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Abstract 
The Paraconsistent Many-Valued Similarity (PMVS) method for multi- 
attribute decision making will be incomplete as a decision model if it is not 
extended to the realm of group decision-making. Therefore, in this article, 
our primary objective is to show how the paraconsistent many-valued simi-
larity method can be used to solve group decision-making problems involving 
choice making or ranking of a finite set of decision alternatives. Moreover, 
since weights are very important parameters in multi-attribute decision- 
making, we have introduced the Borda rule to calculate the weights of ex-
perts and that of every criterion under consideration. To demonstrate how 
the proposed method works, a numerical example on energy sources of an 
economy from the points of view of a group of experts is investigated. Fur-
ther, we compare the results of this new approach with that of fuzzy TOPSIS 
group decision-making method to illustrate the robustness and effectiveness 
of the former. 
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1. Introduction 

Multi-attribute decision making may simply be regarded as the making of 
choices in the midst of several and sometimes conflicting attributes or criteria or 
goals [1]. Existing literature abounds with methods and applications of mul-
ti-attribute decision making for individual decision-makers [2] [3] [4] [5] [6]. 
Group decision analysis is a continuation of these preceded efforts to help deci-
sion makers efficiently and systematically unravel their daily multiple criteria 
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decision problems, be they individual or group problems [5]. Multi-Attribute 
Group Decision-Making (MAGDM) refers to the process whereby a group of 
individuals particularly decision-makers based on their interests, experience, 
judgement and preferences evaluates a given number of options vis-à-vis several 
usually conflicting criteria to be able to rank the options or choose the optimal 
option from the list of options [7] [8]. A synthesised choice is a binding choice 
for the whole group and not just for a single member of the group.  

Problem statement: as a result of technological advances in today’s world (in 
the areas of electricity, laser, semiconductor chips, quantum computing, elevator, 
human genome project, automobile, global positioning systems, smartphones 
and many more); multipersonal decision-making has become an indispensable 
tool for resolving complex decision problems posed by this advancement. Due to 
this reality, quite a lot of outranking methods have been extended into the field 
of group decision-making by adjusting those models in ways that will enable 
them deal with the various decision problems encountered at the group level. 
These extensions reflect the world’s appreciation of the superiority of collective 
efforts over single efforts and the superiority of collective decisions over that of 
an individual in some situations [9] [10]. Put differently, synthesised group deci-
sions in some circumstances turn out to be more factual, equitable and reflective 
of the reality on the ground than the decisions made by a perceived experienced 
individual for a group. Similarly, the motivation for extending the PMVS me-
thod to group decision-making is to help users to address decision-making 
problems fraught with partially conflicting and vague information at the group 
level. The existence of conflicting and vague information is often a result of a 
lack of information, or the presence of inadequate (incomplete) information or 
the availability of too much information or the existence of incomplete, yet con-
tradictory information [11]. These shortcomings manifest themselves in the 
process of group decision-making due to group members unequal knowledge, 
understanding, perception, experience, judgment, and discernment about the 
phenomenon around which the decision problem revolves. In other words, each 
member of the decision-making group has a unique degree of knowledge, un-
derstanding, perception, experience, and other characteristics about the decision 
problem. This uniqueness of group members leads to the generation of unique 
and sometimes conflicting, incomplete, and imprecise or vague information by 
each member. Faced with data sets characterised by such inconsistencies, con-
ventional outranking methods, namely TOPSIS, PROMETHEE, AHP, ANP and 
so on that obey the principle of non-contradiction cannot be applied to these 
data sets until those data sets have been made free of the inconsistencies. Apply-
ing these methods to these revised data sets engenders results that do not actual-
ly mirror reality. The PMVS method, however, (thanks to its paraconsistent log-
ic component) does not obey the non-contradiction principle, and therefore, 
could analyse these data in their raw and inconsistent form to generate results 
that objectively and truly reflect reality. Thus, PMVS is a model that is tolerant 
to contradiction, yet coherent and non-trivial. 
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Further, weight is one of the most important features of every mult-attribute 
decision-making model. Weights of criteria and that of experts or decision-makers 
can influence considerably the findings of any group decision-making operation. 
For this reason, these weights must be fixed with great caution. However, no 
hard and fast rules have been provided for the establishment of the weights of 
criteria for all decision models—In most cases, it is assumed that the decision 
maker is able to conjure or generate intuitively the weights of the criteria [12]. 
This way of inducing weights of criteria could lead to erroneous decisions. 
Hence, the essence of the methods of establishing the relative weights of criteria 
and sometimes the relative weights of decision-makers under group decision 
context cannot be over emphasised. Therefore, in this paper which is an exten-
sion of our previous article [13], we present a systematic procedure on how to 
use the Paraconsistent Many-Valued Similarity (PMVS) method to address 
group decision-making challenges (i.e., challenges characterised by numerous 
goals or attributes in relation to a fixed number of alternative courses of action), 
and by means of the Borda count, we have determined the relative weights of 
criteria and decision experts which is a sine qua non parameter in every out-
ranking model. The rational for choosing the Borda rule for the calculation of 
weights in group decision-making includes the facts that it is simple, easy to un-
derstand and calculate as well as effective in determining weights that accurately 
reflect the importance of each criterion and each expert. It is also less cumber-
some and less prone to errors. 

Some of the group decision-making methods and those multi-attribute single 
decision-making methods that have been expanded to the field of group deci-
sion-making include Analytic Hierarchy Process (AHP) [14], the Analytic 
Network Process (ANP) [15], the Delphi method [5] [16] [17]; the Preference 
Ranking Organisation MeTHod for Enrichment Evaluation (PROMETHEE) 
[18], the Technique for Order Preference by Similarity to Ideal Solution 
(TOPSIS) [19] [20] [21], PL-TOPSIS [22], Probabilistic Linguistic—organisation 
rangement et synthèse de donnèes relationnelles (PL-ORESTE) [23], the VIse-
Kriterijumska Optimizacija I Kompromisno Resenje, which translates as: Mul-
ticriteria Optimization and Compromise Solution (VIKOR) method [24], the 
Multi-Objective Optimisation by Ratio analysis plus the full Multiplicative form 
(MULTIMOORA) method [25]. An agent model for group ranking problems 
has also been developed by Fernandez and Olmedo in [26]. Their model is an 
extension of the concepts of concordance and discordance in the Elimination 
and Choice Translating Reality (ELECTRE) method. They modelled group pre-
ferences with fuzzy binary relations that are devoid of paradoxes with respect to 
the imprecise idea of group preferences. A lot more methods can be found in [5]. 

In the literature, several, yet different weight calculation procedures have been 
proposed to facilitate a fair and an objective distribution of weight among a set 
of criteria and usually a group of experts or decision-makers in diverse suitable 
decision-making methods. Among these are, namely [27], where Yue used an 
extended version of TOPSIS to calculate the relative weights of decision-makers; 
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the same author developed an approach by means of extended projection tech-
nique to establish the individual weight of decision makers [28]. Based on the in-
fluence of group relations between group members, French advanced a tech-
nique for calculating the relative weights of group members [29]. Xu by means 
of bodily’s method designed an approach for determining the relative weights of 
group members [30]. Khélifa and Martel developed an approach for the estab-
lishment of the weights of members of a group via individual outranking indices 
[31]. Macharis et al., in [12] adopted the AHP to among other things determine 
the weights of criteria. A novel approach based on Ordered Weighted Averaging 
(OWA) for weights determination in industrial decision making was proposed 
by Renaud et al., in [32]. More information on weight calcuation can be in [33]. 

So, as mentioned in the problem statement, we introduced in this paper the 
Borda rule to calculate the relative weights of a group of experts and the relative 
weights of criteria and then incorporate these two sets of values of weight into 
our novel group decision-making model. 

The remaining part of the article is partitioned as follows: Section 2 recalls the 
concept of the Borda count and describes the steps of the Borda rule; Section 3 
recalls some other relevant concepts, definitions and properties; Section 4 gives a 
brief description of the fuzzy TOPSIS group decision-making method; Section 5 
presents the algorithm of the extension of the paraconsistent many-valued simi-
larity method to group decision-making; Sections 6 presents a numerical exam-
ple; Section 7 discusses the outcome; and Section 8 concludes the article. 

2. The Borda Count or Rule 

The Borda rule was devised in 1770 by a French Mathematician and naval engi-
neer called Jean-Charles de Borda for the purpose of electing members in a fair 
manner to the French Academy of Sciences [4] [34] [35] [36]. It is adopted today 
by countries and organisations the world over for similar purposes. At the polls, 
every voter is given a ballot paper that contains the list of candidates and each of 
these candidates is given a number of marks that is equivalent to the number of 
fellow contenders that have been ranked below each candidate. In this case, the 
most preferred candidate will be the highest ranked candidate and he or she is 
given k − 1 marks, where k denotes the number of candidates. The lowest ranked 
candidate has no any other candidate below him or her and so he or she gets 0 
marks and the one next to the lowest candidate gets 1 mark and so on. The aim 
of the Borda count is to elect candidates generally endorsed by the electors in-
stead of those preferred by a majority. Hence, this voting system is more of con-
sensus than majority. Currently, this voting system is used by Slovenia to elect 
representatives of ethnic minorities in the National Assembly of Slovenia. A 
modified version of the system is also employed to select members of the par-
liament of Nauru. Finland too in the sixties to early seventies used another va-
riant of the Borda rule to elect candidates in party lists. Today, private organisa-
tions and competitions around the world adopt this system for various selection 
purposes.  
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Use of the Borda Approach to Calculate Weights of Criteria 

In fact, details of the Borda approach can be found in [5] [36]. For any finite set 
A containing k members or criteria,  

1) Rank the members or criteria ordinally as 1st, 2nd, 3rd,  , kth.  
2) Assign to the ranking-oder: 1st, 2nd, 3rd,  , kth the values  

1, 2, 3, , 0k k k k k− − − − =  respectively.  
3) a) Calculate the Borda score (FB) for each member or criterion of the set A 

by finding the sum of the separate values of each member or criterion. This can 
be done via the formula 

( ) ( ):B ib AF a number i aPb
∈

=∑ , 

where i denotes an individual member, iaPb  denotes the individual’s prefe-
rence of a over b; P denotes preference and a, b are any pair of members or crite-
ria from A. In short, the notation ( ): inumber i aPb  represents the value of the 
individual i preference of a over b, and that of ( ): ib A number i aPb

∈∑  denotes 
the sum of the values of all individuals’ preference of a to b.  

b) In case there is a tie in rank between two or more members or criteria, 
assign to each member or criterion in the tie the average of the values they 
would have been assigned if they were to occupy different ranks, and after this 
you then determine the value of FB as given in (3) (a) [36] [37].  

4) Refer to the FB values for the various members or criteria as the relative 
weights of the members or criteria of the set A. This means the member or crite-
rion with the highest FB value is regarded the most important member or crite-
rion and the least value of FB corresponds to the least important member or cri-
terion in the finite set A.  

Example 2.1. Assume 4 decision-makers have been asked to rank 6 experts, 
namely a, b, c, d, e and f according to their relative importance or weights, and 
in response the 4 decision-makers provided 4 rankings for the experts as shown 
in Table 1. 

Then, the values of k i−  for 1, ,i k=   and 6k =  are displayed in Table 
2. 
 
Table 1. The ranking order of experts. 

 DM1 DM2 DM3 DM4 

a 1st 1st 1st 1st 

b 2nd 2nd 2nd 2nd 

c 3rd 3rd 3rd 3rd 

d 4th 5th 6th 6th 

e 5th 4th 5th 5th 

f 6th 6th 4th 4th 
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Table 2. The values of k i−  and the FB for the ordinal ranking in Table 1. 

 DM1 DM2 DM3 DM4 FB 

a 5 5 5 5 20 

b 4 4 4 4 16 

c 3 3 3 3 12 

d 2 1 0 0 3 

e 1 2 1 1 5 

f 0 0 2 2 4 

 
Note that, the values of FB are obtained by summing the row values of each 

expert; and the weight of each expert say a denoted by ( )w a  is determined by 
the equation 

 ( ) ( ) .B

B

F a
w a

F
=
∑

 (2.1) 

Hence, the weights or importance of the experts: a, b, c, d, e and f are 0.33, 
0.27, 0.2, 0.05, 0.08, and 0.07 respectively.  

Example 2.2. This example illustrates an instance of a tie. Suppose 5 deci-
sion-makers have been asked to rank 5 experts, namely a, b, c, d and e based on 
their weights. To this end, the 5 decision-makers gave 5 rankings for the experts 
one by each decision-maker as shown in Table 3. 

So, the values of k i−  for 1, ,i k=   and 5k =  are displayed in Table 4. 
So, by Equation (2.1), we have the weights of the experts: a, b, c, d and e as 

0.24, 0.26, 0.20, 0.13, and 0.17 respectively.  
However, it is worthwhile to mention at this point that a major drawback of 

the Borda rule is the fact that it has not been able to satisfy the independence of 
irrelevant alternatives (IIA) condition as expressed in Arrow’s impossibility 
theorem; and this gives rise to rank reversal situations. IIA: given for instance 
three alternatives say a, b and c, the combined or overall ranking of a, b is said to 
be independent of irrelevant alternatives if the ranking of a, b does not change in 
the event that the third alternative, c, is either removed or added to this ranking 
[38]. A rank reversal, on the other hand, refers to the situation where by the rel-
ative order of two alternatives in a chain (ranking) reverses when an alternative 
is removed or added to the chain [39]. Nonetheless, except for theoretical con-
siderations, in practical applications, this consequence does not significantly 
undermine the validity of the rankings that emanate from Borda rule [39]. This 
is because if even rank reversals do occur they usually occur at the tail end of the 
ranking where the order of alternatives are greatly affected by the loss of infor-
mation due to the deletion or addition of an alternative.  

Example 2.3. Assume 5 decision-makers by means of the Borda method gen-
erated the following 5 rankings: one for each decision-maker for 4 alternatives 
say a, b, c, and d. 
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Table 3. The ranking order of experts. 

 DM1 DM2 DM3 DM4 DM5 

a 1st 2nd 1st 3rd 2nd 

b 2nd 1st 1st 2nd 3rd 

c 3rd 1st 3rd 1st 4th 

d 4th 3rd 2nd 1st 5th 

e 5th 4th 1st 2nd 1st 

 
Table 4. The values of k i−  (averaged in case of tie) and the FB for the ordinal ranking 
in Table 3. 

 DM1 DM2 DM3 DM4 DM5 FB 

a 4 2 3 0 3 12 

b 3 3.5 3 1.5 2 13 

c 2 3.5 0 3.5 1 10 

d 1 1 1 3.5 0 6.5 

e 0 0 3 1.5 4 8.5 

 

a b c d    

c a b d    

b d a c    

d c a b    

c d a b   , 

where   denotes preference. So, by Borda rule, we calculate the value of option 
a as a: 3 + 2 + 1 + 1 + 1 = 8. The values of the rest are 6 for b, 9 for c and 7 for d. 
Hence, the ranking of these four alternatives is 

c a d b   . 

Now, if alternative b is removed, then the resulting rankings are as follows: 

a c d   

c a d   

d a c   

d c a   

c d a  . 

Again by Borda count, we have the value of a to be 4, the value of c to be 6 and 
that of d to be 5. So, the ranking here stands as, c d a  . Thus, there is a rank 
reversal between options a and d since in the first ranking option a is preferred 
to d and in the second ranking option d is preferred to a. Moreover, this example 
amply demonstrates how Borda count violates the IIA requirement.  

Therefore, using the Borda rule, the removal or addition of an alternative to a 
set of alternatives can lead to rank reversals. 
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3. Preliminaries 

We recall some concepts, definitions and properties relevant to this study. 
However, for more details about these concepts, definitions and properties see 
[13].  

3.1. Paraconsistent Logic 

Paraconsistent logic is one of the logical ways by which classical logic can be ge-
neralised. Paraconsistent logic is a logical system that contravenes the principle 
of non contradiction. It is an inconsistency tolerant field of logic that does not 
out rightly reject contradictions, but instead accept and deal with them in a dis-
criminating way. Given three logical statements say α , α¬ , and β ; the the 
logical consequence relation   is said to be explosive if it holds that { },α α β¬  . 
Meaningful conclusions can be drawn from contradictions if only the conse-
quence relation does not explode into triviality. Unlike other logical systems 
such as classical logic and intuitionistic logic, paraconsistent logic does not ex-
plode, hence, it is the most appropriate logical framework to deal with inconsis-
tencies. The type of paraconsistent logic we deal with in this study is the one 
proposed by Belnap and was subsequently extended by Perny and Tsoukias and 
further advanced by Turunen in [11] into what is known as paraconsistent Pa-
velka style fuzzy logic [13]. According to Belnap, based on the evidence available 
to us, a statement say α can take one of the following four states: falsehood, con-
tradiction, unknown and truth but not always one of the usual two truth val-
ues—completely true or completely false. This means every statement α can be 
assigned a pair of values say ,a b  called the evidence couple, where the first 
component a indicates the degree of truth associated with α and the second 
component b indicates the degree of falsehood associated with α. Hence, the four 
states are defined as follows:  

1) α is true if we have evidence in support of α and no evidence against α. This 
state may be denoted by ( )T α , and so ( ) 1,0T α = .  

2) α is considered false if we have no evidence in support of α but we have 
evidence against α. This state may be denoted by ( )F α , so ( ) 0,1F α = .  

3) α is said to be contradictory if simultaneously we have evidence in support 
of α and we have evidence against α. This state is denoted by ( )C α , and 
( ) 1,1C α = .  
4) α is said to be unknown if we neither have evidence in support of α nor 

evidence against α. This is denoted by ( )U α , and ( ) 0,0U α = .  
This four valued logic by Belnap [40] was further developed and extended to 

cover the whole real unit interval [0, 1] by Perny and Tsoukias [41]. As a result, 
the definitions of the four states above were modified as follows  

 ( ) ( )min 1 , ,T b aα = −  (3.1) 

 ( ) ( )min ,1 ,F b aα = −  (3.2) 

 ( ) ( )max 0, 1 ,C a bα = + −  (3.3) 
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 ( ) ( )max 0,1 .U a bα = − −  (3.4) 

Following this extension, Turunen et al. [11] further developed it into para-
consistent Pavelka style fuzzy logic in which they associated the real unit interval 
[0, 1] with the Łukasiewicz algebraic structure which is an injective MV-algebra. 
Per this development, these four states were re-expressed by the authors as  

 ( ) *,T a bα = ∧  (3.5) 

 ( ) * ,F a bα = ∧  (3.6) 

 ( ) ,C a bα = 
 (3.7) 

 ( ) * *.U a bα =   (3.8) 

3.2. MV-Algebras 

MV-algebras are to fuzzy logic what Boolean algebras are to classical logic [42]. 
Chang [43] introduced the MV-algebras to prove algebraically the completeness 
theorem of the Łukasiewicz logic.  

Definition 3.1. [44] [45] An algebraic structure , , , ,0,1L L= ⊕ ∗
 with two 

constants 0, 1, two binary operations ⊕ ,   and a unary operation ∗  is 
called an MV-algebra if for all , ,x y z L∈  the following equations hold  

 , ,x y y x x y y x⊕ = ⊕ =   (3.9) 

 ( ) ( ) ( ) ( ), ,x y z x y z x y z x y z⊕ ⊕ = ⊕ ⊕ =   
 (3.10) 

 1, 0,x x x x∗ ∗⊕ = =
 (3.11) 

 1 1, 1 ,x x x⊕ = =  (3.12) 

 0 , 0 0,x x x⊕ = =  (3.13) 

 ( ) ( ),x y x y x y x y∗ ∗∗ ∗ ∗ ∗⊕ = = ⊕   (3.14) 

 , 1 0, 1 0 .x x∗∗ ∗ ∗= = =  (3.15) 

Given any MV-algebra L, we define the binary operation →  as x y x y∗→ = ⊕  
for all ,x y L∈ . Moreover, if we equip L with the binary relation ≤  defined as 
x y≤  if and only if 1x y x y∗→ = ⊕ = , then the relation ≤  is an order rela-

tion on L where 1 and 0 are the top and the bottom elements, respectively in L. If 
L is further equipped with the binary operations ∨  and ∧ , then L becomes a 
lattice where for any elements ,x y L∈ ,  

 ( ) ,x y x y y∨ = → →  (3.16) 

 ( ) ,x y x y
∗∗ ∗∧ = ∨  (3.17) 

and the bi-residuum operation ↔  when associated with L is defined as  

 ( ) ( ).x y x y y x↔ = → ∧ →  (3.18) 

Hence, in any MV-algebra L, the following additional equations hold  

 , ,x y y x x y y x∧ = ∧ ∨ = ∨  (3.19) 
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 ( ) ( ) ( ) ( ), ,x y z x y z x y z x y z∧ ∧ = ∧ ∧ ∨ ∨ = ∨ ∨  (3.20) 

 ( ) ( ) ( ) ( ) ( ) ( ), .x y z x y x z x y z x y x z⊕ ∧ = ⊕ ∧ ⊕ ∨ = ∨  
 (3.21) 

A typical example of an MV-algebra is the Łukasiewicz structure also called 
the standard MV-algebra [13]. This structure is defined on the real unit interval 
[0, 1] and has a natural order and given any two elements ,x y L∈  in the 
Łukasiewicz structure the corresponding operations, namely ⊕ ,  , ∗ , ∨ , 
∧  and →  are defined as follows 
 ( )5 min ,1 ,x y x y⊕ = +  (3.22) 

 ( )max 0, 1 ,x y x y= + −
 (3.23) 

 1 ,x x∗ = −  (3.24) 

 ( )max , ,x y x y∨ =  (3.25) 

 ( )min , ,x y x y∧ =  (3.26) 

 ( )min 1,1 .x y x y→ = − +  (3.27) 

3.3. Injective MV-Algebras 

[44] Any MV-algebra that is described as injective must be complete and divisi-
ble.  

Definition 3.2. An injective MV-algebra is an MV-algebraic structure  
, , , ,0,1L L= ⊕ ∗

 in which L is both complete as a lattice and divisible [13].  
We say that L is complete if it is closed with respect to the infimum and su-

premum of each subset of L. Every complete MV-algebra is infinitely distributive. 
This means that in every complete MV-algebra the following two conditions 
hold [11]:  

 ( ) ,i i
i i

x y x y
∈Γ ∈Γ

∧ = ∧∨ ∨  (3.28) 

 ( )i i
i i

x y x y
∈Γ ∈Γ

∨ = ∨∧ ∧  (3.29) 

for any x L∈ , and { }|iy i L∈Γ ⊆ . This implies in a complete MV-algebra 
another adjoint couple ,∧ ⇒  can be defined with another residual operation 
⇒  defined by  

 { }| ,x y z x z y⇒ = ∧ ≤∨  (3.30) 

and 0x x= ⇒  defines what is called a weak complementation in a complete 
MV-algebra [11]. The Łukasiewicz structure L is a complete MV-algebra. 

On the other hand, L is divisible if for every non-zero element x in L and 
n∈  there exists an element y in L called non-zero n-divisor of x so that 
ny x=  and ( )( )1x n y y

∗∗ ⊕ − = , where ( )1ky k y y= − ⊕  (i.e., 
ky y y= ⊕ ⊕  (k times)) for all k∈ . Every n-divisor is unique. Any injec-
tive MV-algebra L is structurally isomorphic to a collection say   of fuzzy sets 
[44]. The Łukasiewicz structure above is an injective MV-algebra. Another ex-
ample of an injective MV-algebra which forms the bedrock of this study is the 
structure , , ,0⊥= ⊕  , where   is a set of 2-by-2 matrices generated by 
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pairs of evidence couples ,a b  of an injective MV-algebra L ( ,a b L L∈ × ). 
The associated binary operation ⊕  is defined for any evidence matrices M, N 
in   by  

( ) ( ) ( ) ( )
( ) ( ) ( )

* *

* * * * * *

,
( )

a b a b p q p q
M N

a b a b p q p q

a p b q a p b q

a p b q a p b q

∗

∗ ∗ ∗

   ∧ ∧
⊕ = ⊕   

∧ ∧   
 ⊕ ∧ ⊕
 =
 ⊕ ⊕ ∧ 

 

 

  

  

 

where  
* *

* * * * * *, .
a b a b p q p q

M N
a b a b p q p q
   ∧ ∧

= =   
∧ ∧   

 

 

 

Note that the evidence matrices M, N are obtained from the evidence couples 
,a b , ,p q , respectively and so the evidence couple for the evidence matrix 

M N⊕  is ,a p b q⊕ 
. For any ,a b L L∈ × , the evidence matrix M ⊥  is 

derived from the evidence couple ,a b∗ ∗  and is defined by  
* * *

* .a b a bM
a b a b

⊥  ∧
=  

∧ 





 

Finally, the element ∈0  is the bottom element of   and is generated 

by the couple 0,1  and the corresponding matrix is 
1 0
0 0
 
 
 

. The element 

∈1  is the top element of   and is generated by the evidence couple 

1,0  and the corresponding evidence matrix is 
0 0
0 1
 
 
 

. 

Proposition 1. [11] If L is an injective MV-algebra and the evidence couple 
,a b  is in L L×  then, the set of all evidence couples in L L×  induces a 

corresponding set of evidence matrices   written as  
*

* * * | , ,
a b a b

a b L L
a b a b

  ∧ = ∈ ×  
∧   






 

It is important to add that there is a bijective relation between the evidence 
couples and the corresponding evidence matrices. This means given any two 
evidence matrices denoted by M, N, M N=  provided a p=  and b q= .  

3.4. Fuzzy Similarity Relations 

Details of the ideas presented in this subsection are all in [13]. 
Let us suppose that X is a non void set and A is an injective MV-algebra. Then, 

the binary operation S defined on X is a fuzzy similarity relation if for any 
, ,x y z X∈ , S satisfies the following three equations  

 ( ), 1,S x x =  (3.31) 

 ( ) ( ), , ,S x y S y x=  (3.32) 

 ( ) ( ) ( ), , , .S x y S y z S x z≤
 (3.33) 
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Thus, S is reflective, symmetrical and weakly transitive as found in Equations 
(3.31), (3.32) and (3.33), respectively. Besides, S is a fuzzy equivalence relation 
and so it is a generalisation of the equivalence relation in standard logic. Moreo-
ver, in any residuated lattice L, the binary operation ↔  is defined for any 

,x y L∈  by Equation (3.18). 
The binary operation ↔  satisfies the following 

 1,x x↔ =  (3.34) 

 ,x y y x↔ = ↔  (3.35) 

 ( ) ( ) ( ) ,x y y z x z↔ ↔ ≤ ↔
 (3.36) 

 1 .x x↔ =  (3.37) 

Hence, the operation ↔  is reflexive as seen from equation (3.34), symmetric 
as seen from (3.35) and weakly transitive as found in (3.36). A fuzzy subset B  
is an ordered pair ( ), BX µ



, where X is a set of elements and :B X Lµ →


 is a 
function referred to as a membership function. A fuzzy subset B  with the 
membership function Bµ 

 of any set X measures the degree to which an ele-
ment x X∈  is an element of B . Hence, each fuzzy subset B  with the mem-
bership function Bµ 

 defined on a non void set X generates a fuzzy similarity 
relation S on the set X through  

 ( ) ( ) ( ), for any , .B B BS x y x y x y Xµ µ= ↔ ∈
  

 (3.38) 

Especially, if the fuzzy subset B  is given and A is the Łukasiewicz structure 
on the interval [0, 1], then for any ,x y X∈ , 

 ( ) ( ) ( ), 1 .B B BS x y x yµ µ= − −
  

 (3.39) 

In Multi-Criteria Decision Making, each fuzzy subset stands for a criterion. 
This means a five-criteria decision-making problem has five fuzzy subsets. The 
elements of X constitute the set of decision alternatives in the decision problem. 
The value of ( ),BS x y



 shows the degree to which any two elements x, y in X are 
similar in relation to the fuzzy subset B . Therefore, if the element y in X has a 
full membership grade of 1 in B , then our interest will be to calculate the de-
gree to which each element other than y in X is identical to y in B . Hence, for 
each element x X∈ , it holds that  

 ( ) ( ) ( ) ( ) ( ), 1 .B B B B BS x y x y x xµ µ µ µ= ↔ = ↔ =
    

 (3.40) 

So, having k criteria and m decision alternatives in X in a given decision- 
making problem implies we have k fuzzy subsets and k fuzzy similarity relations 

( ),jS x y , 1, ,j k=   covering all the m alternatives in X. Hence, in an injective 
MV-algebra, the total fuzzy similarity relation denoted by ( ),S x y  between 
every two elements or alternatives in X over all the k fuzzy similarity relations 

( ),jS x y  is calculated as  

 ( ) ( ) ( )1 , ,
, ,kS x y S x y

S x y
k k

= ⊕ ⊕  (3.41) 

where the binary operation ⊕  is the MV-addition operation and the expres-
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sion 
( ),jS x y
k

 is the k-divisor of every similarity relation value ( ),jS x y , 

1, ,j k=  . 

Particularly, if A is the Łukasiewicz structure, then,  

 ( ) ( )
1

1, , .
k

j
j

S x y S x y
k =

= ∑  (3.42) 

furthermore, if different weight values are given to the fuzzy sets or criteria, then 
the total fuzzy similarity relation is derived through the weighted mean  

 ( ) ( ) ( )1 1 , ,
, ,k kw S x y w S x y

S x y
W W

= ⊕ ⊕  (3.43) 

where 
1

k
jjW w

=
= ∑ , and jw ∈ . Again, if A is the Łukasiewicz structure then,  

 ( ) ( )
1

1, , .
K

j j
j

S x y w S x y
W =

= ∑  (3.44) 

As an illustration, suppose X is the set of decision alternatives over kcriteria 
which are expressed in fuzzy subsets as 1, , kB B 


. Let us further assume that 

each jB , 1, ,j k=   contains y as an ideal solution. That is, ( ) 1
jB yµ =


. Then, 
to measure the similarity of each decision alternative x X∈  to y, we calculate 
the magnitude of the total similarity between x and y via the weighted mean  

 ( ) ( )
1

1, ,
j

k

j B
j

S x y w x
W

µ
=

= ∑ 

 (3.45) 

where ( )
jB xµ


 is the membership grade of x in the fuzzy subset jB , 
1, ,j k=  .  

4. Fuzzy TOPSIS Method for Group Decision-Making  

Suppose a group of r experts with varied weights, kw , for 1, ,k r=   wants to 
rank from the best to the worst a set of m options denoted by { }| 1, ,iA A i m= = 

 
in relation to a set of n criteria denoted by { }| 1, ,jC C j n= =   and a set of 
weight of criteria denoted by { }| 1, ,jW w j n= =  . 

The steps involved in the implementation of the fuzzy TOPSIS group deci-
sion-making method to address a decision problem with r-decision makers are 
[20] [46]  

Step 1. Construct the decision matrices denoted by kD , 1, ,k r=   for the 
m alternatives over the n criteria:  

 

11 12 1

21 22 2

1 2

k k k
n

k k k
k n

k k k
m m mn

x x x
x x x

D

x x x

 
 
 =  
 
  





   



 (4.1) 

Step 2. Normalise each decision matrix kD  to get the matrix denoted by kR  
using the formula:  

( )2

1

.
k
ijk

ij n
k
ij

i

x

x
=

=

∑
r  
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Thus,  

 

11 12 1

21 22 2

1 2

k k k
n

k k k
k n

k k k
m m mn

 
 
 =  
 
  

r r r
r r r

R

r r r





   



 (4.2) 

Step 3. Construct the weighted normalised matrix denoted by kV  from each 
decision matrix kR  by multiplying each column in kR  by the weight ( jw ) of 
the corresponding criterion. That is,  

 

1 11 2 12 1

1 21 2 22 2

1 1 2 2

k k k
n n

k k k
k n n

k k k
m m n mn

w w w
w w w

V

w w w

 
 
 =  
 
  

r r r
r r r

r r r





   



 (4.3) 

Note that in our method, we are dealing with two types of weight, namely the 
weights of criteria and experts’ weights and so this step must be treated with 
caution.  

Step 4. Construct an aggregated collective matrix D of the individual weighted 
normalised matrices through the weighted mean  

1

1 .
r

k
ij j ij

k
x w

r =

= ∑ r  

 

11 12 1

21 22 2

1 2

n

n

m m mn

x x x
x x x

D

x x x

 
 
 =
 
 
 





   



 (4.4) 

Step 5. Determine the ideal solution A+  and the negative-ideal solution A−  
which are defined as  

 ( ) ( ){ } { }1max : , min : ; 1, , , , .ij ij nii
A D j J D j J i m D D+ + +′= ∈ ∈ = =   (4.5) 

and  

 ( ) ( ){ } { }1min : , max : ; 1, , , , ,ij ij ni i
A D j J D j J i m D D− − −′= ∈ ∈ = =   (4.6) 

where { }1, , | is a maximising criterionJ j n j= = 
 and  

{ }1, , | is a minimising criterionJ j n j′ = = 
. 

Step 6. Calculate the separation measures as follows:  
The ideal separation and the negative ideal separation denoted by iS +  and 

iS − , respectively are defined by  

( )2

1
, for 1, , .

n

i ij j
j

S D D i m+ +

=

= − =∑   

( )2

1
, for 1, , .

n

i ij j
j

S D D i m− −

=

= − =∑   

Step 7. Compute the relative closeness to the ideal solution as:  
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 ,i
i

i i

SC
S S

−
∗

+ −=
+

 (4.7) 

where 0 1iC∗≤ ≤  and 1, ,i m=  .  
Step 8. Establish a linear order for the alternatives in A according to the value 

of iC∗ , 1, ,i m=  .  

5. An Algorithm of the Group Decision Model 

To resolve the decision problem as given in Section 4, we first of all partition the 
set C into two subsets denoted by C+  and C−  such that C C+ −∩ =∅  and 
C C C+ −∪ = . The set C+  is the set of the pros criteria and the set C−  is the 
set of the cons criteria. Similarly, the weights are divided into two parts so that 

jW w+ = ∑  is the sum of the weights jw  of all criteria in C+ , and jW w− = ∑  
is the sum of the weights jw  of all criteria in C− .  

Furthermore, we used the weighted average or the weighted mean to combine 
the values of group decision tables to derive the final outcomes that represent 
the conclusive decision of the whole group. Hence, in conformity with the 
weighted average approach, the steps involved in applying PMVS to group deci-
sion scenarios are as follows,  

Step 1. Determine the weight of every expert and every criteria by means of 
the Borda’s approach as explained in the preceded section. 

Step 2. From the decision table of each expert, determine the global strength, 

ia , from the pros criteria and the global weakness, ib , from the cons criteria for 
each alternative iA  in line with Equation (3.45). This means  

 ( )
1

1 ,
j

n

i j C i
j

a w A
W

µ+
=

= ∑  (5.1) 

where jC C+∈ ; 1, ,j n=   and 1, ,i m=  . Similarly,  

 ( )
1

1 ,
j

n

i j C i
j

b w A
W

µ−
=

= ∑  (5.2) 

where jC C−∈ .  
Step 3. By denoting the sum of the weights of the r experts by EW , calculate 

the aggregated global strength ( ), g
AG iS x y a=  and the aggregated global weak-

ness g
ib  for each alternative iA  via the formula  

 
1

1 ,
k

r
g
i k i

kE

a w a
W =

= ∑  (5.3) 

where 1, ,k r=  ; 1, ,i m=   and 
ki

a  is the global strength of iA  as deter-
mined by the kth expert. The same way  

 
1

1 ,
k

r
g
i k i

kE

b w b
W =

= ∑  (5.4) 

where 
ki

b  is the corresponding global weakness for the alternative iA  as de-
termined by the kth expert.  

Step 4. Generate from every aggregated evidence couple ( ),g g
i ia b  for the op-
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tion iA  a corresponding aggregated evidence matrix  

( )
( ) ( ) ( )

*

* * *i

g g g g
i i i i

AG
g g g g
i i i i

a b a b
M

a b a b

 ∧ =  
∧  





 

so that for 1, ,i m=  ; ( )*g g
i iF a b= ∧ ; g g

i iK a b= 
; ( ) ( )* *g g

i iU a b=   and 

( )*g g
i iT a b= ∧ .  

Step 5. Regard the set { }: is an aggregated evidence matrixAG AGM M=  
as an injective MV-algebra such that any given pair of options kα , lα  can be 
compared by means of their corresponding aggregated evidence matrices 

kAGM , 
and 

lAGM . In this sense, if 
l kAG AGM M≤ , then option kα  has satisfied the 

given criteria better than option lα . However, there may be cases where the 
evidence matrices 

kAGM  and 
lAGM  are incomparable which we represent by 

k lAG AGM M . This drawback can be fixed through the following algebraic 
means. It holds that  

l kAG AGM M≤  if and only if 
l k l kAG AG AG AGM M M M⊥ ⊕ = ⇒ = 1 , 

where 

0 0
0 1
 

=  
 

1  

is generated by the couple 1,0 .  
Now, given the evidence matrix 

l kAG AGM M⊥ ⊕ , denote the falsehood value 
which is the value in the first row, first column by ( )l kAG AGF M M⊥ ⊕ ; the con-
tradictory value which is the value in the first row, second column by 

( )l kAG AGK M M⊥ ⊕ ; the unknown value which corresponds to the value in the 
second row, first column by ( )l kAG AGU M M⊥ ⊕ ; and the truth value which cor-
responds to the value in the second row, second column by ( )l kAG AGT M M⊥ ⊕ . 
Hence, in the evidence matrix 1  above, ( ) 0

l kAG AGF M M⊥ ⊕ = ;  

( ) 0
l kAG AGK M M⊥ ⊕ = ; ( ) 0

l kAG AGU M M⊥ ⊕ =  and ( ) 1
l kAG AGT M M⊥ ⊕ = . 

Step 6. Therefore, compare any two options, kα , lα  by means of their cor-
responding aggregated matrices 

kAGM , and 
lAGM  as follows,  

1) if 
l kAG AGM M≤ , then option kα  has satisfied the given criteria more than 

option lα . Hence, kα  is better than lα ,  
2) if the matrices 

kAGM , and 
lAGM  are incomparable written here as 

k lAG AGM M , then kα  is better than lα  if  

( ) ( )l k k lAG AG AG AGT M M T M M⊥ ⊥⊕ > ⊕ , 
3) if 

k lAG AGM M= , then kα , lα  are as good as each other, and  
4) if 

kAGM , and 
lAGM  are incomparable but  

( ) ( )l k l kAG AG AG AGT M M T M M⊥ ⊥⊕ = ⊕ , then kα , lα  are weakly equal.  
Details of how Step 6 is applied are in the following note. 
Note: suppose that the evidence matrix 

lAGM  is generated by the evidence 
couple ,a b , and the evidence matrix 

kAGM  is induced by the evidence 
couple ,p q , where [ ] [ ], , , 0,1 0,1a b p q ∈ × . Based on the above notations 
for the four components of 

l kAG AGM M⊥ ⊕ , we can logically compare any two al-
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ternatives kα , lα  using their evidence matrices 
kAGM , 

lAGM , respectively. 
In this regard, it holds that 

l kAG AGM M≤  if and only if a p≤ , q b≤ . This 
means there is more evidence in favour of kα  than there is in favour of lα  
and there is less evidence against kα  than there is against lα . Similarly, from 

l kAG AGM M≤  it holds that p a∗ ∗≤ , b q∗ ∗≤ . Therefore,  

( ) ( ) ( )
( ) ( ) ( )1

l k

k l

AG AG

AG AG

T M M a p b q

p a q b T M M

∗⊥ ∗ ∗

∗∗ ∗ ⊥

⊕ = ⊕ ∧

= ≥ ⊕ ∧ = ⊕





. However, if 
k lAG AGM M , then  

the decision problem in question is a more complicated one and we surmount it 
and any other similar problems through Step 6.  

Alternatively, we can solve such problems through Definition 5.1 and Theo-
rem 2 [13].  

Definition 5.1. Let α  and β  be two alternatives represented sequentially 
by the evidence matrices M, N which in turn are induced by the evidence 
couples ,a b , ,x y  respectively. Then, β  dominates over α , denoted by 
α β  if 1) M N≤  or 2) M N  but ( ) ( )T M N T N M⊥ ⊥⊕ > ⊕ . Specif-
ically, if M N= , then α , β  are equally good and it is denoted by α β≡ . If 
M N , but ( ) ( )T M N T N M⊥ ⊥⊕ = ⊕ , then α , β  are weakly equally 
good and it is denoted by wα β≡  [13].  

Theorem 2. The relation ≡  is an equivalence relation on the set of alterna-
tives while that of w≡  is not. The relation   defines a quasi-order on the set 
of alternatives [13].  

Proof. See [13].  
To illustrate the process of ranking via Step 6 or via Definition 5.1 and Theo-

rem 2, we take a look at the following two examples.  
Example 5.1. Let us assume that the aggregated evidence matrix for alterna-

tive 1A  is 
1AGM  and that of 2A  is 

2AGM . If matrix 
1AGM  is generated by 

the evidence couple 0.6,0.3  and matrix 
2AGM  is generated by the couple 

0.9,0.2 , what is the dominant alternative between 1A  and 2A ?  
Solution 5.1. If the evidence couple for 

1AGM  is 0.6,0.3 , then the evi-
dence couple for 

1AGM ⊥  is 0.6 ,0.3 0.4,0.7∗ ∗ =  and the evidence couple for 
the evidence matrix 

1 2AG AGM M⊥ ⊕  is 0.4 0.9,0.7 0.2 1,0⊕ =
. So, in terms 

of matrices,  

1 2

0 01 0 1 0
.

0 11 0 1 0AG AGM M
∗

⊥
∗ ∗ ∗

 ∧  
⊕ = =   ∧   





 

By Definition 4.1 and Theorem 4.1, ( )1 2
1AG AGT M M⊥ ⊕ = , thus 

1 2AG AGM M≤  
and so alternative 2A  dominates 1A .  

Example 5.2. Let us assume that the aggregated evidence matrix for alterna-
tive 1A  is 

1AGM  and that of 2A  is 
2AGM . If matrix 

1AGM  is induced by the 
couple 0.7,0.2  and 

2AGM  by the couple 0.9,0.3 , what is the dominant 
alternative between 1A  and 2A ?  

Solution 5.2. Given that the evidence couple for 
1AGM  is 0.7,0.2 , the 

evidence couple for 
1AGM ⊥  is 0.3,0.8  and the evidence couple for the matrix 
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1 2AG AGM M⊥ ⊕  is 0.3 0.9,0.8 0.3 1,0.1⊕ =
. So,  

1 2

0 0.1 0 01 0.1 1 0.1
,

0 0.9 0 11 0.1 1 0.1AG AGM M
∗

⊥
∗ ∗ ∗

 ∧    
⊕ = = ≠     ∧     





 

hence, 
1 2AG AGM M . Conversely, the matrix 

2AGM ⊥  is obtained from the 
couple 0.9 ,0.3 0.1,0.7∗ ∗ = . Therefore, the evidence couple for the matrix 

2 1AG AGM M⊥ ⊕  is 0.1 0.7,0.7 0.2 0.8,0⊕ =
 and  

2 1

0 0 0 00.8 0 0.8 0
.

0.2 0.8 0 10.8 0 0.8 0AG AGM M
∗

⊥
∗ ∗ ∗

 ∧    
⊕ = = ≠     ∧     





 

Thus, 
2 1AG AGM M . This means 

1AGM  and 
2AGM  are incomparable  

(
1 2AG AGM M ). However, ( ) ( )1 2 2 1

0.9 0.8AG AG AG AGT M M T M M⊥ ⊥⊕ = > = ⊕ . 
Hence, 2A  dominates 1A .  

6. A Case Study: Ranking Energy Production Methods in  
Ghana 

The group decision-making model introduced in this paper has been applied to 
the selection of the optimal energy mix from eight energy sources for Ghana. 
The eight available energy sources for the country are expressed in the set X: 

{ }hydro,wind,solar,naturalgas,nuclear,biomass,oil,coalX = . 

In this particular group decision-making problem, four energy experts from 
the ministry of energy have evaluated separately the power generation potentials 
of each one of the eight sources of energy vis-à-vis 26 criteria—11 pros criteria, 
and 15 cons criteria. So, in all, we have 4 different data sets one from each of the 
four experts. In addition, to be able to determine the relative weight of each of 
the four experts, three supra chief executive officers who have worked with these 
four experts at various time periods were tasked to rank the four experts ordi-
nally based on every expert’s level of experience, knowledge, skills, perception, 
judgement and other relevant apptitudes in connection with this field. Further-
more, to determine and factor into the model the relative importance or weights of 
the given 26 criteria, the four experts were tasked to rank the 26 criteria ordinally. 

The ordinal rankings of these experts by the 3 CEOS are in Table 5; the rank-
ings of the pros criteria and the cons criteria inline with their relative impor-
tance by the four experts are shown in Table 6, and Table 7 respectively. The 
corresponding Borda’s score for the Table 5, Table 6 and Table 7 are Table 8, 
Table 9 and Table 10. Also, the short forms, HYD, WIN, SOL, GAS, NUC, BIO, 
OIL and COA have been sequentially used to represent the 8 energy alternatives 
in X. The symbol iα  or α  too denotes members of X.  

Recall that the row total gives the weight of each expert.  
Eeach criterion induces a fuzzy subset of X. Hence, we have 26 fuzzy subsets 

which consist of 11 pros and 15 cons. Tables 11-18 show the degree to which 
every option Xα ∈  satisfies the criteria per the opinion of each of the four ex-
perts. 
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Table 5. Odering of 4 energy experts by 3 CEOS. 

Experts CEO 1 CEO 2 CEO 3 

Expert 1 1st 2nd 1st 

Expert 2 3rd 4th 4th 

Expert 3 4th 1st 3rd 

Expert 4 2nd 3rd 2nd 

 
Table 6. The rankings of the Pros criteria by the 4 experts. 

Criteria Expert 1 Expert 2 Expert 3 Expert 4 

1. Availability 1st 2nd 3rd 2nd 

2. Energy storage versatility 5th 5th 2nd 7th 

3. Energy storage capability 5th 4th 2nd 5th 

4. Self-sufficiency and reliability 2nd 2nd 2nd 2nd 

5. Energy yield 1st 1st 2nd 1st 

6. Renewable 1st 1st 4th 2nd 

7. Job creation 3rd 2nd 2nd 6th 

8. Other benefits 
(including those from by-products) 

6th 4th 2nd 7th 

9. Plant’s versatility/flexibility 7th 6th 1st 5th 

10. Life span 4th 3rd 1st 4th 

11. Technological impact 3rd 4th 1st 3rd 

 
Table 7. The rankings of the cons criteria by the 4 experts. 

Criteria Expert 1 Expert 2 Expert 3 Expert 4 

1. Energy outsourcing 6th 4th 4th 3rd 

2. Green house gases emission 1st 1st 5th 1st 

3. Rainfall fluctuation 3rd 2nd 3rd 2nd 

4. Ecosystem and livelihood 2nd 1st 3rd 4th 

5. Pollution 2nd 2nd 4th 3rd 

6. Waste management 3rd 3rd 1st 4th 

7. Capital cost 2nd 1st 2nd 1st 

8. Operational cost 2nd 2nd 1st 2nd 

9. Price volatility 4th 3rd 1st 4th 

10. Human consequence 3rd 2nd 3rd 2nd 

11. Inter and/or intra boundary disputes 5th 5th 5th 4th 

12. Civil unrest or social disorder 5th 6th 3rd 5th 

13. Location 6th 7th 4th 7th 

14. Land mass or space consumption 6th 8th 5th 6th 

15. Political interference 7th 6th 1st 7th 
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Table 8. Corresponding borda’s score of experts. 

Experts CEO 1 CEO 2 CEO 3 FB (weight) 

Expert A 3 2 3 8 

Expert B 1 0 0 1 

Expert C 0 3 1 4 

Expert D 2 1 2 5 

    Sum of FB (weights): 18 

 
Table 9. Corresponding borda’s score. 

Criteria Expert 1 Expert 2 Expert 3 Expert 4 
FB 

(weight) 

1. Availability 9 7 1 8 25 

2. Energy storage versatility 2.5 1 4.5 0.5 8.5 

3. Energy storage capability 2.5 3 4.5 3.5 13.5 

4. Self-sufficiency and reliability 7 7 4.5 8 26.5 

5. Energy yield 9 9.5 4.5 10 33 

6. Renewable 9 9.5 0 8 26.5 

7. Job creation 5.5 7 4.5 2 19 

8. Other benefits 1 3 4.5 0.5 9 

9. Plant’s versatility/flexibility 0 0 9 3.5 12.5 

10. Life span 4 5 9 5 23 

11. Technological impact 5.5 3 9 6 23.5 

     
Sum of 

weights: 220 

Note: the row total gives the weight of each criterion. 
 
Table 10. Borda’s Score of the cons criteria. 

Criteria Expert 1 Expert 2 Expert 3 Expert 4 
FB 

(weight) 

1. Energy outsourcing 2 5 4 8.5 19.5 

2. Green house gases emission 14 13 1 13.5 41.5 

3. Rainfall fluctuation 8 9.5 7.5 11 36 

4. Ecosystem and livelihood 11.5 13 7.5 5.5 37.5 

5. Pollution 11.5 9.5 4 8.5 33.5 

6. Waste management 8 6.5 12.5 5.5 32.5 

7. Capital cost 11.5 13 10 13.5 48 

8. Operational cost 11.5 9.5 12.5 11 44.5 
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Continued 

9. Price volatility 6 6.5 12.5 5.5 30.5 

10. Human consequence 8 9.5 7.5 11 36 

11. Inter and/or intra boundary disp. 4.5 4 1 5.5 15 

12. Civil unrest or social disorder 4.5 2.5 7.5 3 17.5 

13. Location 2 1 4 0.5 7.5 

14. Land mass or space consumption 2 0 1 2 5 

15. Political interference 0 2.5 12.5 0.5 15.5 

     
weight 

sum: 420 

 
Table 11. Pros: Membership functions determined by expert A. 

 HYD WIN SOL GAS NUC BIO OIL COA 

1Pµ  1 0.5 0.75 0.75 0.25 0.75 0.75 0.25 

2Pµ  1 0.25 0.5 0.75 0.25 0.5 0.5 0.25 

3Pµ  1 0.25 0.5 0.75 0.25 0.75 0.75 0.5 

4Pµ  0.5 0.75 0.5 0.75 0.25 0.75 0.75 0.25 

5Pµ  1 0.5 0.25 0.5 0.75 0.5 0.5 1 

6Pµ  1 1 1 0 0.25 1 0 0 

7Pµ  1 0.75 0.5 0.75 0.75 0.75 1 1 

8Pµ  1 0.5 0.5 0.75 0.25 0.75 1 1 

9Pµ  0.75 0.75 0.75 0.75 0.25 0.75 0.5 0.5 

10Pµ  1 0.75 0.5 0.75 0.75 0.75 0.5 1 

11Pµ  0.75 0.75 0.75 0.75 0.5 0.75 0.75 0.75 

 
Table 12. Cons: Membership functions determined by expert A. 

 HYD WIN SOL GAS NUC BIO OIL COA 

1Cµ  0.75 0.5 0.5 0.75 0.5 0.5 0.5 0.5 

2Cµ  0 0 0 0.25 0.75 0.25 0.75 0.75 

3Cµ  0.75 0.75 0.75 0.5 0.5 0.5 0.5 0.5 

4Cµ  0.75 0.5 0.75 0.75 1 0.5 0.75 0.75 

5Cµ  0 0.25 0.25 0.5 0.75 0.5 0.75 0.75 

6Cµ  0 0.25 0.25 0.25 0.75 0.5 0.25 0.75 

7Cµ  0.75 0.75 0.75 0.75 0.75 0.25 0.75 0.75 
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8Cµ  0 0 0 0.5 0.25 0.5 0.5 0.5 

9Cµ  0 0 0 0.75 0.25 0.5 0.75 0.5 

10Cµ  0.75 0.5 0.5 0.75 1 0.5 0.75 0.5 

11Cµ  0.75 0.5 0.5 0.75 0.5 0.5 0.75 0.5 

12Cµ  0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 

13Cµ  0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 

14Cµ  0.75 0.5 0.75 0.5 0.25 0.5 0.5 0.5 

15Cµ  0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 

 
Table 13. Pros: Membership functions determined by expert B. 

 HYD WIN SOL GAS NUC BIO OIL COA 

1Pµ  0.75 0.25 1 0.75 0.75 0.75 0.75 0.25 

2Pµ  0.75 0.25 0.25 0.75 0.5 0.75 0.25 0.25 

3Pµ  0.75 0.25 0.25 0.75 0.75 0.5 0.75 0.5 

4Pµ  0.5 0.5 0.75 0.75 0.5 0.75 0.75 0 

5Pµ  1 0.5 0.5 0.75 0.75 0.5 0.75 0.75 

6Pµ  1 1 1 0 0 1 0 0 

7Pµ  0.75 1 0.5 0.5 0.25 0.5 0.5 0.25 

8Pµ  1 0.25 0.25 0.5 0.25 0.5 0.25 0.25 

9Pµ  0.75 0.25 0.25 0.25 0.25 0.25 0.25 0.25 

10Pµ  0.75 0.75 0.5 0.75 0.25 0.75 0.5 0.25 

11Pµ  1 0.5 0.5 0.25 0.5 0.5 0.5 0.25 

 
Table 14. Cons: Membership functions determined by expert B. 

 HYD WIN SOL GAS NUC BIO OIL COA 

1Cµ  0.75 0.25 0.25 0.5 0.25 0.25 0.5 1 

2Cµ  0 0 0 0.75 0.25 0.25 0.75 0.75 

3Cµ  0.75 0.5 0.75 0 0 0.5 0 0 

4Cµ  0.75 0.5 0.25 0.75 0.75 0.25 0.75 0.5 

5Cµ  0 0.25 0.25 0.75 1 0.25 0.75 0.75 

6Cµ  0 0.25 0.25 0.5 0.75 0.75 0.5 0.5 
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7Cµ  0.5 0.75 0.75 0.75 0.5 0.75 0.75 0.75 

8Cµ  0.25 0.5 0.75 0.75 0.5 0.5 0.75 0.75 

9Cµ  0 0.25 0.5 0.75 0.75 0.25 0.75 0.75 

10Cµ  0.75 0.25 0.5 0.5 0.75 0.25 0.5 0.5 

11Cµ  0.5 0.25 0.5 0.75 0.5 0.25 0.75 0.25 

12Cµ  0.25 0 0.25 0.75 0.5 0.25 0.75 0.5 

13Cµ  0.25 0.75 0.5 0.5 0.5 0.5 0.5 0.25 

14Cµ  0.25 0.5 0.5 0.5 0.5 0.75 0.5 0.5 

15Cµ  0.25 0.25 0.25 0.75 0.5 0.5 0.75 0.25 

 
Table 15. Pros: Membership functions determined by expert C. 

 HYD WIN SOL GAS NUC BIO OIL COA 

1Pµ  1 0.5 1 0.75 0.5 1 0.75 0 

2Pµ  0.75 0.5 0.25 0.25 0.5 0.75 0.75 0.25 

3Pµ  1 0.5 0.5 0.75 0.5 0.75 0.75 0.25 

4Pµ  1 0.5 0.75 0.75 0.25 0.75 0.75 0.25 

5Pµ  0.75 0.5 0.5 0.75 0.5 0.75 0.5 0.5 

6Pµ  1 1 1 0 0 1 0 0 

7Pµ  0.75 0.25 0.5 0.5 0.25 0.5 0.5 0.25 

8Pµ  0.75 0.25 0.25 0.25 0.25 0.5 0.5 0.25 

9Pµ  0.5 0.25 0.25 0.25 0.25 0.5 0.25 0.25 

10Pµ  0.75 0.5 0.5 0.25 0.5 0.75 0.25 0.25 

11Pµ  0.5 0.25 0.5 0.25 0.25 0.5 0.25 0.25 

 
Table 16. Cons: Membership functions determined by C. 

 HYD WIN SOL GAS NUC BIO OIL COA 

1Cµ  0.25 0.25 0.25 0.5 0.25 0 0.25 1 

2Cµ  0 0 0 1 0.5 0.5 0.75 0.75 

3Cµ  0.75 0.5 0.25 0.25 0.25 0.75 0.25 0 

4Cµ  0.5 0.5 0.25 0.5 0.5 0 0.75 0.25 

5Cµ  0.25 0.25 0 0.5 0.75 0.25 0.75 0.75 
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6Cµ  0.25 0.25 0.75 0.5 1 0.25 0.5 0.75 

7Cµ  0.75 0.75 0.5 0.75 0.75 0.75 0.75 1 

8Cµ  0.5 0.75 0.25 0.5 0.75 0.25 0.5 0.5 

9Cµ  0.25 0.25 0.25 0.75 0.5 0.25 0.75 0.5 

10Cµ  0.5 0.25 0.25 0.5 1 0 0.5 0.5 

11Cµ  0.5 0.25 0.25 0.75 0.25 0.25 0.75 0.25 

12Cµ  0.25 0.25 0.5 0.75 0.75 0.25 0.75 0.25 

13Cµ  0.5 0.5 0.75 0.25 0.5 0.25 0.25 0.25 

14Cµ  0.25 0.5 0.5 0.5 0.25 0.75 0.25 0.25 

15Cµ  0.25 0.5 0.5 0.75 0.75 0.25 1 0.75 

 
Table 17. Pros: Membership functions determined by expert D. 

 HYD WIN SOL GAS NUC BIO OIL COA 

1Pµ  0.75 0.5 1 0.75 0.75 1 0.75 0 

2Pµ  0.75 0.5 0.5 0.5 0.25 0.5 0.5 0.25 

3Pµ  0.75 0.5 0.75 0.75 0.75 0.75 0.75 0.25 

4Pµ  0.75 0.25 0.75 0.75 0.5 0.75 0.75 0.25 

5Pµ  0.75 0.5 0.5 0.75 0.75 0.75 0.5 0.75 

6Pµ  1 1 1 0 0 1 0 0 

7Pµ  0.75 0.5 0.25 0.5 0.25 0.75 0.5 0.25 

8Pµ  0.75 0.25 0.25 0.5 0.25 0.5 0.25 0.25 

9Pµ  0.5 0.25 0.25 0.25 0.25 0.5 0.25 0.25 

10Pµ  0.5 0.25 0.25 0.5 0.75 0.5 0.5 0.25 

11Pµ  0.5 0.25 0.5 0.5 0.25 0.5 0.5 0.25 

 
Table 18. Cons: Membership functions determined by expert D. 

 HYD WIN SOL GAS NUC BIO OIL COA 

1Cµ  0.5 0.25 0.25 0.5 0.5 0 0.25 1 

2Cµ  0 0 0 1 0.5 0.5 0.75 0.5 

3Cµ  0.75 0.25 0 0 0.25 0.75 0 0 

4Cµ  0.25 0.25 0.25 0.5 0.5 0.25 0.5 0.25 

5Cµ  0 0.25 0.25 0.5 0.5 0.25 0.5 0.75 
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6Cµ  0.25 0.25 0.25 0.5 0.75 0.5 0.5 0.5 

7Cµ  0.5 1 1 0.75 0.75 0.5 0.75 1 

8Cµ  0.25 0.5 0.5 0.5 0.5 0.25 0.5 0.75 

9Cµ  0.25 0.5 0.25 0.75 0.5 0.25 0.75 0.5 

10Cµ  0.25 0.25 0.25 0.25 0.75 0.25 0.5 0.25 

11Cµ  0.25 0.25 0.25 0.5 0.25 0.25 0.5 0 

12Cµ  0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 

13Cµ  0.25 0.5 0.25 0.25 0.25 0.25 0.25 0.25 

14Cµ  0.25 0.5 0.25 0.25 0.25 0.75 0.25 0.25 

15Cµ  0.5 0.5 0.5 1 0.75 0.5 0.75 1 

 
1) Application of the extended method. 
We apply the novel method to the energy data as follows. 
The evidence couple ,i ia b  of each of the eight power sources Xα ∈  have 

been determined from each expert’s data via the weighted mean formulas, Equa-
tions (4.1) and (4.2), where the former is used to calculate the global strength ia  
and the latter formula is used to derive the global weakness ib . In this process, 
recall that, we incorporate into (4.1) and (4.2) the weights of the pros criteria as 
presented in the last column of Table 9 [FB (weight)] and the weights of the cons 
criteria are expressed in the last column of Table 10 [FB (weight)], respectively. 
The evidence couples for the four experts are shown in Tables 19-22.  

Furthermore, using the weights of experts as established in column 4 [FB 
(weight)] of Table 8 in the weighted mean Equations (5.3) and (5.4), the ag-
gregated evidence couples for the group of four experts are presented in Table 
23.  

The corresponding evidence matrices to the evidence couples in Table 23 are 
as follows: 

0.1759 0.1954 0.3764 0 0.3587 0
, ,

0 0.6287 0.0682 0.5554 0.0448 0.5965
H W S     
= = =     
     

 

0.4408 0.1267 0.5723 0.0265 0.2747 0.1213
, ,

0 0.4325 0 0.4012 0 0.6040
G N B     
= = =     
     

 

0.4655 0.1189 0.5753 0
, ,

0 0.4156 0.0224 0.4023
O C   
= =   
   

 

where H, W, S, G, N, B, O and C represent HYD, WIN, SOL, GAS, NUC, BIO, 
OIL, and COA respectively. 

Now, as detailed in [13] and as illustrated in Examples 4.1 and 4.2 in this ma-
nuscript, a pair of alternatives 1β , 2β  can be compared in terms of their evi-
dence matrices denoted by 1 2,M M  respectively and if 1 2M M≤  then, we 
conclude that the alternative 2β  has dominated 1β . Algebraically, we say that  
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Table 19. Evidence couples for expert A. 

Option α Evidence for α Evidence against α 

HYD 0.8989 0.4000 

WIN 0.6540 0.3720 

SOL 0.5920 0.3973 

GAS 0.6222 0.5664 

NUC 0.4472 0.6324 

BIO 0.7330 0.4467 

OIL 0.6040 0.6247 

COA 0.5892 0.6149 

 
Table 20. Evidence couples for expert B. 

Option α Evidence for α Evidence against α 

HYD 0.8244 0.3589 

WIN 0.5517 0.3542 

SOL 0.5977 0.4342 

GAS 0.5460 0.6259 

NUC 0.4487 0.5420 

BIO 0.6403 0.4134 

OIL 0.5170 0.6259 

COA 0.2801 0.5756 

 
Table 21. Evidence couples for expert C. 

Option α Evidence for α Evidence against α 

HYD 0.8131 0.4089 

WIN 0.4875 0.3958 

SOL 0.6131 0.3042 

GAS 0.4642 0.5988 

NUC 0.3369 0.6313 

BIO 0.7358 0.3238 

OIL 0.4563 0.5887 

COA 0.2290 0.5616 

 
Table 22. Evidence couples for expert D. 

Option α Evidence for α Evidence against α 

HYD 0.7131 0.2976 
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Continued 

WIN 0.4528 0.3723 

SOL 0.5903 0.3253 

GAS 0.5369 0.5324 

NUC 0.4648 0.5304 

BIO 0.7216 0.3690 

OIL 0.4892 0.5083 

COA 0.2665 0.5229 

 
Table 23. Aggregated evidence couples. 

Option α Evidence for α Evidence against α 

HYD 0.8241 0.3713 

WIN 0.5554 0.3764 

SOL 0.5965 0.3587 

GAS 0.5592 0.5675 

NUC 0.4277 0.5988 

BIO 0.7253 0.3960 

OIL 0.5345 0.5844 

COA 0.4023 0.5753 

 

 1 2 1 2

0 0
iff 1 .

0 1
M M M M⊥  

≤ ⊕ = =  
 

 (6.1) 

Moreover, via the evidence couples in Table 23, we generate the following 
evidence couples and their corresponding evidence matrices. 

From Table 23, the evidence couple for ( )0.8241,0.3713H = . Hence,  

( ) ( )* *0.8241 ,0.3713 0.1759,0.6287H ⊥ = = . Also, ( )0.5554,0.3764W =  and  

( ) ( )* *0.5554 ,0.3764 0.4446,0.6236W ⊥ = = . 
So, ( ) ( )0.1759 0.5554,0.6287 0.3764 0.7313,0.0051H W⊥ ⊕ = ⊕ = . In 

terms of matrices, 

0.7313 0.0051 0.7313 0.0051
0.7313 0.0051 0.7313 0.0051

0.2687 0.0051 0.7313 0.0051
0.2687 0.9949 0.7313 0.9949

0.0051 0 0 0
,

0.2636 0.7313 0 1

H W
∗

⊥
∗ ∗ ∗

 ∧
⊕ =  

∧ 
∧ 

=  ∧ 
   

= ≠   
   









 

Hence, H W . 
Similarly, ( ) ( )0.4446 0.8241,0.6236 0.3713 1,0W H⊥ ⊕ = ⊕ = . This implies 

0 0 1 0 0 01 0 1 0
0 1 1 1 0 11 0 1 0

W H
∗

⊥
∗ ∗ ∗

∧ ∧    
⊕ = = =     ∧∧     








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so, W H≤ . Thus, H dominates W. This means the group of experts preferred H 
to W. By using this same evaluation process, the analysis of the remaining pairs 
are as follows: ( )0.7724,0H S⊥ ⊕ = , ( )1,0.0126S H⊥ ⊕ = . Hence,  

0 0 0 0.0126
, .

0.2276 0.7724 0 0.9874
H S S H⊥ ⊥   

⊕ = ⊕ =   
   

 

Thus, H S  and S H . These indicate that H and S are incomparable. 
But, ( ) ( )0.9874 0.7724T S H T H S⊥ ⊥⊕ = > = ⊕ , hence, H dominates S.  

( )0.7351,0.1962H G⊥ ⊕ = , ( )1,0G H⊥ ⊕ = . In terms of matrices,  

0.1962 0 0 0
, .

0.0687 0.7351 0 1
H G G H⊥ ⊥   

⊕ = ⊕ =   
   

 

Thus, H G  but G H≤ . 
( )0.6036,0.2275H N⊥ ⊕ = , and ( )1,0N H⊥ ⊕ = . In evidence matrices, 

0.2275 0 0 0
,

0.1689 0.6036 0 1
H N N H⊥ ⊥   

⊕ = ⊕ =   
   

 

So, H N , but N H≤ . 

( )0.9012,0.0247H B⊥ ⊕ = , ( )1,0B H⊥ ⊕ = .  

0.0247 0 0 0
,

0.0741 0.9012 0 1
H B B H⊥ ⊥   

⊕ = ⊕ =   
   

 

This means H B , whereas B H≤ . 
( )0.7104,0.2131H O⊥ ⊕ = , ( )1,0O H⊥ ⊕ = . So,  

0.2131 0 0 0
,

0.0765 0.7104 0 1
H O O H⊥ ⊥   

⊕ = ⊕ =   
   

 

Therefore, H O , but O H≤ . 

( )0.5782,0.2040H C⊥ ⊕ = , ( )1,0C H⊥ ⊕ = .  

0.2040 0 0 0
,

0.2178 0.5782 0 1
H C C H⊥ ⊥   

⊕ = ⊕ =   
   

 

Thus, H C , but C H≤ . 

( )1,0W S⊥ ⊕ = , ( )0.9589,0.0177S W⊥ ⊕ = .  

0 0 0.0177 0
, .

0 1 0.0234 0.9589
W S S W⊥ ⊥   

⊕ = ⊕ =   
   

 

Hence, W S≤  and S W . 

( )1,0.1911W G⊥ ⊕ = , ( )0.9962,0G W⊥ ⊕ = .  

0 0.1911 0 0
,

0 0.8089 0.0038 0.9962
W G G W⊥ ⊥   

⊕ = ⊕ =   
   

 

This implies W G  and G W . Thus, G and W are incomparable. How-
ever, ( ) ( )0.9962 0.8089T G W T W G⊥ ⊥⊕ = > = ⊕ . So, W dominates G.  

( )0.8723,0.2224W N⊥ ⊕ = , and ( )1,0N W⊥ ⊕ = . By matrices, we have  

https://doi.org/10.4236/jamp.2024.123059


A. Inusah 
 

 

DOI: 10.4236/jamp.2024.123059 972 Journal of Applied Mathematics and Physics 
 

0.1277 0.0947 0 0
,

0 0.7776 0 1
W N N W⊥ ⊥   

⊕ = ⊕ =   
   

 

This means W N  and N W≤ . Thus, W dominates N. 
( )1,0.0196W B⊥ ⊕ = , and ( )0.8301,0B W⊥ ⊕ = . These in terms matrices 

give  

0 0.0196 0 0
and

0 0.9804 0.1699 0.8301
W B B W⊥ ⊥   

⊕ = ⊕ =   
   

 

Thus, W B  and B W . But ( ) ( )0.9804 0.8301T W B T B W⊥ ⊥⊕ = > = ⊕ . 
So, B dominates W.  

( )0.9791,0.208W O⊥ ⊕ = , ( )1,0O W⊥ ⊕ = .  

0.0209 0.1871 0 0
,

0 0.7920 0 1
W O O W⊥ ⊥   

⊕ = ⊕ =   
   

 

This means W O  and O W≤ . So, W dominates O.  

( )0.8469,0.1989W C⊥ ⊕ = , ( )1,0C W⊥ ⊕ = .  

0.1531 0.0458 0 0
,

0 0.8011 0 1
W C C W⊥ ⊥   

⊕ = ⊕ =   
   

 

Thus, W C  but C W≤ . Hence, W dominates C. 

( )0.9627,0.2088S G⊥ ⊕ = , ( )1,0G S⊥ ⊕ = .  

0.0373 0.1715 0 0
,

0 0.7912 0 1
S G G S⊥ ⊥   

⊕ = ⊕ =   
   

 

This implies S G  but G S≤ . Hence, S dominates G. 
( )0.8312,0.2401S N⊥ ⊕ = , ( )1,0N S⊥ ⊕ = . Thus,  

0.1688 0.0713 0 0
,

0 0.7599 0 1
S N N S⊥ ⊥   

⊕ = ⊕ =   
   

 

Here too, S N  but N S≤ . So, S dominates G. 

( )1,0.0373S B⊥ ⊕ = , ( )0.8712,0B S⊥ ⊕ = .  

0 0.0373 0 0
,

0 0.9627 0.1288 0.8712
S B B S⊥ ⊥   

⊕ = ⊕ =   
   

 

This implies S B  and B S . However,  

( ) ( )0.9627 0.8712T S B T B S⊥ ⊥⊕ = > = ⊕ . So, B dominates S.  

( )0.9380,0.2257S O⊥ ⊕ = , ( )1,0O S⊥ ⊕ = .  

0.0620 0.1637 0 0
,

0 0.7743 0 1
S O O S⊥ ⊥   

⊕ = ⊕ =   
   

 

Thus, S O  but O S≤ . So, S dominates O. 

( )0.8058,0.2166S C⊥ ⊕ = , ( )1,0C S⊥ ⊕ = .  

0.1942 0.0224 0 0
,

0 0.7834 0 1
S C C S⊥ ⊥   

⊕ = ⊕ =   
   
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Hence, S C  but C S≤ . So, S dominates C. 

( )0.8685,0.0313G N⊥ ⊕ = , ( )1,0N G⊥ ⊕ = .  

0.0313 0 0 0
,

0.1002 0.8685 0 1
G N N G⊥ ⊥   

⊕ = ⊕ =   
   

 

Hence, G N  but N G≤ . So, G dominates N. 

( )1,0G B⊥ ⊕ = , ( )0.8339,0.1715B G⊥ ⊕ = .  

0 0 0.1661 0.0054
,

0 1 0 0.8285
G B B G⊥ ⊥   

⊕ = ⊕ =   
   

 

Thus, G B≤  but B G . So, B dominates G. 
( )0.9753,0.0169G O⊥ ⊕ = , and ( )1,0O G⊥ ⊕ = . This means  

0.0169 0 0 0
,

0.0078 0.9753 0 1
G O O G⊥ ⊥   

⊕ = ⊕ =   
   

 

This means G O  but O G≤ . So, G dominates O. 
( )0.8431,0.0078G C⊥ ⊕ = , ( )1,0C G⊥ ⊕ = . In matrices, we have  

0.0078 0 0 0
, .

0.1491 0.8431 0 1
G C C G⊥ ⊥   

⊕ = ⊕ =   
   

 

So, G C  and C G≤ . Hence, G dominates C.  
( )1,0N B⊥ ⊕ = , and ( )0.7024,0.2028B N⊥ ⊕ = . Thus,  

0 0 0.2028 0
and

0 1 0.0948 0.7024
N B B N⊥ ⊥   

⊕ = ⊕ =   
   

 

So, N B≤  but B N . So, B dominates N. 

( )1,0N O⊥ ⊕ = , ( )0.8932,0.0144O N⊥ ⊕ = .  

0 0 0.0144 0
,

0 1 0.0924 0.8932
N O O N⊥ ⊥   

⊕ = ⊕ =   
   

 

So, N O≤  and O N . Therefore, O dominates N.  

( )0.9746,0N C⊥ ⊕ = , ( )1,0.0235C N⊥ ⊕ = .  

0 0 0 0.0235
and

0.0254 0.9746 0 0.9765
N C C N⊥ ⊥   

⊕ = ⊕ =   
   

 

So, since N C  and C N  but  

( ) ( )0.9765 0.9746T C N T N C⊥ ⊥⊕ = > = ⊕ , N dominates C.  

( )0.8092,0.1884B O⊥ ⊕ = , ( )1,0O B⊥ ⊕ = .  

0.1884 0 0 0
,

0.0024 0.8092 0 1
B O O B⊥ ⊥   

⊕ = ⊕ =   
   

 

Hence, since B O  and O B≤ , we conclude that B dominates O. 

( )0.6770,0.1793B C⊥ ⊕ = , ( )1,0C B⊥ ⊕ = .  

0.1793 0 0 0
,

0.1437 0.6770 0 1
B C C B⊥ ⊥   

⊕ = ⊕ =   
   

 

Here too, since B C  and C B≤ , we conclude that B dominates C. 
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( )0.8678,0O C⊥ ⊕ = , and ( )1,0.0091C O⊥ ⊕ = . In terms of matrices, we 
have  

0 0 0 0.0091
and

0.1322 0.8678 0 0.9909
O C C O⊥ ⊥   

⊕ = ⊕ =   
   

 

From these two matrices, it is clear that O C  and C O . However, 

( ) ( )0.9909 0.8678T C O T O C⊥ ⊥⊕ = > = ⊕ , hence O dominates C.  
From the above evaluation, the dominance of each of the eight energy sources 

over the others is summarised as follows: 
, , , , , , ;W S G N B O C H  

, , , , , ;W S G N O C B  
, , , , ;W G N O C S  
, , , ;G N O C W  

, , ;N O C G  
, ;N C O  

.C N  

Therefore, the complete ranking of the eight sources in ascending order as 
given in the definition is  
coal   nuclear   oil   natural gas   wind   solar   biomass   
hydro. 

2) Application of the fuzzy TOPSIS group decision-making method. 
We now apply the fuzzy TOPSIS group decision-making method to the ener-

gy data to be able to compare the ranking of this traditional method with that of 
our novel approach. So, for want of space, we have summarised the fuzzy TOPSIS 
group decision-making procedure and results as follows. 

The aggregated collective matrix D for the pros and the cons criteria are pre-
sented in Table 24 and Table 25 respectively. 

From Table 24 and Table 25 combined, we have the ideal solution A+  and 
the negative-ideal solution A−  as  

{

}

0.0261,0.0083,0.0755,0.0226,0.0328,0.0301,0.0186,0.0090,0.0089,
0.0207,0.0269,0.0019,0.0000,0.0048,0.0068,0.0011,0.0024,0.0143,
0.0052,0.0023,0.0065,0.0026,0.0036,0.0016,0.0008,0.0040 .

A+ =

 

{

}

0.0036,0.0024,0.0056,0.0071,0.0146,0.0000,0.0093,0.0026,0.0036,
0.0116,0.0100,0.0090,0.0168,0.0161,0.0164,0.0150,0.0156,0.0250,
0.0155,0.0136,0.0197,0.0061,0.0052,0.0023,0.0019,0.0066 .

A− =

 

Table 26 is a summary of the separation measures, and the relative closeness 
to the ideal solution, iC∗ .  

So, by the fuzzy TOPSIS group decision-making method, the ranking order of 
the eight energy sources is  
nuclear   coal   oil   natural gas   wind   solar   biomass   
hydro. 

The rankings of the two methods are presented in Table 27.  
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Table 24. Aggregated collective matrix D for the pros criteria. 

 HYD WIN SOL GAS NUC BIO OIL COA 

1P
µ  0.0261 0.0138 0.0253 0.0213 0.0134 0.0249 0.0213 0.0036 

2Pµ  0.0083 0.0036 0.0042 0.0055 0.0031 0.0055 0.0052 0.0024 

3Pµ  0.0755 0.0056 0.0085 0.0115 0.0073 0.0113 0.0115 0.0058 

4Pµ  0.0205 0.0163 0.0193 0.0226 0.0100 0.0226 0.0226 0.0071 

5Pµ  0.0328 0.0188 0.0146 0.0240 0.0261 0.0234 0.0193 0.0302 

6Pµ  0.0301 0.0301 0.0301 0.0000 0.0034 0.0301 0.0000 0.0000 

7Pµ  0.0186 0.0126 0.0093 0.0132 0.0102 0.0147 0.0156 0.0126 

8Pµ  0.0090 0.0037 0.0037 0.0057 0.0026 0.0062 0.0065 0.0060 

9Pµ  0.0089 0.0067 0.0067 0.0067 0.0036 0.0085 0.0051 0.0051 

10Pµ  0.0207 0.0145 0.0142 0.0149 0.0174 0.0178 0.0116 0.0153 

11Pµ  0.0171 0.0130 0.0163 0.0269 0.0100 0.0163 0.0148 0.0126 

 
Table 25. Aggregated collective matrix D for the cons criteria. 

 HYD WIN SOL GAS NUC BIO OIL COA 

1Cµ  0.0066 0.0042 0.0042 0.0071 0.0050 0.0027 0.0019 0.0090 

2Cµ  0.0000 0.0000 0.0000 0.0164 0.0148 0.0095 0.0185 0.0168 

3Cµ  0.0161 0.0116 0.0093 0.0060 0.0074 0.0134 0.0060 0.0048 

4Cµ  0.0124 0.0096 0.0106 0.0164 0.0115 0.0068 0.0152 0.0109 

5Cµ  0.0011 0.0050 0.0039 0.0102 0.0139 0.0072 0.0136 0.0150 

6Cµ  0.0024 0.0049 0.0070 0.0075 0.0156 0.0089 0.0075 0.0129 

7Cµ  0.0191 0.0234 0.0218 0.0215 0.0211 0.0143 0.0215 0.0250 

8Cµ  0.0052 0.0088 0.0063 0.0136 0.0118 0.0099 0.0136 0.0155 

9Cµ  0.0023 0.0038 0.0028 0.0136 0.0073 0.0065 0.0136 0.0093 

10Cµ  0.0119 0.0077 0.0080 0.0116 0.0197 0.0065 0.0131 0.0092 

11Cµ  0.0049 0.0032 0.0034 0.0061 0.0034 0.0032 0.0061 0.0026 

12Cµ  0.0038 0.0036 0.0044 0.0052 0.0051 0.0038 0.0052 0.0039 

13Cµ  0.0019 0.0023 0.0022 0.0017 0.0019 0.0017 0.0017 0.0016 

14Cµ  0.0014 0.0015 0.0016 0.0013 0.0008 0.0019 0.0011 0.0011 

15Cµ  0.0040 0.0045 0.0045 0.0067 0.0058 0.0041 0.0064 0.0063 
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Table 26. Separation measures and ideal solution. 

Option S +  S −  S S+ −+  
SC

S S

−
∗

+ −
=

+
 

HYD 0.0141 0.0883 0.1024 0.8623 

WIN 0.0755 0.0387 0.1142 0.3389 

SOL 0.0714 0.0447 0.1161 0.3850 

GAS 0.0768 0.0346 0.1114 0.3106 

NUC 0.0837 0.0173 0.1010 0.1713 

BIO 0.0671 0.0490 0.1161 0.4220 

OIL 0.0794 0.0265 0.1059 0.2502 

COA 0.0872 0.0200 0.1072 0.1866 

 
Table 27. Ranking the eight energy sources in ascending order from the worst to the best 
by each of the two outranking methods. 

Method Ranking 

Extended PMVS 
coal   nuclear   oil   natural gas   wind   solar   
biomass   hydro 

Fuzzy TOPSIS 
group method 

nuclear   coal   oil   natural gas   wind   solar   
biomass   hydro 

7. Discussion 

Both the TOPSIS and PMVS approaches have provided complete rankings for 
the eight energy sources for Ghana. From their rankings as shown in Table 27, 
both methods have selected hydro power as the optimal energy source for the 
country. They have also unanimously agreed on biomass, solar, wind, natural 
gas, and oil as the second, third, fourth, fifth and sixth best respectively. Howev-
er, their rankings differ between the last two sources. Whereas the extended 
PMVS settled on nuclear as the better option than coal, the fuzzy TOPSIS me-
thod says otherwise as seen on Table 27. Therefore, the six energy sources iden-
tified by both techniques in unison to be the optimal energy basket for Ghana 
are hydro power, biomass, solar energy, wind energy, natural gas, and oil. The 
worst source, however, according to the extended PMVS is coal, whereas by the 
fuzzy TOPSIS, the worst energy source is nuclear. 

In terms of effort, the extended PMVS is less laborious, easier, and simpler 
than the fuzzy TOPSIS. 

Moreover, the proposed method gives more insight into how options in each 
pair outperform each other. That is to say, any two options have comparative 
advantage over each other on some or all the set of criteria. So, the PMVS me-
thod can determine the overall value of the comparative advantage of one alter-
native over the other and vice versa. Put another way, the novel method deter-
mines the pair of values that measures the extent to which two alternatives are 
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better than each other. For example, if we take solar and wind, it is obvious that 
on some criteria solar performs better than wind, while on the other criteria 
wind performs better than solar. So, the proposed method can establish the per-
formance values in this specific case to enable users identify the better performer. 
Hence, from the PMVS calculation, the overall value of the comparative advan-
tage of solar over wind is 1, whereas the overall value of the comparative advan-
tage of wind over solar is 0.9589. Hence, solar is better than wind. Similarly, the 
value of the superiority of biomass over solar is 0.9627, while the value of the 
superiority of solar over biomass is 0.8712. This shows that biomass is better 
than solar. The TOPSIS method, however, does not give such details. It only uses 
the ultimate fixed values of relative closeness to the ideal solution to compare all 
options and rank them. 

Furthermore, the extended PMVS approach can handle more efficiently large 
size group decision-making problems than the fuzzy TOPSIS method. Although 
critiques may argue that there are now powerful computers that can be used to 
analyse large size data sets, but nonetheless, easy methods are still useful espe-
cially in parts of the world where these powerful computers are not readily 
available. If even they are available, some decision-makers may not still be able 
to use them due to lack of technical know-how.  

Also, one distinctive feature of the PMVS approach that gives it the edge over 
TOPSIS method, and some other outranking methods is the paraconsistent logic. 
This logic enables the PMVS to enjoy a much wider scope than the TOPSIS. 
Through this logic, the PMVS method can solve all decision problems that the 
TOPSIS is able to solve, but not all decision-making problems solvable by the 
PMVS approach are solvable by the TOPSIS approach. For instance, decision 
problems involving contradictory data can be handled by the novel method but 
cannot be solved by the TOPSIS method. In fact, classical logic upon which the 
TOPSIS method depends and other logics such as intuitionistic logic conform 
totally to the principle of non-contradiction, and as a result reject any informa-
tion that appears contradictory. Paraconsistent logic and for that matter the 
PMVS approach, on the other hand, posits that a piece of information can be 
simultaneously true and false, and that there are true contradictions. 

8. Conclusions and Suggestions 

In this paper, the Paraconsistent Many-Valued Similarity (PMVS) method has 
been extended to deal with multipersonal decision-making problems in which a 
group of decision-makers evaluates a finite set of options with respect to the 
same set of criteria. In this extended version, the Borda rule is employed to de-
termine the weights of criteria and the weights of members of the deci-
sion-making group. By means of the aggregated weighted mean, the individual 
global strengths and global weaknesses otherwise called the evidence couples are 
synthesised into aggregated global strengths and aggregated global weaknesses 
or better still, aggregated evidence couples. The introduced approach treads cau-
tiously along lines of inconsistencies and only approves inferences that do not 
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lead to explosion. An inference explodes if it leads to anything. In this regard, 
after deriving the evidence couple for every proposition, we split such an evi-
dence couple into its four components parts, namely falsehood, contradiction, 
unknown, and truth. We, then, calculate the values of these components to es-
tablish the corresponding evidence matrix. Thereafter, we discard three compo-
nents of the evidence matrix: falsehood, contradiction, and unknown. The value 
of the remaining component (the truth component) is what we use to advance 
our analysis of the decision options vis-à-vis the set of criteria to arrive at a syn-
thesized or conglomerate decision. 

However, the only drawback of the proposed method is rank reversal issue. 
That is, the addition of one or more decision alternatives to the set of decision 
alternatives that has been ranked may affect the initial ranking. 

To illustrate the application of the novel approach to group decision-making 
challenges, it has been used to analyse data sets from seven energy experts in the 
Ministry of Energy in Ghana to unearth the optimal energy mix for the country. 
Moreover, to show the efficiency of the new method, its findings on the energy 
data have been compared with that of fuzzy TOPSIS group decision-making ap-
proach and it has emerged that their findings are almost identical. Eventually, 
the study discovered hydro power, biomass, solar energy, wind energy, natural 
gas and oil as the best energy basket for Ghana. 
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