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Abstract 
To solve the first-order differential equation derived from the problem of a 
free-falling object and the problem arising from Newton’s law of cooling, the 
study compares the numerical solutions obtained from Picard’s and Taylor’s 
series methods. We have carried out a descriptive analysis using the MATLAB 
software. Picard’s and Taylor’s techniques for deriving numerical solutions 
are both strong mathematical instruments that behave similarly. All first-order 
differential equations in standard form that have a constant function on the 
right-hand side share this similarity. As a result, we can conclude that Tay-
lor’s approach is simpler to use, more effective, and more accurate. We will 
contrast Rung Kutta and Taylor’s methods in more detail in the following 
section.  
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1. Introduction 

Differential equations play a crucial role in advancing various natural and social 
sciences by finding solutions to many problems humans face. This is achieved 
through modeling problems, which often involve rates. Due to the difficulty of 
finding solutions for some types of these equations, mathematicians have turned 
to alternative methods known as approximate numerical solutions. These solu-
tions take various forms, such as Taylor’s method, Picard’s method, Euler’s me-
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thod, Runge-Kutta’s method, and others. 
These methods have garnered significant interest from researchers by apply-

ing them to solve differential equations, especially those of the first order. Re-
searchers have also focused on the idea of comparing these methods in terms of 
the quality of the approximate solutions. Previous studies [1] [2] [3] [4] ad-
dressed the comparison topic and a good agreement with the exact solution in 
favor of the Runge-Kutta method for accurate results and minimum amount of 
error, and in [5] using Euler’s method for higher orders. In studies [6] and [7] 
the authors used Picard and Taylor methods to solve motion and atmospheric 
pressure problems and observed that Taylor’s method converged faster than Pi-
card’s method and for [8] the authors showed that Euler’s method is less accu-
rate than Runge-Kotta method. In contrast, the current study focused on using 
Picard and Taylor’s methods to study the phenomena of free-fall motion of bo-
dies and Newton’s law of cooling. The uniqueness of the current study lies in its 
connection between these two phenomena, which many studies have over-
looked. Additionally, the study used the MATLAB program for the comparative 
analysis. 

Through careful and investigative study in this field, the researcher addressed 
the scarcity of research that dealt with physical and natural issues by finding ap-
propriate solutions to them, especially using the Picard and Taylor methods, and 
from here the problem of the study emerged, which was represented in the fol-
lowing questions. 

1.1. Questions of the Study 

1) Is there a difference between the numerical solutions of Picard’s and Tay-
lor’s methods compared to the exact solution of the first-order differential equa-
tion? 

2) Is there a difference between the numerical solutions of Picard’s and Tay-
lor’s method compared to the exact solution of the first-order differential equa-
tion arising from the problem of free-falling objects under the influence of 
Earth’s gravity? 

3) Is there a difference between the numerical solutions of Picard’s and Tay-
lor’s methods compared to the exact solution of the first-order differential equa-
tion arising from the problem of Newton’s law of cooling? 

1.2. Research Objectives 

This research target to: 
1) Investigate the difference between the numerical solutions of Picard’s and 

Taylor’s methods compared to the exact solution of the first-order differential 
equation. 

2) Compare the numerical solutions of Picard’s and Taylor’s series method for 
finding the solution of the first-order differential equation arising from the 
problem of free-falling objects under the influence of Earth’s gravity. 
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3) Investigate the difference between the numerical solutions of Picard’s and 
Taylor’s methods compared to the exact solution of the first-order differential 
equation arising from the problem of Newton’s law of cooling. 

1.3. Formulation of the Problem 

For obtaining the approximate solutions to the initial value problem of an ordi-
nary differential equation, we consider two numerical methods consisting of the 
form: 

 ( ) ( )0 0
d , ,
d
y f x y y x y
x
= =  (1) 

Such that ( )y x  is the solution of Equation (1). 

1.4. Lipschitz Condition 

A function ( ),f x y  defined on a domain D of xy plane is satisfying Lipschitz 
condition w.r.t y in D if there exists a constant K such that: 

( ) ( ) ( ) ( ) ( )2 1 2 1 1 2, , , for all , , , .f x y f x y k y y x y x y D− ≤ − ∈  

1.5. Theorem 

Let D be z region in 2 , such that ( ) ( ){ }0 0, : , , :D x y x x a x y y y b= − ≤ − ≤  
and :f D →  be a real function such that: 

1) ( ),f x y  is continuous on D. 
2) ( ),f x y  is bounded on D. 
3) ( ),f x y  satisfy Lipschitz condition. 
Then the initial value problem of first-order differential equation has a unique 

solution ( )y y x=  for which ( )0 0y x y=  in the interval 0x x h− ≤ , where  

min , bh a
M

 =  
 

. 

1.5.1. Picard Iteration Method  
It is an important iterative method for generating a sequence of increasingly ac-
curate algebraic approximations of the specific exact solution of the first-order 
differential equation with initial value (1). So, the integration of Equation (1) 
yields the following: 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

0

0

0

1 0 0

2 0

0 2

1

3

, d

, d

, d

x

s x

x

s x

x

s x

y x y x f x y s

y x y x f x y s

y x y x f x y s

=

=

=

= +

= +

= +

∫

∫

∫


  

To continue this process, we get a sequence of functions of x i.e. 

1 2 3, , , , ny y y y , so, to keep them going, we use the following iterative formula: 

 ( ) ( ) ( )
0

1 0 , d
x

n ns x
y x y x f x y s+ =

= + ∫  (2) 
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Therefore, ( )1limn ny y x→∞ + = , which is the exact solution. 

1.5.2. Maclaurin Series 
The general form: 

( ) ( ) ( ) ( ) ( ) ( ) ( )2 30 0 0
0 0

2! 3! !

n ng x g x g x
g x g g x

n
′′ ′′′

′= + + + + + +   

It is not working to: ( ) ( )lng x x= , since ( ) ( )0 ln 0g =  which is undefined. 

1.5.3. Taylor’s Series Method 
Taylor’s series is a numerical method used to approximate the value of a func-
tion f(x) at a specific point x = a, by using a series of terms that are derived from 
the function’s derivatives evaluated at that point. 

Let ( ) ( )f x a g x+ = , i.e., replace x with x a+ , 0a ≠ , then  

( ) ( ) ( ) ( ) ( ) ( ) ( )2 3

2! 3! !

n nf a x f a x f a x
f x a f a f a x

n
′′ ′′′

′+ = + + + + + +   

Again, by replacing x with x a− , we get: 

( ) ( ) ( )( ) ( )( ) ( )( )

( ) ( )( )

2 3

1! 2! 3!

!

nn

f a x a f a x a f a x a
f x f a

f a x a
n

′ ′′ ′′′− − −
= + + +

−
+ + + 

 

Which it can be written in a sigma notation as follows: 

 ( ) ( ) ( ) ( )0 .
!

n
n

n

x a
f x f a

n
∞

=

−
=∑  (3) 

Note that any function can be represented by Taylor’s Series about the posi-
tion (a) if it is continuous and differentiable near a. 

Let ( ) sinf x x= , then  

( ) cosf ' x x=   

( ) sinf '' x x= −    

( ) cosf ''' x x= −   

( ) sinf '''' x x=   

and so on 
The Taylor series for sinx at x = 0, is given by: 

3 5 7

sin
3! 5! 7!
x x xx x≈ − + − +

 
 

1.6. Comparison Criteria 

The criteria used to compare the effectiveness and accuracy of numerical solutions 
of any first-order differential equation with the exact solution are as follows: 

1) The type of equation to be solved contributes, highlighting the contrast 
between the numerical solutions used and the exact solution. 
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2) The numerical results of the absolute error calculated are one of the most 
important criteria used to compare the effectiveness and accuracy 

3) Computing more terms of the sequence of solution, increasing accuracy. 
4) Using small steps provides better approximations that are close to the exact 

solution. 
5) The graphical representation of the numerical solutions compared with the 

graph representations of the exact solution of the first-order differential equa-
tion contributes to determining the most effective and accurate numerical solu-
tion by identifying the curve close to the exact solution curve. 

6) The limit of the sequence of numerical solutions tends to the exact solution 
when the independent variable tends to infinity. 

1.7. Some Limitations and Assumptions 

1) Lip itches condition is satisfied as the basis for the existence of a unique 
solution of the first-order differential equation. 

2) If the R. H. S. of the standard first differential equation is constant, then the 
numerical solutions of both Picard and Taylor are identical. 

3) It is difficult to find the exact solution of a first-order differential equation 
at which the degree of the right-hand side is greater than four. 

4) The distinction of one numerical method over another one in terms of ef-
fectiveness and accuracy depends on dividing the specific interval used into 
small subintervals, more of them increasing efficiency and accuracy.  

2. Applications and Comparisons 
2.1. Problem 

Consider the first-order differential equation: 3d 2
d
y x y
x
= − , with ( )0 1y = . 

First, we solve it by classical method and then by numerical methods. 

2.2. Classical Method 

It classified as linear differential equation comparing with ( )d
d
y p x y
x
+ = ( )q x , 

here ( ) 2p x = , ( ) 3q x x= , then the integrating factor = 2d 2e ex xI ∫= = , so its 
solution is: 

dy I QI x c⋅ = +∫  
 

2 3 2e e dx xy x x= ∫  
 

Then after using the Tanique of integration by parts three times, we get: 
3 2

2 2 2 2 23 3 3e e e e e
2 2 4 8

x x x x xx x xy c= − + − + .  

Using the initial condition ( )0 1y = , then 1c = , so the particular (exact) so-
lution is: 

 ( )
3 2

23 3 3 11e .
2 2 4 8 8

xx x xy x −= − + − +  (4) 
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Now we apply the above two numerical methods to our given differential eq-
uation one by one.  

2.3. Solution by Picard’s Method 

The iteration scheme is: 

( ) ( )3
1 0

1 2 d
x

k ks
y x x y s+ =

= + −∫ , 

where 0,1,2,3,k =  , By putting 0 1y = , then we get the first approximation 
solution as: 

( ) 4
1

11 2 .
4

y x x x= − +   

and the second approximation solution is: 

( ) 2 4 5
2

1 11 2 2 .
4 10

y x x x x x= − + + −  

So, 

( ) 2 3 4 5 6
3

4 1 1 11 2 2 .
3 4 10 60

y x x x x x x x= − + − + − +  

( ) 2 3 4 5 6 7
4

4 11 1 1 11 2 2 .
3 12 10 30 210

y x x x x x x x x= − + − + − + −  

Then after the four iterations we have the following approximation: 

 ( ) 7 6 5 4 3 21 1 1 11 4 2 2 1
210 30 10 12 3

y x x x x x x x x= − + − + − + − +  (5) 

2.4. Solution by Taylor’s Series Method 

For the equation 3d 2
d
y x y
x
= − , we have: (Figure 1 and Figure 2 and Table 1) 

 

 

Figure 1. Comparison of exact solution and numerical solution of picard and taylor. 
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Figure 2. Comparison of the Exact Solution and the Numerical Solution of Picard and 
Taylor The following table gives the values of y from x = 0 to 2 taking h = 0.2. 
 
Table 1. Numerical comparison between exact and approximate solutions of proposed 
two methods. 

x-value 
Exact 

solution 
Picard’s 
solution 

Taylor’s 
solution 

Absolute 
Error 

(Picard) 

Absolute 
Error 

(Taylor) 

0 1.0000 1.0000 1.0000 0.0000 0.0000 

0.2000 0.6407 0.6708 0.6707 0.0301 0.0300 

0.4000 0.3348 0.4572 0.4548 0.1224 0.1200 

0.6000 0.0571 0.3444 0.3270 0.2873 0.2699 

0.8000 −0.2014 0.3478 0.2774 0.5492 0.4788 

1.0000 −0.4389 0.5119 0.3040 0.9508 0.7429 

1.2000 −0.6463 0.9104 0.4042 1.5567 1.0505 

1.4000 −0.8094 1.6458 0.5629 2.4551 1.3723 

1.6000 −0.9110 2.8690 0.7345 3.7599 1.6455 

1.8000 −0.9314 4.6794 0.8175 5.6109 1.7490 

2.0000 −0.8498 7.3238 0.6190 8.1736 1.4689 

 

( ) ( )3 2 0 2y x x y y′ ′= − ⇒ = −  

( ) ( )23 2 0 4y x x y y′′ ′ ′′= − ⇒ =  

( ) ( )6 2 0 8y x x y y′′′ ′′ ′′′= − ⇒ = −  
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( ) ( ) ( ) ( )4 46 2 0 22y x y y′′′= − ⇒ =  

( ) ( ) ( ) ( ) ( )5 4 52 0 44y x y y= − ⇒ = −  

( ) ( ) ( ) ( ) ( )6 5 62 0 88y x y y= − ⇒ =  

( ) ( ) ( ) ( ) ( )7 6 72 0 176y x y y= − ⇒ = −  

Therefore, Taylor’s series expansion is: 

 ( ) 7 6 5 4 3 211 11 11 11 4 2 2 1
315 90 30 12 3

y x x x x x x x x= − + − + − + − +  (6) 

3. Falling Objects with Air Resistance 

Many of the laws of nature are statements or relations involving rates, at which 
things happen, when such the statement is expressed in mathematical terms, 
then it becomes an equation describing a physical process. Suppose that an ob-
ject of mass (m) is under falling motion which was influenced by the gravity of 
the earth (Fg) and the air resistance (Fr) in an opposite direction of the object, so 
we have two forces acting on it (Figure 3). 
 

 

Figure 3. Modelling. 
 

1) Gravity force: It is equal to the multiplication of the mass object times the 
acceleration due to gravity (g):  

 gF mg=  (7) 

2) Air resistance (drag) (Fr): This force is proportional to the square of the 
velocity (v) of the object, so 

rF v∝  

 rF vβ=  (8) 

Modelling: Now by using Newton’s second law of motion, we perform the 
following substitution: (Figure 4) 

 F ma=∑  (9) 

where (a) represents the acceleration of the object.  

g rF F ma− =  

mg v maβ− =  
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Figure 4. Free falling object. 
 

Then the differential equation of the falling object is given by: 

 d
d
v v g
t m

β
+ =  (10) 

With initial condition ( )0 0v = , therefore: ( ),f t v g v
m
β

= − . Which is a li-

near differential equation, since  

( ) ( )2 1 2 1 2 1, , k k kf t v f t v g v g v v v
m m m

− = − − + = − . 

Therefore, ( ),f t v  has a unique solution ( )v t  for which ( )0 0v = . There-
fore ( ),f t v  has a unique solution ( )y t  for which ( )0 0v =  (see [1.5]). 

3.1. Picard Iteration Method 

By integrating (10), we get:  

 ( )00 0
d , d

t t
v v f t v s= +∫ ∫  (11) 

So, the iteration scheme is: 

 ( ) ( )1 0 0
, d

t
k kv t v f t v s+ = + ∫  (12) 

Therefore, the first approximation to the solution in ( ),f t v  by putting 

0v v=  and integrate (12), so  

( )1 00
0 d

t kv v g v s
m

 = + − 
 ∫   

For the second approximation solution, we put 1v v=  in ( ), kf t v , and again 
integral (12), we get 

( )2 10
0 d

t kv v g v s
m

 = + − 
 ∫   

Continue this process, a sequence of functions of t i.e. 1 2 3, , ,v v v   is obtained 
giving a better approximation of a desired solution in the preceding one. 

https://doi.org/10.4236/jamp.2024.123055


K. A. E. A. A. Elnour  
 

 

DOI: 10.4236/jamp.2024.123055 886 Journal of Applied Mathematics and Physics 
 

3.2. Taylor’s Series Method 

Consider the first-order differential Equation (10), and by differentiating it we 
get: 

 v v′′ ′=  (13) 

Differentiate (13) successively we get v′′′ , ( )4v , ( )5v , etc. When we put 
0t =  and 0v = , the values of 0 0 0, , ,v v v′ ′′ ′′′

  can be obtained. Therefore, Tay-
lor’s series follows: 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )
2 3

0 0
0 0 0 0 0

2! 3!
t t t t

v t v t t v v v
− −

′ ′′ ′′′= + − + + +  (14) 

and this gives the values of v for every value of t for which (14) converge.  

3.3. Numerical Observations 

The exact general solution for Equation (10) is ( ) 1 e
k t
mgmv t

k
− 

= −  
 

 now, we 

discuss two cases: 
Case 1: let k m= , then Equation (10) becomes: 

 d
d
v v g
t
+ =  (15) 

Equation (15) was classified as a linear equation with integration factor 
etI = , then the solution is: 

e dtv I g t⋅ = ∫   

e et tv g cg= +  

Then, e tv g cg −= +  Using the initial condition ( )0 0v = , we get 1c = , then 
the exact solution (particular) of (15) is given by: ( ) e tV t g g −= − .  

3.4. For Picard Iteration Method 

1 0
d

t

s
v g s gt

=
= =∫ , 

2

2 2
gtv gt= −  

2 3

3 2 6
gt gtv gt= − +  

2 3 4

4 2 6 24
gt gt gtv gt= − + −  

2 3 4 5

5 2 6 24 120
t t t tv g t

 
= − + − + 

 
 

After the fifth iteration, we have the approximation:  

 
( )

2 3 4 5

.
2 6 24 120
t t t tv t gt g g g g= − + − +  (16) 

https://doi.org/10.4236/jamp.2024.123055


K. A. E. A. A. Elnour 
 

 

DOI: 10.4236/jamp.2024.123055 887 Journal of Applied Mathematics and Physics 
 

3.5. For Taylor’s Series Method 

( ) ( )0v' t g v v' g= − ⇒ =  

( ) ( )0v'' t v' v'' g= − ⇒ = −  

( ) ( )0v''' t v'' v''' g= − ⇒ =  

( ) ( ) ( ) ( )4 4 0v t v''' v g= − ⇒ = −  

( ) ( ) ( ) ( )5 5 0v t v'''' v g= − ⇒ =  

Then the fifth order Taylor’s formula is: see (Figure 5 and Figure 6) 

 ( )
2 3 4 5

2 6 24 120
t t t tv t gt g g g g= − + − +  (17) 

 

 

Figure 5. Comparative analysis of the estimated and ideal solutions for the proposed 
methods addressing the free-falling body problem (k = m). 
 

 

Figure 6. Comparative analysis of the estimated and ideal solutions for the proposed 
methods addressing the free-falling body problem (k = m). 
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The following Table 2 gives the values of v from t = 0 to 2 taking h = 0.2. 
 
Table 2. Numerical comparison of the approximate and perfect solutions to suggested 
techniques for the free-falling body problem (k = m). 

x-value 
Exact 

solution 
Picard’s 
solution 

Taylor’s 
solution 

Absolute 
Error 

(Picard) 

Absolute 
Error 

(Taylor) 

0 0.0000 0.0000 0.0000 0.0000 0.0000 

0.2000 1.7783 1.7783 1.7783 0.0000 0.0000 

0.4000 3.2342 3.2342 3.2342 0.0001 0.0001 

0.6000 4.4262 4.4267 4.4267 0.0006 0.0006 

0.8000 5.4021 5.4053 5.4053 0.0032 0.0032 

1.0000 6.2011 6.2130 6.2130 0.0119 0.0119 

1.2000 6.8553 6.8899 6.8899 0.0346 0.0346 

1.4000 7.3909 7.4761 7.4761 0.0852 0.0852 

1.6000 7.8294 7.0146 7.0146 0.1852 0.1852 

1.8000 8.1884 8.5549 8.5549 0.3665 0.3665 

2.0000 8.4824 9.1560 9.1560 0.6736 0.6736 

 
Case 2: Let k m≠ , ( )0 0v =  

( ), kf t v g v
m

= −   

1 00
d

t

s

kv g v s gt
m=

 = − = 
 ∫ , 

2

2 10
d

2
t

s

k kgtv g v s gt
m m=

 = − = − 
 ∫  

2 2 3

3 2 20
d

2 6
t

s

k kgt k gtv g v s gt
m m m=

 = − = − + 
 ∫  

2 2 3 3 4

4 3 2 30
d

2 6 24
t

s

k kgt k gt k gtv g v s gt
m m m m=

 = − = − + − 
 ∫  

2 3 4 2 5

5 4 20
d

2 6 24 120
t

s

k gt gt kgt k gtv g v s gt
m m m=

 = − = − + − + 
 ∫  

 ( )
2 2 3 3 4 4 5

2 3 42 6 24 120
kgt k gt k gt k gtgt

m m m m
V t − + − +=  (18) 

Now let: 2, 4m k= = , then Equation (10) becomes: 

 d 2
d
v v g
t
+ =  (19) 

With initial condition ( )0 0v = , so, the exact solution of such a problem is: 

( ) 21 1 e
2 2

tV t g g −= −   
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3.6. For Picard Iteration Method 

( ) ( )1 00
2 d

t

s
v t g v s gt

=
= − =∫ , 

( ) ( ) 2
2 10

2 d
t

s
v t g v s gt gt

=
= − = −∫  

( ) ( )
3

2
3 20

22 d
3

t

s

gtv t g v s gt gt
=

= − = − +∫  

( ) ( )
3 4

2
4 30

22 d
3 3

t

s

gt gtv t g v s gt gt
=

= − = − + −∫  

( ) ( )
3 4 5

2
5 40

2 4 22 d
3 9 15

t

s

gt gt gtv t g v s gt gt
=

= − = − + − +∫ . 

 ( )
3 4 5

2 2 2
3 3 15
gt gt gtV t gt gt= − + − +  (20) 

3.7. For Taylor’s Series Method 

( ) ( )2 0v t g v v g′ − ⇒ ′= =  

( ) ( )2 0 2v t v v g⇒′′ ′ ′′= − = −  

( ) ( )2 0 4v t v v g′′′ ′′ ′′′− =⇒=  

( ) ( ) ( ) ( )4 42 0 8v t v v g′′′= − = −⇒  

( ) ( ) ( ) ( ) ( )5 4 52 0 16v t v v g⇒= − =  

Therefore, Taylor’s Series expansion is: see (Figure 7 and Figure 8) 

( ) ( ) ( ) ( ) ( ) ( ) ( )42 3 40 0 0
0 0

2! 3! 4!
t v t v t v

v t v tv
′′ ′′′

= + + + + +  

( )
2 3 4 52 4 8 16

2! 3! 4! 5!
gt gt gt gtv t gt= − + − +  

 ( )
3 4 5

2 2 2
3 3 15
gt gt gtV t gt gt= − + − +  (21) 

 

 

Figure 7. Comparison of Exact solution and numerical solution for (k ≠ m) related to the 
equation of free-falling body. 
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Figure 8. Comparative analysis of the estimated and ideal solutions for the proposed 
methods addressing the free-falling body problem (k = m). 

 
The following Table 3 gives the values of v from t = 0 to 2 taking h = 0.2. 

 
Table 3. Presents a numerical comparison of the exact and approximate solutions of the 
proposed approaches to the equation of a free-falling body with k ≠ m. 

x-value 
Exact 

solution 
Picard’s 
solution 

Taylor’s 
solution 

Absolute 
Error 

(Picard) 

Absolute 
Error 

(Taylor) 

0 0.0000 0.0000 0.0000 0.0000 0.0000 

0.2000 1.6171 1.6171 1.6171 0.0000 0.0000 

0.4000 2.7010 2.7026 2.7026 0.0016 0.0016 

0.6000 3.4276 3.4450 3.4450 0.0173 0.0173 

0.8000 3.9147 4.0073 4.0073 0.0926 0.0926 

1.0000 4.2412 4.5780 4.5780 0.3368 0.3368 

1.2000 4.6400 5.4208 5.4208 0.9607 0.9607 

1.4000 4.6067 6.9249 6.9249 2.3181 2.3181 

1.6000 4.7051 9.6553 9.6553 4.9503 4.9503 

1.8000 4.7710 14.4033 14.4033 9.6323 9.6323 

2.0000 4.8152 22.2360 22.2360 17.4208 17.4208 

3.8. Corollary 

For the standard form of a first-order ordinary differential equation if the 
left-hand side is a constant then a numerical solution of both Picard and Taylor 
methods are identical. 

3.9. Example 

Find the numerical solutions if: d 1 2
d
y y
x
= − , with ( )0 1y =  using Picard and 
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Taylor methods. 
Solution 

For Picard method:              For Taylor’s method 

( )

1
2

2

2 3
3

1

1
21
3

y x

y x x

y x x x x

= −

= − +

= − + −

           
( )
( )

( ) 2 3
3

1
2 0 2

2 0 4
21
3

y
y y y

y y y

y x x x x

′ = −
′′ ′ ′′= − ⇒ =

′′′ ′′ ′′′= − ⇒ = −

= − + −

 

4. Newton’s Law of Cooling 

The Newton law of cooling states that: the rate of change of the temperature of an 
object is proportional to the difference between its temperature and the tempera-
ture of a surrounding, so, the rate of loss of heat from any object is directly pro-
portional to the difference in the temperature of the object and its surrounding. 

We assume that there is a hot object whose temperature is T and the sur-
rounding temperature is Ts, which is of lower temperature, then  

d
d s
Q T T
t

− ∝ −
 

 

 ( )d
d s
Q k T T
t

− = −  (22) 

Since the formula of the heat loss is: 

 d dQ ms T=  (23) 

Then from (22) and (23), we get: 

( )d
d s

ms T k T T
t

− = −
 

 

 ( )d
d s
T k T T
t ms

−
= −  (24) 

By putting: kc
ms
−

= , we get: ( )d
d k s
T c T T
t
= − , 0c < , where d

d
T
t

 is the rate  

of heat lost, and c is the coefficient of heat transfer. Then we get the following 
linear differential equation: 

 d
d s
T cT cT
t
− = −  (25) 

With ( ) 00T T= , here we have the following function: ( ), sf t T cT cT= − . 

4.1. Picard Iteration Method 

By integrating (25), we get 

 ( )
0 0
d , d

T t

T t
T f t T t=∫ ∫  (26) 

So, 

 ( )
0

1 0 dk k st

t
T T c T T s+ = + −∫  (27) 

for first approximation 1T  to the solution, we put 0T T= , and integral (26), we 
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get: 

( )1 0 00
ds

t
T T c T T s= + −∫ , 

For a second approximation 2T , we put 1T T=  in ( ),f t T , and integral (26), 
we obtain: 

( )2 0 10
ds

t
T T c T T s= + −∫   

Continuing this process, a sequence of functions of t, i.e. 1 2 3,, ,T T T   is ob-
tained, and each giving a better approximation of the desire solution than the 
preceding one. 

4.2. Taylor’s Series Method 

We have: ( ), sf t T cT cT= − , then buy differentiating we get: 

( ) d,
ds

f Tf t T cT c
T t
∂′ ′= − ⋅
∂

 

differentiating this successively, we can get: T ′′′ , ( )4T , ( )5T ,  , etc.  
Put 0t = , then the values of: ( )0T ′ , ( )0T ′′ , ( )0T ′′′  can be obtained, 

therefore the Taylor’s series: 

 
( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

0 0

2 3
0 000 0 0 0

1! 2! 3!

t Ts

T t T t t T T
cf cf f

t t t tt tT T T T

′ ′′= + −

′ ′= − ⋅

− −− ′ ′′ ′′′= + + + +

 (28) 

Gives the value of T for every value of t for which converges. 

4.3. Numerical Observations 

Case 1: Substitute 0.2c = −  in the Equation (25) we get: d 0.2 0.2
d s
T T T
t
+ = ,  

with the initial value ( ) 0T o T= , then the exact general solution is: ( ) sT t T= +  
0.2e tλ − , where λ  is a constant, and ( ) sT o T λ= + , then ( ) sT o Tλ = − , so 

( ) ( ) 0.2
0 e t

s sT t T T T −= + − , 

Let 0 80T =  and 20sT = , then we get the exact solution: 

( ) 0.220 60e tT t −= + . 

1) Picard Iteration Method 
From Equation (26) we have the following approximate solutions: 

1 80 12T t= −  

2
2

680 12
5

T t t= − +  

2 3
3

6 280 12
5 25

T t t t= − + −  

2 3 4
4

6 2 180 12
5 25 250

T t t t t= − + − +  

2 3 4 5
5

6 2 1 180 12
5 25 250 6250

T t t t t t= − + − + −  
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2) For Taylor’s Series Method (Figure 9 and Figure 10) 
Since 0.2c = − , then  

( ) 0.2 0.2 sT' t T T= − + ⇒ ( )0 12T' = −  

( ) ( )0.2T'' t T' t= − ⇒ ( ) 120
5

T'' =
 

( ) ( )0.2T''' t T'' t= − ⇒ ( ) 120
25

T''' = −  

( ) ( )0.2T'''' t T''' t= − ⇒ ( ) 120
125

T'''' = −  

( ) ( )T''''' t T'''' t= − ⇒ ( ) 120
625

T''''' = −   

2 3 4 5
5

6 2 1 180 12
5 25 250 6250

T t t t t t= − + − + − . 

 

Figure 9. Compare the exact and approximate solutions of two proposed methods related 
to Newton’s law of cooling. 

 

 

Figure 10. Compare the exact and the approximate solutions of two proposed methods 
related to Newton’s law of cooling. 
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The following Table 4 gives the values of v from t = 0 to 2 taking h = 0.2. 
 
Table 4. Numerical comparison between exact and approximate solutions of proposed 
two methods related to the equation of Newton’s law of cooling. 

x-value 
Exact 

solution 
Picard’s 
solution 

Taylor’s 
solution 

Absolute 
Error 

(Picard) 

Absolute 
Error 

(Taylor) 

0 80.0000 80.0000 80.0000 0.0000 0.0000 

0.2000 77.6474 77.6474 77.6474 −0.0000 −0.0000 

0.4000 75.3870 75.3870 75.3870 −0.0000 −0.0000 

0.6000 73.2152 73.2152 73.2152 −0.0000 −0.0000 

0.8000 71.1268 71.1268 71.1268 −0.0000 −0.0000 

1.0000 69.1238 69.1238 69.1238 −0.0000 −0.0000 

1.2000 67.1977 67.1977 67.1977 −0.0000 −0.0000 

1.4000 65.3470 65.3470 65.3470 −0.0000 −0.0000 

1.6000 63.5689 63.5689 63.5689 −0.0001 −0.0001 

1.8000 61.8606 61.8606 61.8606 −0.0002 −0.0002 

2.0000 60.2192 60.2189 60.2189 −0.0003 −0.0003 

5. Discussion and Results 

The results of problem one is displayed in Table 1 and graphically in Figure 1, 
and Figure 2 and the approximate solutions and the error estimation are calcu-
lated using the MATLAB program, we observed that the numerical solutions are 
more effective and reveal that amount of error is maximum for Picard’s than 
Taylor’s method, so there is a difference between these two methods compared 
to the exact solution in Favor of Taylor’s method. The results of the equation 
that a rising from the problem of free—a falling body are displayed in Table 2 
and Figure 5 and Figure 6, also the numerical solutions and the absolute error 
were calculated using the MATLAB program and we noted that the numerical 
solutions of Picard and Taylors’s are identical and a powerful mathematical tool 
and this identity is attributed to all first order differential equations of constant 
function on the right-hand side in case of standard form.  

The comparison between the numerical solutions of Picard and Taylor’s Me-
thods to the third problem a rising from Newton’s law of cooling was displayed 
in Table 4 with their graph in Figure 8 and Figure 9 respectively, and we no-
ticed that these solutions were closely matched to the exact solution especially in 
a case of constant function at the right-hand side of the first order ordinary dif-
ferential equation. 

Taylor’s method is simple, more effective, and more accurate for the following 
reasons: 

1) This method relies on calculating the values of the upper-order derivatives 
of the function, which are easy to find. 
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2) By looking at the three curves, we found that the curve of the numerical 
solution according to Taylor’s method is closer to the curve of the exact solution. 

3) By calculating the error committed, which represents the absolute value of 
the difference between the numerical solution and the exact solution, we found 
that the value of the error committed using the Taylor method is less than the 
value of the error committed using the Picard method. 

For example, consider the following three solutions: 
1) For the exact solution: ( )0.4 0.3348y = . 
2) For the Taylor solution: ( )0.4 0.4548y = . 
3) For the Picard solution: ( )0.4 0.4572y = . 

6. Conclusion 

In this paper, Picard and Taylor’s method is used for solving the First Order dif-
ferential equations with initial value problems, especially in some applications 
arising in science. The numerical solutions obtained by the two proposed me-
thods are in good agreement with the exact solution and the accuracy depends 
on the equation, and these come from the computational view of point, we can 
conclude that Taylor’s method is more reliable, efficient and easy to use. So, in 
our subsequent, we shall examine the comparison of Taylor’s method with Rung 
Kutta, because of similarity, efficiency and well suited for I.V.P OF O.D.E.  
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