

2

sin
, cos , d

sincos d
2

1 1sin 2 d e ,
2

x

x

x

x

x t
f x x q t f t t

xx q t t

q t x t t O τ

ρ
λ ρ λ

ρ
ρρ
ρ

ρ
ρ ρ

π

π

π−π

−
= − +

= − +

 
+ − +  



π



π ∫

∫

∫

 (3.5) 

 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

0 0

2

2 3

sin sin
, , d

sin cos
d

2
1 1cos 2 d e ,

2

x

x

x

x

x x t
g x q t g t t

x x
q t t

q t x t t O τ

ρ ρ
λ λ

ρ ρ
ρ ρ
ρ ρ

ρ
ρ ρ

−

π

π

π π

π

π π

− −
= +

− −
= −

 
+ − +  

 

∫

∫

∫

 (3.6) 

where , Imρ λ τ ρ= = . 
Suppose ( ) ( ), , ,f x g xλ λ  are the solutions of Equation (2.1), and satisfy the 

jump conditions (2.4), (2.5), and the following initial conditions  
( ) ( ) ( ) ( ), 1,  , 0,  , 0,  , 1.f f g gλ λ λ λ′ ′= = =π π =π π  

Hence as x c> ,  
( ) ( ) ( ) ( )0 0, , ,  , , ,f x f x g x g xλ λ λ λ= =  

and as x c< , let  

 
( ) ( ) ( )
( ) ( ) ( )

1 0 1 0

2 0 2 0

, , , ,

, , , .

f x A f x B g x

g x A f x B g x

λ λ λ

λ λ λ

= +


= +
 (3.7) 

Due to the fact that ( ) ( ), , ,f x g xλ λ  meet the jump conditions (2.4), (2.5), 
and ( ) ( ) ( )0 0f c f c f c+ += = , ( ) ( ) ( )0 0g c g c g c+ += = , we can get  

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

1 0 1 0 0 0

1 0 1 0 0 0

2 0 2 0 0 0

2 0 2 0 0 0

, , , 1 , ,

, , , , ,

, , , 1 , ,

, , , , .

A f c B g c a f c a b f c

A f c B g c f c b f c

A f c B g c a g c a b g c

A f c B g c g c b g c

λ λ λ

λ

λ λ λ

λ

λ λ λ λ

λ λ λ λ

λ λ λ λ

λ λ λ λ

′ + = − + −


′ ′ ′+ = −


′+ = − + −
 ′ ′ ′+ = −

 

Thus by calculation, it can be obtained that  

( ) ( )

( ) ( )

( ) ( )

( ) ( )

5 4
1 1 2

6 6 5
1 1 2 1 2

4 4 3
2 1 2 1 2

5 4
2 1 2

1 sin 2 ,
2
1 1 cos2 ,
2 2

1 1 cos2 ,
2 2
1 sin 2 .
2

A c O

B c O

A c O

B c O

ρ ηη ρ ρ

ρ ηη ρ ηη ρ ρ

ρ ηη ρ ηη ρ ρ

ρ ηη ρ ρ

π= − − +

= − + − +

= + − +

= −

π

+

π

π
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Substituted into Equations (3.7), we have  

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

5 4
1 2

4 3
1 2

1, sin 2 sin ,
2

1, cos cos 2 .
2

f x x c x O

g x x x c O

λ ρ ηη ρ ρ ρ

λ ρ ηη ρ ρ ρ

= − + − − − +  

= − + + − +

π π

π π  

 

According to the initial conditions satisfied by ( ),xχ λ . 
For 0,1k = , as [ )0,x c∈ ,  

( ) ( ) ( )( )( )67
2 1 2

d d( , ) cos sin exp ,
d d

k k
k

k kx c x c O x
x x

χ λ ρ β η η ρ ρ ρ τ+= − + π− −π  

and as ( ],x c∈ π , 

( ) ( ) ( )( )( )12
2

d d, cos exp .
d d

k k
k

k kx x O x
x x

χ λ ρ β ρ π ρ τ+− + π= − −  

Similarly, when 2 0β = , (3.2) can be obtained.  
Lemma 2. The function ( ),xϕ λ  has the following asymptotics, for 0,1k = . 
When 2 0α ≠ , one has  

 

( )

( )( ) [ )

( ) ( )( ) ( ]

12
2

67
2 1 2

d ,
d

d cos exp , 0, ,
d

dsin cos exp , , .
d

k

k

k
k

k

k
k

k

x
x

x O x x c
x

c x c O x x c
x

ϕ λ

ρ α ρ ρ τ

ρ α ηη ρ ρ ρ τ

+

+


− + ∈= 
− − + π∈

 (3.8) 

When 2 0α = , one has  

 

( )

( )( ) [ )

( ) ( )( ) ( ]

1

56
1 1 2

d ,
d

d sin exp , 0, ,
d

dcos cos exp , , .
d

k

k

k
k

k

k
k

k

x
x

x O x x c
x

c x c O x x c
x

ϕ λ

ρα ρ ρ τ

ρ α ηη ρ ρ ρ τ+


+ ∈= 

− − π+ ∈

 (3.9) 

Proof. The proof is the same as lemma 1, hence we omit the details.  
Hence, when 2 20, 0α β≠ ≠ , according to (2.9) and (3.8) the characteristic 

function ( )λ∆  as ρ →∞  is  

 ( ) ( ) ( )( )10 9
2 2 1 2 sin sin exp .c c Oλ ρ β α ηη ρ ρ ρ τ∆ = − +π π  (3.10) 

Let ( ) ( ) ( )1 2λ λ λ∆ = ∆ + ∆ , where  

( ) ( )
( ) ( )( )

10
1 2 2 1 2

9
2

sin sin ,

exp .

c c

O

λ ρ β α ηη ρ ρ

λ ρ τ

∆ = −

∆ =

π

π
 

Next, we ready to find the asymptotic formulas for the eigenvalues of the con-
sidered problem L.  

Theorem 3. Let { } 0n n
λ ∞

=
 be the eigenvalues of the problem L, 2

n nλ ρ= , then 
it has following asymptotics as n →∞   

 1 1,  .n n
n nO O
c n c n

ρ ρ   ′ ′′= + = +   −  

π



π
π

 (3.11) 
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Proof. Let  

 1: ,
2n

n n nG
c c c

ρ ρ ′ = ∈ = + − −
π π



π
π 

  (3.12) 

 1: .
2n

n n nG
c c c

ρ ρ π π π
π π

 ′′= ∈ = + − − − 
  (3.13) 

Next we only prove the case of nρ′ , and nρ′′  can be proved in the same way. 
Denote { }0: nGδ ρ ρ ρ δ= − ≥ , where 0δ > , and 0

nρ  are square roots of 
( )1 λ∆ , then from [3] we know that for any Gδρ ∈ , there exists a constant 

0Cδ > , such that  

( ) ( )10
1 exp , ,C Gδ δλ ρ τ ρπ∆ > ∈  

thus for sufficiently large * 0ρ > , when Gδρ ∈  and *ρ ρ> , it has  

 ( ) ( )10 exp .Cδλ ρ τ∆ > π  (3.14) 

It’s easy to know , n nG G Gδ′ ′′ ⊂ . Clearly, ( ) ( )1 2λ λ∆ > ∆  for nGρ ′∈ , ac-
cording to Rouchè’s theorem, it is clear that the number of zeros of ( )λ∆  in-
side nG′  coincides with the number of zeros of ( )1 λ∆ . Applying Rouchè’s  

theorem again to the circle ( ) :n
n
c

γ δ ρ ρ δπ 
= − < 
 

, for sufficiently large n, in  

each ( )nγ δ , there exits a unique zero of ( )λ∆ , namely n nρ λ′ = . Because of 
0δ >  is sufficiently small, when n →∞ , we have  

 ( ),  1 .n n n
n o
c

ρ ε ε+ =
π′ =  (3.15) 

Let ( ) ( )cos 2 cosS z z c z= − −π π . Substituting (3.15) into (3.10), we can ob-
tain that  

1 .n

n

nS O nc
c

ε
ε

π
π

 
  + =   

   + 
 

 

By the well-known formula ( ) ( ) ( ) ( )( )1S z h S z S z o h′+ = + + , the above eq-
uation can be changed to the following formula  

( ) 11 .n

n

n nS S o O nc c
c

ε
ε

 
     ′+ + =  

π π
   

      +
π


 

 

When n →∞ , then 1
n O

n
ε  =  

 
 is true. 

Therefore, (3.11) can be rolled out.  

4. Inverse Problems 

In this section, we mainly consider the reconstruction of the problem L, from the 
Weyl function, from the spectral data { } 0

,n n n
λ ρ ∞

=
, and from two spectra  

{ } { }0 0n nn n
λ µ∞ ∞

= =
∪ . 
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Denote  

 ( ) ( ) ( )
( )

1 2

1

0, 0,
,M

d
χ λ α χ λ α

λ
λ
′+

=
∆

 (4.1) 

where 1 2,α α  are not 0 at the same time. Let ( ),xφ λ  be the solution of (2.1), 
satisfying the following initial conditions and jump conditions (2.4) and (2.5)  

( ) ( )1 1
1 2 1 10, ,  0, .d dφ λ α φ λ α− −′= = −  

Because of ( ) ( ), , , 1x xϕ λ φ λ = , we have  

( ) ( ) ( ) ( ) ( ) ( )1 2

1

0, 0,
, , , ,x x x

d
χ λ α χ λ α

χ λ λ φ λ ϕ λ
′+

= ∆ −  

or  

 ( )
( ) ( ) ( ) ( ),

, , .
x

x M x
χ λ

φ λ λ ϕ λ
λ

= −
∆

 (4.2) 

Denote  

 ( ) ( )
( )

,
, .

x
x

χ λ
λ

λ
Φ =

∆
 (4.3) 

Thus ( ),x λΦ  is the solution of (2.1) that satisfies the conditions ( )1 1l Φ = − , 
( )2 0l Φ =  and the jump conditions (2.4) and (2.5), where ( )λ∆  is defined in 

(2.8). 
The functions ( ),x λΦ  and ( )M λ  are called the Weyl solution and the 

Weyl function for the boundary value problem L. 
Next, the uniqueness theorem for problem L will be given by the Weyl func-

tion. For studying the inverse problem we agree that together with L consider a 
boundary value problem L  of the same form but with different coefficients 
( ) , , , , , , 1,2,3,4; 1, 2i i k kq x c i kα β η ξ = = 

   .  
Theorem 4. If ( ) ( )M Mλ λ=  , then L L=  , i.e. ( ) ( )q x q x=   a.e. J, and  

c c=  , i iα α=  , i iβ β=  ,  1,2,3,4i = , k kη η=  , k kξ ξ=  , 1,2k = .  
Proof. Let us define the matrix ( ) ( ), , 1,2

, ,j k j k
P x p xλ λ

=
 =    by the formula  

( ) ( ) ( )
( ) ( )

( ) ( )
( ) ( )

, ,, ,
, ,

, ,, ,
x xx x

P x
x xx x

ϕ λ λϕ λ λ
λ

ϕ λ λϕ λ λ
   Φ Φ

=     ′ ′′ ′ ΦΦ   









 

then we can calculate that  

 
( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( )

1 1
,1

1 1
,2

, , , , , ,

, , , , , ,

j j
j

j j
j

p x x x x x

p x x x x x

λ λ ϕ λ ϕ λ λ

λ ϕ λ λ λ ϕ λ

− −

− −

 ′ ′= Φ − Φ


= Φ −Φ









 (4.4) 

and  

 
( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

11 12

11 12

, , , , , ,
, , , , , .

x p x x p x x
x p x x p x x

ϕ λ λ ϕ λ λ ϕ λ
λ λ λ λ λ

′ = +
 ′Φ = Φ + Φ

 

 

 (4.5) 

According to (4.2) and (4.4), the following equations can be obtained  

( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( )

11

12

, , , , , , , ,

, , , , , , , .

p x x x x x M M x x

p x x x x x M M x x

λ φ λ ϕ λ ϕ λ φ λ λ λ ϕ λ ϕ λ

λ ϕ λ φ λ φ λ ϕ λ λ λ ϕ λ ϕ λ

 ′ ′ ′= − + + −


= − + + −

 

 

 

 

 

(4.6) 
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Denote { }: nGδ ρ ρ ρ δ′ ′= − ≥ , { }: nGδ ρ ρ ρ δ′ ′= − ≥

 , where δ  is suffi-
ciently small number, nρ′  and nρ′  are square roots of the eigenvalues of the 
problems L and L , respectively. By virtue of (3.1), (3.8) and (3.10), for suffi-
ciently large *ρ , there exists a constant 0Cδ >  such that  

 ( ) ( )11 12, , , , .Cp x C p x G Gδ
δ δ δλ λ ρ

ρ
′ ′≤ ≤ ∈ ∩   (4.7) 

Thus, if ( ) ( )M Mλ λ=  , then for each fixed x , the functions ( )11 ,p x λ  and 
( )12 ,p x λ  are entire in λ . Combined with (4.7), and according to Liouville’s 

theorem, we can get  

 ( ) ( ) ( )11 12, , , 0.p x A x p xλ λ= =  (4.8) 

Substituting (4.8) into (4.5), then for each x J∈  and λ∈  we have  

 ( ) ( ) ( ) ( ) ( ) ( ), , , , , .x A x x x A x xϕ λ ϕ λ λ λ= Φ = Φ  (4.9) 

Due to ( ) ( ), , , 1x xϕ λ λΦ =  and ( ) ( ), , , 1x xϕ λ λΦ =

 , ones have  
( )2 1A x = . 

On the other hand, the asymptotic expressions  

 
( ) ( ) ( )

( ) ( ) ( )

1, exp 1 ,

1, exp 1 ,

x C i x O

x C i x O

ϕ λ ρ ρ
ρ

ϕ λ ρ ρ
ρ

  
= − +  

  
  

= − +  
  





 (4.10) 

can be easily verified. Here  

( )
[ )

( ]

2
2

7
2 1 2

1 , 0, ,
2
1 , , ;
4

x c
C

x c

ρ α
ρ

ρ α ηη

− ∈=
π


− ∈


 ( )
[ )

( ]

2
2

7
2 1 2

1 , 0, ,
2
1 , , .
4

x c
C

x c

ρ α
ρ

ρ α ηη

− ∈=
− π

 ∈








 

Without loss of generality, assume c c<  . From (4.9), (4.10) we get ( ) 1A x =  
for [ ) ( ]0, ,x c c∈ ∪ π . When ( ),x c c∈  , one has  

 ( ) 7
1 1 1 11 1 .
2

O A x O
ρ ρρ

      
+ = +      

      
 (4.11) 

By letting ρ →∞ , in (4.11) we contradict ( )2 1A x = . Thus c c=   and 
( ) 1A x = . Hence ( ) ( ), ,x xϕ λ ϕ λ=  , ( ) ( ), ,x xλ λΦ = Φ . 
Finally, if ( ) ( )M Mλ λ=   holds, then we can conclude ( ) ( )q x q x=  , a.e. J 

and c c=  , i iα α=  , i iβ β=  , 1,2,3,4i = , k kη η=  , k kξ ξ=  , 1,2k = . So con-
sequently, L L=  .  

Lemma 3. [29] For the function ( )M λ  defined in (4.1), the following ex-
pression can be established  

 ( ) ( )0

1 .
n n n

M λ
ρ λ λ

∞

=

=
−∑  (4.12) 

Theorem 5. If n nλ λ=   and 0, n n nρ ρ= ∈
 , then ( ) ( )q x q x=   a.e. J, and 

c c=  , i iα α=  , i iβ β=  , 1,2,3,4i = , k kη η=  , k kξ ξ=  , 1,2k = , i.e. L L=  .  
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Proof. From lemma 3, if n nλ λ=   and n nρ ρ=  , then ( ) ( )M Mλ λ=  . Ac-
cording to Theorem 4, this theorem can be proved.  

Lastly, through the two spectra { } { }0 0n nn n
λ µ∞ ∞

= =
∪ , let us prove the uniqueness 

theorem. Let { } 0n n
µ ∞

=
 be the spectra of the problem 1L  consisting of the Equa-

tion (2.1) with condition ( ) ( )2 10, 0, 0y yα λ α λ′ + =  (where 1 2,α α  are not 0 at 
the same time) and conditions (2.3), (2.4) and (2.5). It is obvious that nµ  are 
the zeros of ( ) ( ) ( )0 2 10, 0,µ χ µ α χ µ α′∆ = + , where ( )0 µ∆  is the characteris-
tic function of the problem 1L .  

Theorem 6. If , , 0n n n n nλ λ µ µ= = ≥

 , then ( ) ( )q x q x=   a.e. J, and c c=  , 

1 1α α=  , 2 2α α=  , i iβ β=  , 1,2,3,4i = , k kη η=  , k kξ ξ=  , 1,2k = .  

Proof. Since the functions ( )λ∆  and ( )0 µ∆  are entire of order 
1
2

, we can  

write by Hadamards factorization theorem (methods popularized by the litera-
ture [3])  

( )
0

1 ,
n n

C λλ
λ

∞

=

 
∆ = − 

 
∏  

( )0 0
0

1 .
n n

C µµ
µ

∞

=

 
∆ = − 

 
∏  

Thus ( )λ∆  and ( )0 µ∆  are uniquely determined up to a multiplicative 
constant by their zeros (the case when ( )0 0∆ =  requires minor modifications). 
Therefore, one has ( ) ( )λ λ∆ = ∆ , ( ) ( )0 0µ µ∆ = ∆ , i.e.  

( ) ( ) ( ) ( )2 1 2 10, 0, 0, 0,χ µ α χ µ α χ µ α χ µ α′ ′+ = +     when n nλ λ=  , n nµ µ=  . 
Consequently ( ) ( )M Mλ λ=  , according to Theorem 4, the proof is completed.  

5. Conclusion 

In the present work, the inverse spectral problem of Sturm-Liouville operator 
with boundary conditions and jump conditions dependent on the spectral para-
meter is investigated. Such problems are connected with fields such as mechani-
cal engineering, and acoustic wave propagation problems, etc. Here the unique-
ness theorems of this problem are given by using Weyl function theory, two 
spectra and spectral data approaches. However, we only discuss the uniqueness 
theorem of the problem, the reconstruction formulae and stability of this prob-
lem have not been considered, we plan to consider these problems in future stu-
dies. 
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