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Abstract 
In contrast to the solutions of applied mathematics to Zeno’s paradoxes, I 
focus on the concept of motion and show that, by distinguishing two different 
forms of motion, Zeno’s apparent paradoxes are not paradoxical at all. Zeno’s 
paradoxes indirectly prove that distances are not composed of extensionless 
points and, in general, that a higher dimension cannot be completely com-
posed of lower ones. Conversely, lower dimensions can be understood as spe-
cial cases of higher dimensions. To illustrate this approach, I consider Can-
tor’s only apparent proof that the real numbers are uncountable. However, 
his widely accepted indirect proof has the disadvantage that it depends on 
whether there is another way to make the real numbers countable. Cantor 
rightly assumes that there can be no smallest number between 0 and 1, and 
therefore no beginning of counting. For this reason he arbitrarily lists the real 
numbers in order to show with his diagonal method that this list can never be 
complete. The situation is different if we start with the largest number be-
tween 0 and 1 (0.999…) and use the method of an inverted triangle, which 
can be understood as a special fractal form. Here we can construct a vertical 
and a horizontal stratification with which it is actually possible to construct 
all real numbers between 0 and 1 without exception. Each column is infinite, 
and each number in that column is the starting point of a new triangle, while 
each row is finite. Even in a simple sine curve, we experience finiteness with 
respect to the y-axis and infinity with respect to the x-axis. The first parts of 
this article show that Zeno’s assumptions contradict the concept of motion as 
such, so it is not surprising that this misconstruction leads to contradictions. 
In the last part, I discuss Cantor’s diagonal method and explain the method of 
an inverted triangle that is internally structured like a fractal by repeating this 
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inverted triangle at each column. The consequence is that we encounter two 
very different methods of counting. Vertically it is continuous, horizontally it 
is discrete. While Frege, Tarski, Cantor, Gödel and the Vienna Circle tried to 
derive the higher dimension from the lower, a procedure that always leads to 
new contradictions and antinomies (Tarski, Russell), I take the opposite ap-
proach here, in which I derive the lower dimension from the higher. This 
perspective seems to fail because Tarski, Russell, Wittgenstein, and especially 
the Vienna Circle have shown that the completeness of the absolute itself is 
logically contradictory. For this reason, we agree with Hegel in assuming that 
we can never fully comprehend the Absolute, but only its particular manife-
stations—otherwise we would be putting ourselves in the place of the Abso-
lute, or even God. Nevertheless, we can understand the Absolute in its partic-
ular expressions, as I will show with the modest example of the triangle proof 
of the combined horizontal and vertical countability of the real numbers, 
which I developed in rejection of Cantor’s diagonal proof.  
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1. Introduction and More Recent Interpretations  

Let’s start with a relatively recent interpretation of Zeno’s paradoxes. Jean Fran-
cois Lyotard, who has popularized the concept of post-modernity, has included 
in his “La difference” [1] an excursus on Aristotle and the “before and after” of 
temporal movement, which is of strategic importance for his conception. Lyo-
tard argues with Aristotle that the “human soul” (Aristotle) or the proposition 
(Lyotard) divides time into before and after. Problematic for both, however, is 
the “now”, for that is precisely what time seems to be which is bounded on both 
sides by a point of now ([1], p. 131).  

The central problem is how to determine this now, this point of the now, 
when it is at the same time a limit. Lyotard again refers to Aristotle when he 
quotes him approvingly: Considered as a limit, the now point is not time, but 
happening ([1], p. 132). Lyotard concludes that Aristotle distinguishes between 
time, which is constituted in propositions by a before-after, and the representa-
tional event, which as such is absolutely “now”. In this way, Lyotard, like Hei-
degger, gives priority to being over positing, to thinking (Lyotard). “It happens” 
as lightning happens (Heidegger)—despite all differentiations, these formula-
tions can hardly hide their mythical (and not metaphysical, as Lyotard thinks) 
background. Such myths “happen” and are a necessary consequence of positions 
that construct continuously conceived movements out of extensionless and indi-
visible points [2] [3]. In the case of time, this problem becomes particularly 
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clear: the before and after is separated by the event as a boundary point, like a 
flash that happens, without this boundary point belonging to time itself. Hegel, 
on the other hand, argues that the boundary point belongs to continuous 
movement.  

For Friedrich Kaulbach, the concept of motion becomes the guiding principle 
of all basic philosophical concepts—because thinking is always “on the way” 
between determination and liquefaction, between defining limits and going 
beyond them [4]. This marks the fundamental problem: the relationship in be-
tween “defining limits” and “going beyond limits”. Kaulbach argues that the 
principle of motion turns out to be going beyond limits. He starts from Aris-
totle’s proposition that all movement is out of something and into some-
thing—this is already marking the fundamental problem. But does motion be-
gins in something and ends in something? For Kaulbach, the whence and the 
whither (Lyotard’s “before and after”) are two “outermost” between which the 
middle, the completion of movement, passes. As surely as there are outer limits, 
so surely are “inner limits” possible in Kaulbach’s approach [4].  

The “in-between” between the ends, between the outer limits of a movement, 
forms a spatially or temporally extending whole. The in-between, however, must 
be able to be divided into sections at any time and in any place. It must be possi-
ble, so to speak, to nest partial extensions that contain each other: thus the rela-
tion of being opposite can be asserted for every pair of points that lie on the line 
of a process. This means nothing else than that the “external opposition” of the 
opposite points A and B would reproduce itself again and again in these partial 
extensions. Between the presence of a property and its complete absence there 
would be an infinite number of intermediate stages, each of which stands in rela-
tion to the other in affirmation and negation. Also seen in this way, it is essential 
to assume that the (total) process is divisible: this implies that the total process 
contains in itself the possibility of an infinite number of limitations ([4], p. 2). 

However, Kaulbach overlooks the fact that we are dealing with quite different 
boundaries: on the one hand, the (inner) boundaries that are crossed by the 
movement, and on the other hand, the (outer) boundaries between which the 
movement takes place. To make this clear, in the first case the boundaries are 
crossed, but in the second case a movement is enclosed, limited, by its bounda-
ries. Zeno’s famous paradoxes of motion deal with this relationship between the 
crossing of boundaries and the enclosure of motion by its external boundaries. If 
motion is defined by crossing boundaries, it cannot be enclosed by boundaries in 
the same relationship. Conceptually, there is a fundamental difference between 
crossing and being enclosed within boundaries. This also applies to the concept 
of motion, because by distinguishing different forms of motion, Zeno’s para-
doxes disappear. Therefore we need to distinguish two different forms of mo-
tion. Zeno’s paradox does not prove that there is no motion, but only that there 
can be no motion in extensionless points, and the consequence to be drawn is 
that space and time are an expression of motion (strictly speaking, velocity de-
termines space and time).  
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2. The Dichotomy Paradox 

These propositions can be explained on the basis of Zeno’s dichotomy paradox. 
It is true that Zeno’s paradoxes are often evaluated in such a way that they are 
paradoxical only for those who are not familiar with the modern methods of 
mathematics. Like his other antinomies, Zeno’s paradoxes are indeed “techni-
cally”, in this case mathematically, solvable. However, the consequential prob-
lems of the solutions seem sometimes to be more paradoxical than the original 
paradox. Sainsbury, for example, judges that the full answer to Zeno’s paradox of 
the racetrack (here called the dichotomy paradox) requires a detailed reappraisal 
and justification of our spatial notions. Paradox for him is the notion of a boun-
dary of spatial facts that does not itself occupy space. The only seemingly solu-
tions are leading to more paradoxical consequences or myths. See for example 
the new age mystics in the footsteps of Fritjof Capra and the usage of myths in 
the concepts of post-structuralism [5]. The further elaboration of spatial con-
cepts, on the other hand, is the task Zeno sets for us, concludes Sainsbury, a task 
that must always be tackled anew, as every generation of philosophers dealing 
with time and space has rightly felt ([6], p. 35). Despite all progress in mathe-
matics, it can be said, that Zeno’s paradoxes are not wholly solved [7]. 

Since I’m not a mathematician, I approach these questions philosophically, 
pointing out that Zeno’s apparent paradoxes are not paradoxes if we differen-
tiate the concept of motion. Motion can be understood as transgressing bounda-
ries on one side and filling the space between boundaries on the other side. Zeno 
obviously uses the second conceptualization to argue that there is no motion at 
all, but this proposition is just related to the understanding of motion as crossing 
boundaries. In essence, Zeno just highlighted the contrast of two different kinds 
of motion with the consequence to argue that there is no motion at all. In my 
view, following the concept of substantial motion of Mulla Sadra [8], any kind of 
substance must be understood as filling the space between boundaries. 

Aristotle addresses Zeno’s paradoxes in the context of an argument about 
“non-motion” [9]. The first argument against the possibility of motion is that 
the moving object must arrive earlier at the half than at the end. This statement 
can be interpreted in such a way that for a spatial distance AB the first bisection 
divides the distance into AC and CB. It is assumed that the continuous division 
of this distance always divides either the first or the second half. If only the first 
half is divided, the infinitely continued bisection process would represent a 
backward motion instead of a movement from A to B, which, however, never 
reaches A. If, on the other hand, only the second half is always halved, then the 
halving process represents an infinite forward movement, which, however, never 
reaches B. This is because, before reaching B, we always have to measure 
through half of the respective distance to B first. 

It is sometimes surprising how mathematicians, in their overzealous efforts to 
refute the meaning of Zeno’s paradoxes, forget their own insights. For example, 
Herbert Meschkowski summarizes Zenon’s paradoxes by saying that it is incon-
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ceivable that in a finite distance the path from the start to the meeting point 
contains infinitely many parts ([10], p. 20). Obviously, this argument is based on 
the consideration that an infinite set of distances, no matter how small, must al-
ways be larger than any finite distance. But this argument is true only for an in-
finite set of equal distances. The situation is different if we really take Zeno’s ar-
gument seriously. For Zeno pointed out in his dichotomy paradox that an infi-
nite set of small distances cannot exceed a finite limit if the length of these dis-
tances tends progressively to 0 at the same time. The increase of even such small 
parts is indeed infinite. But the progressive decrease of this increase is also infi-
nite, so that the length of the distances tends to 0 and its limit is a finite number. 
To clarify, if the number of distances tends to infinity, but their length tends to 
0, the result is a finite number. 

There is a fundamental assumption in Zeno’s paradoxes that logically contra-
dicts the concept of motion. This is based on the hypothesis that there could be 
motion in extensionless and indivisible points of space and time, while the con-
cept of motion states that motion is transcending such points. In the dichotomy 
paradox, this assumption is formulated as the contradiction that motion is at 
one time in such a point and at the same time ceases in it, comes to an end. The 
assumption that there must be a transition of motion to extensionless and indi-
visible points of space and time is one of the most far-reaching metaphysical as-
sumptions related to all determinations of motion. This is to be clarified, if the 
motion from A to B is considered more exactly. For the assumed movement of 
something from A to B, in Zeno’s paradox, implies that this something is actual-
ly at rest in A when it begins in A and, this is particularly plastic, is supposed to 
cease in B. In this respect, within this presupposition, it is absolutely necessary 
that there is no movement in A and B, and that these points cannot be reached 
by movement either. Without the assumption of the existence of extensionless 
and indivisible points of time and place, Zenon’s paradoxes are neither paradox-
ical nor antinomian. This proof is the subject of the following discussion. 

Let us suppose that the motion does not stop in B as an extensionless point, 
but goes beyond B. In this case, an arbitrary B’, which goes beyond B, is to be 
presupposed. In this way, we reach and go beyond B at some point. Thus, if we 
assume a motion from A to B that does not stop and end at B, B is always 
reached and exceeded. However, B’ itself is not reached in this case if the motion 
is to stop in it. If the movement goes beyond B’, a new B’’ can be formed, whe-
reby B’ is also reached and exceeded in this infinite process of division. Thus, an 
arbitrary point B without extension can only be reached if there is no more 
movement in B at all. 

The same resolution of Zeno of Elea’s paradoxes is to be performed for the 
case that A and B are extended. If both are extended, they can be represented as 
distances A1-A2 and B1-B2. In this case, the motion between the distances A1 
and B2 is infinitely divisible and passes completely through the distance from A 
to B. Of course, with one exception, the two expansionless “boundary points” A1 
and B2 of the distances A1-A2 and B1-B2. Analogously, B2 can also be 
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represented as a distance, e.g. as the distance B3-B4, B4 again as B5-B6, etc., each 
boundary point Bn as the distance Bn + 1 to Bn + 2. Under the condition of the 
extension of the beginning and end point of a distance, Zeno’s paradoxes are 
again not paradoxical, the distance is completely filled in this movement—with 
the one restriction, however, that the boundary points of the continuous dis-
tance, which are defined as extensionless and indivisible, necessarily do not be-
long to the distance any more. 

It looks more problematic at first with the “backward movement”, i.e. the as-
sumption that before we get to B we have to reach 1/2 AB. Before this is reached, 
1/2 of 1/2, so 1/4 AB, would have to be reached, and so on. In general, this in-
terpretation of Zeno’s paradoxes involves a backward motion from B to A. For 
this backward motion, however, again an A’ is to be assumed, now however be-
fore A, if the motion actually does not begin in A. In this case, too, there is a dis-
tance A1-B, where A is passed at some point in the backward movement from B 
to A1. The same is true for the case that A can be represented as distance A1 - 
A2, then again A1 as distance A3 - A4 and so on.  

Another possibility of solving Zenon’s paradoxes seems to be to assume that 
space and time points are extended, but at the same time indivisible. There 
would be a solution to all of Zeno’s paradoxes in such a way that the process of 
division has a limit, so that there is a minimum length and a minimum duration 
that cannot be further divided into smaller sizes. There would not always be a 
third between two moments of space and time, each moment would have a 
unique predecessor and an equally unique successor: “In short, time and space 
are discrete”. Apart from the unfamiliarity of this image, there would be no 
conceptual difficulty with this idea as a solution to Zeno’s paradoxes of motion, 
it is argued ([11], p. 168). 

But is this really the case? It is true that Poivedevin can reject the question of 
what space is between two such discrete points, since there would be no space 
between them. He also emphasizes that a change would indeed go from one state 
to the next in small jumps, but without taking an intermediate state, since there 
would be no intermediate state ([11], p. 169). However, this solution to the 
problem always produces new problems that are at least as paradoxical. For how 
is this “leap” to be conceived with respect to the limit of discrete (extended-indi- 
visible) points? As in the case of continuous motion, the real problem in solving 
Zeno’s paradoxes is the boundary. If there is neither a “space” nor an interme-
diate state between two discrete points, do two adjacent points have the same 
boundary? Or do the two points have a different boundary, but are still “close” 
to each other? Is there not an intermediate state between the two boundaries? 
Again, one can argue that this intermediate state does not belong to space, but to 
another dimension. But wouldn’t this mysterious additional dimension be 
something like a continuum, against which space and time appear only discrete? 
This consideration becomes quite vivid if we question the example given by the 
proponents of discrete space and time. For in this conception, motion appears as 
a series of successive still images in a movie. But what are continuous in this case 
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is not the successive sequences of still images, but the film reel, which is not 
seen, but which is the basis of the whole, a continuous dimension in which the 
discreteness of the individual images is set. 

The decisive objection against discrete points is, however, that it needs a 
boundary, a limit, so that discrete points can be considered as smallest, not fur-
ther divisible points of space and time. In order to characterize these indivisible, 
but extended points, we again need a limit of this extension. This limit is the all 
decisive problem. If this limit is extended, the question is whether they are larger 
or smaller than the discrete points? If this boundary is larger, there must neces-
sarily be another boundary between it and the discrete point. Is this second 
boundary again extended or not? If it is also extended and larger, the problem of 
the boundary drawing arises up to infinity. If, however, the boundary is smaller 
than the discrete points, it is actually the smallest measure. But these limits are 
now either smaller than the postulated smallest point, if they are extended. Or 
they are unexpanded, which would bring the unpleasant problem that the limits 
of discrete space and time points would be unexpanded themselves. Also in this 
case the smallest discrete points of space would not be the smallest points, but 
their boundaries. The conclusion to be drawn from this is that the notion of 
smallest discrete points of space and time is logically contradictory in itself, since 
to this notion belongs the specification of a boundary, which is in every case 
smaller than the smallest discrete points.  

In a first summary, it can be concluded that Zeno’s paradoxes are actually pa-
radoxical only under conditions that are a priori contradictory to the concept of 
motion. If we define motion in its two and opposite forms, then it is characte-
rized on the one hand by the crossing of (inner) boundaries, and on the other 
hand by the complete filling of two (outer) boundaries. From these two deter-
minations, on the one hand, divisibility and, on the other hand, extension (by no 
means only in the spatial sense) are immediately to be inferred. This necessarily 
leads to the opposition between divisibility and extensibility as fundamental 
properties of motion, on the one hand, and the presuppositions of Zeno’s para-
doxes of indivisibility and inextensibility, on the other hand. If we connect these 
two pairs of opposites, as in Zeno’s paradoxes, then the contrast contained in the 
presuppositions must necessarily present itself as a logical contradiction. 

The opposition of crossing borders and being enclosed within borders em-
phasized here seems to be invalidated in the practical example of an arbitrary 
distance. On the level of appearance it is obvious that in every empirical distance 
AB the two end points belong to this distance—because on this physical level 
there can be no points without extension. If we take an arbitrary set of points on 
the distance from A to B, then each of these points is to be determined as a “par-
tial function” of the distance from A to B. Since the whole of crossed immanent 
limits is at the same time the entire distance from A to B, they are enclosed by 
the limits A and B in this practical example.  

Zeno, on the other hand, emphasizes in his paradoxes that even if all inner 
limits of a distance AB are exceeded in the forward movement, neither B nor in 
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the backward movement A is reached. Our conclusion is that the points A and B, 
as outer limits of the movement of the distance from A to B, cannot necessarily 
belong to this movement, to this distance itself. The fundamental question is 
whether in the (continuous) motion from A to B the (discrete) point A is left or 
B is reached. Zeno argued that if there is a continuous motion from A to B, then 
neither the (discrete) starting point A is left nor the (discrete) final point B is 
reached. Contrary to all attempts to disprove his paradoxes, Zeno is correct in 
that the motion neither leaves the starting point A nor reaches the end point B, 
because neither in A nor in B is any motion at all—otherwise it would transcend 
both as shown above. Zeno’s mistake is only to have presented his paradoxes as a 
logical contradiction, because this contradiction arises only and exclusively un-
der the assumption of extensionless and indivisible now-points. 

The mathematical solution of the problem in the calculus is based on the as-
sumption that there is no quantitative difference between the distance from A to 
B and the points A and B, because there will always be a point h which is even 
closer to B than any conceivable difference can express. But it follows only that 
the distance from A to B is absolutely and completely filled, so that the differ-
ence between the distance of the two points A and B and the movement from A 
to B, by which it is bounded, is really zero. This assumption is the precondition 
for the fact that A and B are expansionless, their “expansion” is zero. The differ-
ence between A and B is exactly the same in both cases, regardless of whether the 
expansionless start and end points belong to this distance or not. Nevertheless, 
the question remains whether “no spatial difference” or “no quantitative differ-
ence” at the same time means that there is no difference at all, since one can 
think of other forms of difference, e.g. a “logical difference”. For example, one 
could imagine that the distance AB is “close” to the points A and B, without 
these being part of the distance. 

The basic philosophical problem is that of thinking together continuous, ex-
tended and divisible motion in a distance and discrete, indivisible as well as ex-
tensionless points as its outer limits. The questions and conclusions arising from 
Zeno’s paradoxes are logical and philosophical, not mathematical. While philo-
sophical positions should not and must not contradict scientific knowledge, their 
interpretation is not definitively determined by a mathematical statement as 
such.  

3. The Arrow Paradox 

The difference between a mathematical-physical solution and the logical-philo- 
sophical interpretation seems to be particularly evident in Zeno’s paradox of the 
flying arrow that rests. In essence, however, the problem is the same as the di-
chotomy paradox. While the latter is about the false assumption of an expan-
sionless point in space, the arrow paradox assumes that the same point in time 
can be determined. For example, Henning Genz (Professor of Theoretical Par-
ticle Physics) argues with the assumption, whatever occupies a place of exactly 

https://doi.org/10.4236/jamp.2024.123057


A. Herberg-Rothe 
 

 

DOI: 10.4236/jamp.2024.123057   920 Journal of Applied Mathematics and Physics 
 

its own size is at rest. Now his counterargument is that everything, whether 
moving or at rest, occupies a place of exactly its own size at every instant. For 
him this is not taught in the first semester of physics only because it is assumed 
to be trivially true, he says. If one wants to know how long a moving body is, one 
determines at the same time the coordination of its starting and end point and 
forms their difference—the result is the length of the body. This descriptive re-
presentation, which is not taught to the students of the first physics semester 
only because it is so trivial, has only one small hook. This is found in the formu-
lation: “one determines at the same time” ([12], pp. 62-63). This may be trivial, 
but it is wrong. Is there one and the same time independent of its “determina-
tion”? Paradoxically, in the same work, Genz implicitly argues against Zeno with 
the possibility of measuring a body at “the same time” (of course to prove that 
Zeno’s paradoxes are hopelessly outdated), only to concede later in the discus-
sion of relativity that there can be no absolute simultaneity ([12], pp. 131-133). 

Of course this is possible if we are in the range of seconds. But what if this 
“determination” has a duration of only fractions of seconds, so that we are in the 
nanosecond range or even far below? Logically, the determination of the start 
and end point of anybody requires an arbitrarily small amount of time, which is 
negligible in practical investigation, but without it really being equal to 0. This is 
not only because the comparison between the determination of the start and end 
point requires some time span, however, small. The time span of the comparison 
between the beginning and the end point of the body would only be equal to 0 if 
the speed of the comparison itself were infinitely fast—which it cannot be logi-
cally (and which physically corresponds to the limit of the speed of light when 
reading the comparison results). To put it to the core: Nobody can be in the 
same place at the same time—this would only be possible if there were no 
movement of time and space. Space and time are themselves an expression of 
motion. 

This problem applies not only to the microscopic range, but also to the ma-
croscopic range, for example when observing distant galaxies. Generally speak-
ing, a body is always at its place if and only if the observation time of the com-
parison is negligible compared to the time in which this body executes a motion. 
Since every comparison between two points in time necessarily requires a tiny 
but time span, the beginning and the end point of a body cannot be measured at 
the same time. Therefore, physical measurability cannot be an argument for or 
against the decision whether a body is at the place it occupies. 

It is true that mechanics assumes the possibility of instantaneous velocities. 
But even this may be due to the practical negligibility of time differences and 
does not represent a logical-philosophical solution. Weierstrass had proposed 
such a solution, but this only shifts the problem presented here to other proble-
matic areas. This conclusion follows from calculus and continuous functions (as 
emphasized by Weierstrass and the “at-at-theory of motion”) by pointing out 
that although the value of a function f (t) is constant at a given t, the function f 
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(t) may not be constant at t ([13], p. 3). Again, although a value can be found 
mathematically for this point, this does not necessarily mean that the function 
itself is always constant. 

Finally, let us consider the problem from a point of view in which there seems 
to be no difference between the object and the system measuring its motion. 
Genz’s argument that a moving body is always at the place it occupies could be 
true if both the measured body and the measuring instrument are moving un-
iformly, for example under Earth conditions. According to this reasoning, the 
relative motion of both bodies could be neglected. But what about the Earth’s 
own rotation, its motion around the Sun, the motion of the solar system in the 
Milky Way, the relative motion of all galaxies to each other, and their escape ve-
locity with respect to the Big Bang? In order to really argue that a moving body 
is at the place it occupies, all the differences in these motions would have to be 
neglected. But they are not uniform, there are differences. From this it follows 
that the motion of a body would be negligible only in a certain system of obser-
vation which is absolutely uniformly moved, so that from this point of view a 
moved body is at the place which it occupies. This is because in the special case 
of uniform motion, both bodies can be represented as absolutely stationary, and 
their relative motion would not only be negligible, but would actually be 0. But 
strictly speaking there is no absolute uniform motion of two different bodies – in 
practice we may neglect their difference, but logically it is not possible.  

To summarize these discussions, nobody is at “its” place at any time when it is 
moving, but only in a space or time interval which is not absolutely determina-
ble. In conclusion, we could say that Zeno’s paradoxes don’t prove that there is 
no motion, but on the contrary, that they can only be solved if we define motion 
as absolute. 

4. Real Numbers as Expression of Motion 

The inner limits in the movement from A to B are of course transgressed be-
cause the movement goes beyond them. Nevertheless the question remains, what 
they are—are they themselves without extension or are they extended? Hegel 
agrees with the “modern” constructivists in basic mathematics that a bounded 
spatial, temporal, or number continuum never consists of an actual infinite set of 
elements such as points, lines, surfaces, “jets,” real numbers, and so on. Accord-
ing to Hegel, the notion of the composition of a continuum from elements that 
can only be thought of as limits of the continuum itself does not make sense be-
cause these limits do not exist in a certain sense ([14], p. 238, note 73). What 
does this assessment look like with respect to real numbers? Wolff argues une-
quivocally that real numbers, insofar as they appear as infinite decimal fractions, 
but which are not repetitive, do not “exist.” Rather, they would express a mere 
ought, namely, the absolutely unfulfillable requirement to specify so many de-
cimal places that one and only one particular limit is reached. The whole of to-
day’s “orthodox” analysis is based on the completely “arbitrary” determination 
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that two sequences of irrational numbers are to be ascribed the same limit value 
if their members finally differ by less than <e>, where <e> is any rational num-
ber.  

However, this arbitrariness of fixing is challenged by the accuracy of the real 
numbers in physical reality. The same real numbers with which we are used to 
describe the things of everyday life as well as unusually large objects remain 
applicable also at scales far below the atomic diameter—down to less than one 
hundredth of the classical diameter of an elementary particle, for instance of 
an electron or proton. They are valid even down to the scale of quantum grav-
ity, i.e. twenty orders of magnitude smaller than an elementary particle ([14], 
pp. 84-85). 

Even this immeasurably small number, however, cannot yet exhaust the infin-
ity of the real numbers, so that one might be inclined to agree with the position 
of Michael Wolff, to the effect that the real numbers actually do not exist, their 
reality is a mere ought. However, this interpretation of the real numbers as mere 
ought, put forward by Wolf, leans too closely on the practical necessity of a ra-
tional approximation for real numbers. Since real numbers are in principle infi-
nite, one can practically calculate only with approximate values by stopping the 
infinite process at a point possible or necessary for the context. But this ap-
proximate value is by no means a limit value. If such a rational limit of an irra-
tional infinite decimal number existed, irrational numbers could be replaced by 
rational ones. It is true that any (irrational) real number can be represented as an 
infinite sequence of rational numbers. Thus, the real number <n> (phi): = 
3.1214 … can be represented as a sequence <3/1, 31/10, 312/100, 3121/1000, 
31214/10 000, …> of rational numbers ([15], p. 241). Nevertheless, (irrational) 
real numbers are not directly traceable to rational numbers, because this se-
quence has no limit value, but only an approximate value. If this infinite se-
quence would break off at any point, e.g. at the smallest possible division of the 
objects of the universe, it would degenerate, contrary to its intention in mathe-
matics, to a rational number ([15], pp. 243-244). In contrast to the consequence 
as it is represented in Zeno’s paradoxes, a real number has no limit value, but 
only a rational approximate value. To the contrary, Brendel is understanding the 
infinite as a construction of the finite and highlights recursive method [16]. I 
argue, that the recursive method is never resulting in understanding the whole 
(or even the absolute or totality) and I think that the best proof for that is 
Gödel’s theory of incompleteness 

This proposition can be interpreted in such a way that a real number is basi-
cally not representable as point, but exclusively as distance, as movement. Their 
incompleteness contains nothing else than that their exact determination goes 
beyond any representation from points without extension. The addition of infi-
nitely many lower-dimensional entities to a higher-dimensional one is paradox-
ical ([17], p. 51). This is the fundamental sense of real numbers as well as the 
reason for their almost unlimited applicability—real numbers are determina-
tions of motion without a rational limit [18]. In contrast, rational real numbers 
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are determinations of extensionless indivisible points. 
In the latest attempt to solve Zeno’s paradoxes non-standard numbers are in-

troduced, which seem to have no physical appearance. But this introduction of a 
new set of numbers to solve Zeno’s paradoxes points directly to our position that 
the numbers of a lower dimension can be derived from those of a higher dimen-
sion as its subset, but not vice versa [19] and [20]. 

5. The Other Countability of the Real Numbers  

Since Cantor and his indirect proof using the diagonal method, it is considered 
unquestionable that the real numbers between 0 and 1 are uncountably or over-
countability infinite [21]. However, this indirect proof has the disadvantage that 
it depends on whether there is a method other than the one used by Cantor, 
which, conversely, does not prove the uncountability of the real numbers, but 
only the contradictions within the diagonal method. Cantor’s apparent proof has 
far-reaching consequences for the philosophy of mathematics, Gödel’s incom-
pleteness theorem, and philosophy as a whole in the wake of Quantum-physics. 
This paper develops a method to prove the countability and completeness of the 
real numbers by using the model of a fractual structured inversed triangle. This 
method is based on a beginning, a generating principle, and the arrangement of 
the real numbers between 0 and 1 in a fractal structure. The completeness is 
proved in a generating vertical triangle system, the countability is horizontal. We 
do not start with the smallest real number between 0 and 1, which does not exist, 
but with the largest, 0.9999 … or 1. 

The problems associated with “inversion” in the sciences [2], are dramatically 
exacerbated in the indirect proof procedure. For here the truth of the “proposi-
tion” to be proved is inferred from the provable falsity of the corresponding 
contradiction. This method of proof is completely unproblematic in simple cas-
es, but cannot always be applied in complex contexts. This is because in these 
contexts the contradiction of a proposition to be proved is no longer a simple 
one, but is itself a constructed model. This problem becomes particularly clear in 
a fundamental and far-reaching method of proof in mathematics, the diagonal 
method developed by Georg Cantor. The theorem of overcountability or non- 
countability of real numbers derived from it is only valid until a different system 
of countability is found than that of the diagonal method. Such a method is pre-
sented here. The simple, but far reaching difference is, that in Cantor’s only ap-
parent proof, he is arguing that there could be no beginning of counting, because 
there is no smallest number between 0 and 1. He is of course right. But there is a 
greatest number between 0 and 1, from which we could start. 

The crucial point of Cantor’s proof is the assumption that an infinite set is 
absolute complete and yet a number can be formed that belongs to this set (a 
real number) on the one hand and is not contained in it on the other hand. In 
this respect, this method only proves that, first, an infinite set cannot be closed, 
but always remains open, and, second, that there is a difference between the real 
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numbers and the natural numbers. This consists in the fact that for the natural 
numbers (also concerning the integers and the rational numbers) there is both a 
beginning and a principle of generation that guarantees the completeness of 
these sets of numbers, whereas for the real numbers (between 0 and 1) there 
seems to be neither a beginning nor a principle of generation. 

We want to question the proof of the uncountability of the real numbers be-
tween 0 and 1 from another side, namely by presenting a procedure that allows 
the countability of this set. As we have already indicated, the uncountability of 
this set, as postulated by Cantor [20], is, in our opinion, mainly based on the fact 
that he didn’t find a beginning of counting for it and also no emanating prin-
ciple To illustrate this, let’s start with the infinite repetition of the number 0, i.e. 
0.0000… What would be the next smallest number? 0.10000… obviously not. To 
distinguish it from the number 0.000… we would have to construct an infinite 
sequence of 0.0000… which at some point in infinity turns into the number 1. 
But then this number would either be a finite number, or we could form an even 
smaller number by inserting another 0, and only placing the digit 1 in the next 
but one position. The problem of the uncountability of real numbers between 0 
and 1, as Cantor saw it, is objectively based on the fact that we would have to 
start at infinity. This is likely to be difficult. For this reason, there is no imme-
diate beginning at 0 for the real numbers between 0 and 1, because we cannot 
find a logical transition from 0 to the next smallest number. 

The situation is completely different if we do not look for the smallest number 
in this series that follows 0 (or, if we exclude 0, the smallest number between 0 
and 1), but instead start with the largest number between 0 and 1, with 0.9999… 
(This is completely independent of whether we equate 0.9999… with 1 or not). 
While in the set of real numbers between 0 and 1 there can be no smallest num-
ber that can be represented in digits (because such a number that can be 
represented in digits would have to start at infinity), the situation is different on 
the other side. There is no number in this set greater than 0.99999… the one 
mentioned, and none that would lie between 1 and it. This means that we have at 
least one end of the infinite set of real numbers between 0 and 1. This allows us 
to reverse the counting process and use the end, the largest possible real number 
between 0 and 1 as the beginning of the counting process.  

The problem of the relation between countable and uncountable infinite sets 
is thus apparently reduced to finding a beginning of counting, a method of ge-
nerating these numbers, and guaranteeing the completeness of this set of num-
bers. Regarding the beginning, we have chosen a different beginning for the real 
numbers by starting with the largest number instead of the smallest – this largest 
possible real number between 0 and 1 as its end is a possible beginning of 
counting. We also believe that we have found a generation method that is also 
different from that of countably infinite sets. In fact, it is a method for generat-
ing all real numbers between 0 and 1. Moreover, this generation method guar-
antees the completeness of this number space. If we take the three criteria of the 
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beginning, the generation, and the completeness of the generated set, then the 
set of real numbers between 0 and 1 is also countably infinite, though undoub-
tedly in a different way than the sets previously defined as countably infinite. 

What does this procedure look like concretely? We do not need Cantor’s di-
agonal method, but the modern representation of fractals. Our thesis is that we 
can represent all real numbers from 1 to 0 in an inversed triangle with rows and 
columns, which structure a particular fractal, in simplified terms, as an infinitely 
branched tree, and at the same time take the largest number between 0 and 1, the 
number 0.9999999999… as the beginning.  

Let us start with the number 0.999…, followed by 
The first row, which consists of the beginning of  
0.9999…, followed by 0.899…, 0.799… 0699… until 0.099… 
Each number would be the basis for a new column at the next row, which 

consists of ten ciphers, starting always with the cipher 9 
First column at the second row: 
0.9999…0.98999… 0.97999… 0.96999… 0.9599… 0.0099… 
Followed horizontally by the second column in the second row 
0.8999… 0.8899… 0.87999… 0.80999 
Equally followed horizontally in this row by the third column: 
0.7999…, 0.78999… 0.77999 until… 0.7.099 
/ 
/ 
0.099…, 0.0899 and so forth. 
If this row is completed, we go forward to row three. 
Again we start with 
0.999…, but exchange always the third cipher 0.998… 0997 and so forth 
Again each number in a row is the basis for a new column  
How do we get to the next number? Quite simply, by differentiating the 

second number from the first number according to the branches of a tree. 
0.99999…, 0.989999…, 0.98799… etc.  
We have now found the beginning of counting, the number 0.9999, and have 

also developed a method for generating all numbers between 0 and 1. Despite 
the fractal nature of this method, how can we count the set of real numbers be-
tween 0 and 1? Quite simply by creating a ruler (in the figurative sense) on each 
horizontal level of fractal differentiation and counting the numbers starting with 
the largest number on the first row using the natural numbers. At the end of 
each row we proceed to the beginning of the next row. 

In this way we will not only capture all numbers between 0 and 1, the set gen-
erated in this way is absolutely complete. We can also count them using the nat-
ural numbers. This is possible if we represent the real numbers as part of a com-
prehensive fractal that starts with the number 0.9999, writes the other numbers 
0.89999…, 0.79999… to the right of it, forms the next largest possible number 
from each of these numbers, writes the others to the right of it, and so on. On 
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the first level of the fractal there are 101 numbers, on the second level 102 num-
bers, on the third level a thousand numbers and so on. This proves that the real 
numbers between 0 and 1 are countable. All we need is a beginning, a complete 
vertical generation system, and a method of horizontal counting.  

Although this approach is different from it an inversed Sierpinski or an in-
versed Pascal triangle might visualize the principle of the countability of the real 
numbers between 0 and 1. The only difference is that in the bottom row we be-
gin with the number 0.999…, in the first following row, we replace the first digit 
after the decimal point with 9-0. Each of these numbers is then differentiated in 
the following row by replacing the second digit after the decimal point with the 
digits 9-0, and so on. In this “inverted Herberg-Rothe triangle”, which is infinite 
upwards, we find 10 to the power of n numbers in each row. 

Each number is to be differentiated at the next level by exchanging each 
number in one row by the ten next ciphers from 9-0.  

Finally we need to cancel all repetitions of numbers with the exception of their 
first appearance. 

Obviously, this is a different form of countability of the real numbers between 
0 and 1 than Cantor had in mind. The generation system of these numbers be-
gins with the largest number between 0 and 1 (regardless of whether we equate 
the number 0.9999 with 1 or not). In this method, each digit in a tree scheme is 
extended by 9-0 in the next level—this method results in a vertical structure. 
While Cantor’s apparent proof does not succeed in counting the real numbers, 
because there is neither a beginning, nor a generating principle, nor real com-
pleteness, these are given with the method developed here. This means that the 
real numbers represent a continuum vertically, but a discontinuum horizontally. 

6. Summary and Perspectives 

In this article, I have shown that Zeno’s paradoxes are only paradoxes if we use a 
wrong understanding of motion. Aristotle’s idea that motion begins in some-
thing and ends in something has the consequence that there is neither motion at 
the beginning nor at the end—in Zeno’s construction, motion must come to a 
standstill at the end. If, on the other hand, we clearly distinguish between two 
forms of motion, one that completely fills space and time in between but without 
reaching their limits, and a kind of motion that transcends these limits, there is 
no paradox at all, but only different expressions of the same motion: one hori-
zontal and one vertical. Zeno mixes the two indifferently, so he comes to the 
conclusion that there is no (transgressive) motion at all, because he uses only the 
concept of motion as filling the space between boundaries. I would like at least to 
point out that we can understand finitude as a special case of infinity (e.g. at very 
low speeds), but never the other way around. Gödel’s theory of incompleteness, 
Cantor’s and Russell’s critique of infinity, as well as the work of the Vienna 
School, and especially Tarski’s magic trick [2] of merging the endless repetition 
of meta-object language with meta-metalanguage, in which the difference be-
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tween meta- and object language must be formulated ([2] show that the whole 
cannot be understood on the basis of generalizing the particular. On the con-
trary, it is possible to understand finitude as a particular form of infinity by be-
ing able to neglect some of its determinations—for example, Newton’s mechan-
ics is still applicable in low-speed circumstances. 

Unlike Kaulbach and Aristotle, I reject the idea that motion is something that 
moves from one substance to another. This assumption would imply some kind 
of essence that moves. But we can’t determine this essence of any kind without 
taking into account that its determination depends on its particular motion. To 
repeat, it could be said that particles can be understood as high, low, turning and 
crossing “points” of waves, but not vice versa. If we consider the subatomic 
space as a kind of wave-ling space, it might even be explainable that we can only 
work with probabilities in this field. 

I must confess that I am tempted to see the finite as the particular of the infi-
nite, the absolute. This would be a holistic understanding of the relationship 
between the absolute (infinite) and the particular (finite) as we find it in parts of 
Islam, Buddhism, and Confucianism [3]. But we also know from the followers of 
the Vienna Circle and Cantor that we cannot fully recognize the Absolute. 
However, Hegel had already argued that in determining the Absolute, we trans-
form it into a particular of the Absolute [21]. Mathematics and logic are often 
based on the recursive method of complete induction—but Gödel’s incomplete-
ness theorem proves that the recursive method can never be complete. As a con-
sequence, we may have to accept that we have to find a balance between two ap-
parently opposed approaches—the recursive method and, at the same time, the 
determination of the finite as a particular of the infinite. I know that this pers-
pective is counterintuitive because we usually experience motion as the motion 
of something. But space and time, perhaps the most important concepts of phi-
losophy, mathematics, and physics, are already pure expressions of motion, 
based on their differentiation as substantive motion (attraction) and transgress-
ing motion (based on repulsion in Einstein’s theory).  

Without treating this perspective explicitly in this short essay, I would like to 
point out some perspectives: Quantum theory and related mathematics have had 
the upper hand on Zeno’s apparent paradoxes, but in doing so they still treat 
space and time as absolutes [22]. As long as there is no unifying theory of quan-
tum approach and relativity, it does not make sense to base the understanding of 
physics on only one approach. To the contrary, in Einstein’s theory of relativity, 
space and time are related to velocity and thus to motion [23]. It may even be 
possible to conceptualize particles as high, low, and turning points, as well as 
crossing points of waves, but waves are not composed of particles [2].  
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