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Abstract 
In this paper, we study the propagation and its failure to propagate (pinning) 
of a travelling wave in a Nagumo type equation, an equation that describes 
impulse propagation in nerve axons that also models population growth with 
Allee effect. An analytical solution is derived for the traveling wave and the 
work is extended to a discrete formulation with a piecewise linear reaction 
function. We propose an operator splitting numerical scheme to solve the 
equation and demonstrate that the wave either propagates or gets pinned 
based on how the spatial mesh is chosen.  
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1. Introduction 

The Nagumo equation is a well-studied mathematical model, especially, to un-
derstand impulse propagation in nerve axons and to describe the growth of a 
population with Allee effect [1] [2]. The equation is written as 

 ( ) ,t xxu u f u= +  (1) 

where ( )f u  is a cubic polynomial of the form ( )( )1u u u a− −  with three 
roots, namely, 0,u u a= =  and 1u = , with 0 1 2a< < . Depending on the 
phenomenon that one is trying to model, ( ),u x t  is either the action potential 
or the population density at the location x at time t. Similarly, depending on the 
phenomenon, a is either the doping parameter or the threshold value for the 
population to grow. If one considers (1) as an initial value problem in the infi-
nite x domain, it is possible to look for a travelling wave solution. In fact, it can 
be shown that a travelling wave solution can be obtained analytically. 
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Let us introduce the transformation z x ct= −  where c is the speed of the 
solution profile with asymptotic conditions ( ) 1u −∞ →  and ( ) 0u ∞ → . Now, 
suppose there is a solution ( )u z , such that zu u′=  is in the following form,  

 .nu Au Bu′ = +  (2) 

Then, choosing 2n = , for zzu u′′= , we get,  

 2 2 2 33 2 .u A u ABu B u′′ = + +  (3) 

Since –z x ct= , t zu cu= −  and xx zzu u= . 
Rewriting Equation (1) in terms of ( )u z  with its derivatives we have, 

( )3 21 .z zzcu u u a u au− = − + + −  

This becomes, 

 ( )3 21 .u cu u a u au′′ ′+ = − + +  (4) 

Plugging in u′  and u′′  (with 2n = ) into (4) gives,  

 ( ) ( ) ( )2 3 2 2 3 22 3 1B u AB Bc u Ac A u u a u au+ + + + = − + + . (5) 

Solving for like term coefficients, we obtain two cases for A and B.  

Case 1: When 1
2

B = , we have 1
2

A = −  and 1
2

c =  (1-2a).  

Case 2: When 1
2

B = − , we have 1
2

A =  and 1
2

c =  (2a-1).  

Now, the traveling wave solution in case 1 has the following analytical form 
[3], 

 ( )
2

1, ,
1 e

x ctu x t −=

+

 (6) 

with wave speed, ( )1 1 2
2

c a= − .  

Note that the solution (6) matches the asymptotic Huxley solution [3] [4]. The 
propagation of the travelling wave (6) is presented in Figure 1. One could see 
that the wave travels to the right when 0.5a <  but reverses its direction of 
propagation when 0.5a > . 

This brings up an interesting question—what happens to the wave when 
0.5a = ? From (6), it is obvious that the wave speed 0c =  when 0.5a = . That 

means that the Nagumo wave will be a standing wave that does not propagate. It 
should be noted that in recent years, a number of researchers have studied the 
discrete Nagumo equation with different cubic nonlinearities and have identified 
parameter regions for propagation failure, also known as pinning, of the Nagu-
mo wave [5] [6] [7] [8] [9]. 

Our goal in this paper is to study the Nagumo equation both in the conti-
nuous and discrete forms with a piece-wise linear reaction term in order to bet-
ter understand the propagation or failure to propagate of the Nagumo wave. One 
should note that the novel idea of using a piece-wise linear reaction term in place 
of a cubic reaction term was first introduced by McKean [9]. In a recent work,  
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(a) 

 
(b) 

Figure 1. Travelling wave profile when (a) 0.25a =  and (b) 0.75a = . 
 
Fath [10] used the same idea to study the Nagumo equation with Fourier trans-
form methods. One should note that in terms of nerve axons, any failure of im-
pulse propagation can be a cause for concern. This could indicate to health pro-
fessionals that possibly, there is a damage in a nerve axon that needs remedied. 
On the other hand, with regards to population growth with Allee effect, propa-
gation failure could mean stalling of invasion waves or migration waves of either 
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plant or animal species. This may indicate to ecologists which type of habitats 
may become inhospitable due to climate change for the survival of certain spe-
cies. 

2. Nagumo Equation with Piece-Wise Linear Reaction 

Now, let us consider the Nagumo equation as an initial value problem as follows, 

( ) , , 0t xxu u f u x t T= + −∞ < < ∞ < <  

 ( ) ( ),0u x h x= , (7) 

where the initial condition is given by ( )h x  and the reaction term is the piece-wise 
linear function, 

 ( )
, 0

1 , 1
u u a

f u
u a u

− ≤ ≤
=  − ≤ ≤

 (8) 

and note that ( ) 0f u′ <  and ( )
0

1
d 0f u u ≠∫ . 

In order to find a travelling wave solution for (7), as shown in Section 1, we 
introduce the travelling wave coordinate z x ct= − . Then, in terms of z, one can 
write (7) as 

 0, 0 .u cu u u a′′ ′+ − = ≤ ≤  (9) 

and 

 ( )1 0, 1.u cu u a u′′ ′+ + − = ≤ ≤  (10) 

Note that ’ means d/dz. Also, from (9) and (10), we see that u = 0 and u = 1 
are the steady states in this model. 

Solving the above ordinary differential equations in the two regions of u, in [0, 
a] and [a, 1] along with the asymptotic conditions ( ) 1u −∞ =  and ( ) 0u ∞ = , 
we get 

 ( )
2

1

e , 0
e 1, 1

r z

r z

C u a
u z

D a u

 ≤ ≤= 
+ ≤ ≤

 (11) 

where C and D, are constants to be determined. 
If we are to have a smooth wave solution then, we need the values of both u 

and u′  from the branches, u a≤  and u a≥  to match at u = a. Then we ob-
tain, 

2

2

4 1
2 4
c cC

c
− − +

= +
+

 

2

2

4
2 4
c cD

c
− − +

=
+

 

1

1 2

ra
r r

=
−

 

where ( )2
1,2

1 4
2

r c c= − ± + . 
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Now, without loss of generality, letting u = a at z = 0, gives a = C. Conse-
quently, the wave speed c can be written as,  

 
( )

1 2
1

ac
a a
−

=
−

 (12) 

and the travelling wave solution is, 

 ( )
( )

e , 0

1 1 e , 0

z
c

z
c

a z
u z

a z
−


≥= 

 − − ≤

 (13) 

It is instructive to compare this wave solution obtained in (13) with the wave 
solution (6) found for the cubic reaction term. Even though the mathematical 
formulations look different, in both cases, the pinning of the wave will occur at 

0.5a = . In the next section, we develop a discrete formulation, using finite dif-
ferences, to study the initial value problem (7) further. 

3. Operator Splitting Scheme 

Here, we propose an operator splitting formulation [3], that is known to be a 
versatile scheme, where (3) is split into two sub-problems, based on the reaction 
and diffusion processes such that,  

 
( )

, 0
1 , 1t

u u a
u

u a u
− ≤ ≤=  − ≤ ≤

 (14) 

and 

 t xxu u= . (15) 

We now proceed to solve the (14) and (15), in the time domain t, sequentially 
over subintervals [ ]1,n nt t + . Here, nt nk=  is the time at time level n, where n is 
an integer and k is the time step in the discrete formulation. The numerical 
schemes that correspond to (14) and (15) can be written using an explicit finite 
difference method for the numerical approximation, of ( ),u x t  as, 

 ( )* n n
m m mu u kf u= +  (16) 

and  

 ( )1 * * * *
1 12n

m m m m mu u r u u u+
+ −= + − +  (17)  

where, mx mh=  is the location at spatial level m, where m is an integer and h is 
the spatial mesh in the discrete formulation. In (16), *

mu  can be thought of as an 
intermediate value in the sub-interval [ ]1,n nt t +  and 2r k h= . Here, our com-
putational domain is [−100, 100]. 

Next, plug in the initial condition ( ) ( )0 ,0mu u x h x= =  into (16) to find *
mu , 

i.e., the estimate for the first-time step, such that,  

 ( )* 0 0 .m m mu u kf u= +  (18)  

Our initial condition h(x) is derived from (13). 
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Then, use (17) to obtain the numerical solution at the next time level, and the 
numerical solution at any time level can be obtained by repeating the process. 
Note that the numerical scheme (17) with * n

m mu u=  is, 

 ( )1
1 12n n n n n

m m m m mu u r u u u+
+ −= + − +  (19)  

We can look at the stability of this scheme using von Neumann stability anal-
ysis.  

With the ansatz,  

 e en nk i mh
mu α β= , ( )1i = −  (20) 

if e 1kα <  for any β, then the method is said to be stable. Substituting (20) into 
(19) gives, 

( ) ( ) ( )1 1 1
2e e e e e e 2e e e en k i m h i m hi mh nk i mh nk nk i mh nkk

h
α β ββ α β α α β α+ − + = − − +  . 

Simplifying the above equation yields, 

e 1 2 e ek i h i hr rα β β− = + + +  .  

Recall that 2r k h= . Further simplification leads  

2e 1 4 sin
2

k hrα β = −  
 

 

The goal is to verify that e 1kα < , i.e., 

 21 4 sin 1
2
hr β − < 

 
. (21) 

Solving the inequality (21), we get, 

 10
2

r< < . (22) 

So, the von Neumann stability analysis shows that the numerical scheme (17) 
will be stable provided that the time step, k, and the spatial mesh, h, are chosen 
such that 0 1 2r< < . Also, making use of Taylor series expansions on the nu-
merical schemes (16) and (17), it is easy to show that the method is first order 
accurate in time and second order accurate in space. 

Propagation and Pinning 

Now, consider the discrete formulation of our problem ( )t xxu u f u= +  such 
that, 

 ( ) ( ) ( )1 12
1 2 .m m m m mt

u u u u f u
h + −= − + +  (23) 

Then, following [10] and our analysis in Section 2, define the values of a as, 

 
2

1 1
2 4

ha
h

 
= ±  + 

. (24) 

We now proceed to study the pinning region by observing the relationship 
between the spatial mesh, h, and the value a. Figure 2 shows the pinning region,  
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Figure 2. Pinning region for different ranges of h for 0 1a≤ ≤ . 
 
the shaded area, where the wave propagation fails. It should be noted that ac-
cording to Keener [4] wave propagation fails in semi-discrete systems because in 
such systems many stationary solutions exist. As can be seen in Figure 2, re-
gardless of the range of h, the pinning region falls in the shaded region for values 
of a below and above 0.5. At this juncture, it should be reminded that in the con-
tinuous model (as seen in Section 2), pinning happens only for one a value and 
that is ½. 

Let us re-write (24) as, 

2

1 1
2 4

ha
h

−

 
= −  + 

 and 
2

1 1
2 4

ha
h

+

 
= +  + 

. 

As h grows very large, a−  approaches 0 and a+  approaches 1, and when h = 
0, it is clear that 0.5a = , which indicates the profile changes its direction. From 
the figure, when h = 2, the range of the pinning region is 0.146 0.854a< < , and 
when h = 6, the region is 0.026 0.974a< < . 

We are able to verify the pinning behavior of the Nagumo wave solution using 
our operator splitting numerical scheme for appropriate choice of spatial mesh-
es, h. In Figure 3, one can observe that when h = 2, the flat region coincides with 
the pinned region in Figure 2, regardless of chosen a values within the range. 
Additional computations were performed for various h values and a similar pat-
tern was observed for propagation failure. 

In Figure 4, we present numerical solutions for 0.146a ≈  and h = 2, and 
0.027a ≈  and h = 6. In the first case, we are very close to the pinning region,  
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Figure 3. Travelling Nagumo wave profile propagation failure at h = 2. 
 

  
(a)                                                   (b) 

Figure 4. Numerical solution. (a) 0.146a ≈ , h = 2. (b) 0.027a ≈  and h = 6. 
 
and we would expect the propagation to exist weakly. Whereas, when choosing 

0.027a =  and h = 6, we fall in the shaded region and thus, there should be 
propagation failure [7] [8]. Figure 4 illustrates these expected behaviors. 

4. Conclusions 

In this paper, using analytical techniques and an operator splitting numerical 
scheme, we show that it is possible to have different solution behaviors when 
looking at a continuous problem and its discrete counterpart. In particular, we 
show that for the Nagumo model with a linear piecewise reaction term, the dis-
crete formulation has a whole pinning region for a range of values for the doping 
parameter a where the wave solution fails to propagate. 
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This is in contrast to the continuous formulation where the wave solution fails 
to propagate only when the doping parameter a takes the unique value ½. In 
practical scenarios, depending on the experimental data available and the phe-
nomena that one is trying to model, the resulting model can be either a conti-
nuous or a discrete model. Therefore, it is imperative that practitioners under-
stand any contrasting behaviors that could exist (as in our model here) between 
the continuous and discrete cases, so that reasonable and correct management 
decisions could be made. Even though, for the ease of analysis and exposition, 
our study deals with the Nagumo model with a linear piecewise reaction term, 
the ideas presented in this paper and the references herein can be readily ex-
tended to other reaction diffusion models.  
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