
Journal of Applied Mathematics and Physics, 2024, 12, 841-860 
https://www.scirp.org/journal/jamp 

ISSN Online: 2327-4379 
ISSN Print: 2327-4352 

 

DOI: 10.4236/jamp.2024.123052  Mar. 27, 2024 841 Journal of Applied Mathematics and Physics 
 

 
 
 

Modeling a Periodic Signal Using Fourier Series 

Uwaydah Leith 

American Community School Beirut, Beirut, Lebanon 

 
 
 

Abstract 
This paper covers the concept of Fourier series and its application for a peri-
odic signal. A periodic signal is a signal that repeats its pattern over time at 
regular intervals. The idea inspiring is to approximate a regular periodic sig-
nal, under Dirichlet conditions, via a linear superposition of trigonometric 
functions, thus Fourier polynomials are constructed. The Dirichlet condi-
tions, are a set of mathematical conditions, providing a foundational frame-
work for the validity of the Fourier series representation. By understanding 
and applying these conditions, we can accurately represent and process peri-
odic signals, leading to advancements in various areas of signal processing. 
The resulting Fourier approximation allows complex periodic signals to be 
expressed as a sum of simpler sinusoidal functions, making it easier to ana-
lyze and manipulate such signals.  
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1. Introduction 

In the eighteenth century, a significant problem emerged that aided both ma-
thematical analysis and other areas, including physics. The problem was to ex-
press a periodic function as an infinite series of sine and cosine functions. In 
mathematics, infinite series are crucial and extensively used in calculators and 
computers to evaluate values of various functions. The Fourier series, an infinite 
series initiated by attempts to solve heat conduction problems in a bar, is of great 
importance. The theory of Fourier’s series, fascinating in itself and vital in 
countless applications in both pure and applied mathematics, is addressed in 
almost all treatises on higher analysis. 

Fourier series is a fundamental tool in the field of mathematics and signal 
processing. It allows us to decompose complex periodic functions into an infi-
nite sum of simpler periodic functions (sine and cosine waves) providing a po-
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werful framework for analyzing and understanding various phenomena. 
In the world of signals, Fourier series plays a crucial role in analyzing and ma-

nipulating signals. By decomposing a complex signal into its constituent sinu-
soidal components using Fourier series analysis, engineers and scientists can 
gain valuable insights into the frequency content and characteristics of a signal. 
Signals are often represented as time-varying functions, and understanding their 
frequency content is vital for tasks such as filtering, compression, and modula-
tion. Fourier series provides a systematic approach to extract the frequency 
components of a signal, allowing us to analyze its spectral characteristics and 
make informed decisions about signal processing techniques. 

For instance, in Medical imaging, such as MRI (Magnetic Resonance Imaging) 
and CT (Computed Tomography) scans, can benefit from Fourier series-based 
image compression techniques. By compressing the images, medical profession-
als can efficiently store and transmit patient data, enabling rapid diagnoses and 
effective treatment planning while minimizing data storage requirements. This is 
particularly critical in telemedicine, where medical images need to be transmit-
ted remotely for consultation and analysis.  

In telecommunications, Fourier analysis is used to decompose an electrical 
signal, such as a voice or data signal, into its different frequency components. 
For example, when you make a phone call, Fourier analysis allows the signal to 
be transmitted through the network by breaking it down into different frequen-
cies that can be sent and received. This decomposition helps improve the quality 
and reliability of the transmitted signal.  

In audio Engineering, when you adjust the equalizer settings on a music play-
er or sound system, Fourier analysis is employed to manipulate and balance dif-
ferent frequency components of the audio signal. This allows you to control the 
bass, treble, and other aspects of the sound to achieve the desired audio output.  

In optics, when light passes through a narrow slit or encounters an obstacle, it 
diffracts and creates a pattern of bright and dark areas. Fourier analysis can be 
applied to analyze this diffraction pattern and determine the size and shape of 
the slit or obstacle. This understanding is crucial in various fields, such as de-
signing optical systems for microscopes or telescopes and fabricating gratings for 
spectroscopy applications. 

Fourier analysis finds significant applications in various areas of our lives spe-
cially for periodic signals where we are interested. Our aim in this work is to in-
troduce the Fourier series approximation of a periodic signal. First, the defini-
tion of a periodic signal is illustrated in Section 2, followed by a representation of 
the Fourier series in Section 3. Additionally, we discuss applications of Fourier 
series in the context of heartbeat signals in Section 4.1, concluding in the last 
section, Section 5. 

2. Signal 

Signals are like messages that we send from one place to another. They are func-
tions that convey information about a phenomenon. Signals can represent vari-
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ous types of data, such as sound, images, video, or any other measurable quanti-
ty that changes over time or space. Signals can be classified into various types 
based on their characteristics and applications.  
 Analog signals are used in audio systems to reproduce sounds or in mea-

surement systems, such as temperature sensors and pressure gauges, to accu-
rately determine physical quantities.  

 Digital signals are extensively used in modern communication systems, such 
as the internet and mobile networks.  

 Electromagnetic signals are used in a vast range of applications, including 
wireless communication, radar systems, and satellite communication  

 Optical signals are used in fiber optic communication systems, where they 
enable high-speed data transfer over long distances with minimal loss and 
interference.  

 …etc  
The representation of a signal as a plot of amplitude versus time constitutes 

the waveform. It is said to be a periodic signal if it has a definite pattern and re-
peats itself at regular intervals of time. Whereas, the signal which does not repeat 
at regular intervals is known as an aperiodic signal or non-periodic signal. For 
example, the heartbeat is periodic, whereas the human vocal mechanism that 
produces speech is aperiodic. This work sheds light on periodic signals, as clari-
fied in the following Subsection 2.1. 

2.1. Periodic Signals  

A periodic signal is a repetitive motion that occurs in fixed time intervals. So, the 
signal returns to its initial point after a fixed amount of time. Motions of ponies 
in a go-round, forces on the needle in a sewing machine are periodic signals.  

A signal ( )f t  is periodic if there is a number T such that for all t, we have:  

 ( ) ( )f t T f t+ =  (1) 

and every integer multiple of the fundamental period is also a period:  

 ( ) ( )   0, 1, 2,f t nT f t n+ = = ± ±   (2) 

The smallest positive number T that satisfies Equations (1) and (2) is the pe-
riod, defining the duration of one complete cycle. The periodicity condition 
means that the shape of one cycle determines the graph everywhere; the shape is 
repeated over and over. Figure 1 illustrates the periodic signals graphically.  

Focusing on periodic signals, we need to define some characteristics as fre-
quency, angular frequency and amplitude. 

2.1.1. Signal Frequency f 
Signal frequency is the main tool for describing the oscillatory behavior of sig-
nals. The frequency is a measure of how rapidly a signal oscillates or repeats 
within a given unit of time. The unit of measurement for frequency is hertz (Hz), 
where 1 Hz represents one cycle per second. For example, if a signal has a fre-
quency of 100 Hz, it means that 100 cycles of the signal occur in one second. 
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Figure 1. Periodic signals. 
 

 
in s1 1          
in Hz

T
f T

fT f


= ⇔ =


 (3) 

The smaller the period, the higher the frequency and vice versa. If a signal 
does not change at all, it never completes a cycle, so its frequency is 0 Hz. If a 
signal changes instantaneously, its period is zero, and the frequency, being the 
inverse of the period, is infinite or unbounded. Our work does not consider 
these cases. 

Figure 2 illustrated the high and low frequency graphically. 

2.1.2. Signal Angular Frequency w 
Angular frequency, denoted by w (omega), is a measure of how quickly an object 
rotates or oscillates in circular motion1. It is often used in the context of oscilla-
tory and wave phenomena. Angular frequency is related to the regular frequency 
f by the equation:  

 
2 in rad2 2            and  2

in s
w T w f

TT w


= ⇔ = =


ππ π
π  (4) 

Angular frequency is measured in radians per second (rad/s). One complete 
revolution or cycle corresponds to 2π radians. When the angular frequency in-
creases, the signal moves more quickly, and the distance it covers from its start-
ing point gets largers. 

Figure 3 illustrated angular frequency graphically.  

 

 

1https://www.pinterest.jp/pin/891501688711568234/ 
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Figure 2. Low and high frequency. 
 

 

Figure 3. Angular frequency. 

2.1.3. Signal Amplitude 
The amplitude is the height, force or power of the signal. It is regarded as the 
maximum displacement of a variable from its mean value. Amplitudes can be 
either positive or negative. It refers to how strong or loud a signal is. A higher 
amplitude means a stronger signal, while a lower amplitude means a weaker 
signal 

Figure 4 illustrated amplitude graphically. 
Understanding periodic signals is important in the context of Fourier series. 

Fourier series, along with the generalizations examined in the below Section 3 
will take place. 

3. Fourier Series  

Fourier series were introduced by Joseph Fourier following his research on the 
heat equation around 1830. They have since inspired much work by the greatest 
mathematicians (Dirichlet, Cantor, Lebesgue), and are still used today. He pub-
lished his initial results in his 1807 Memoire Sur la Propagation de la Chaleur 
dans les Corps Solids (treatise on the propagation of heat in solid bodies) and 
Theories analytique de la chaleur in 1822 [1] [2]. Although his study later be-
came widely used in solving an array of mathematical, engineering, and physical 
problems, especially those involving linear differential equations with constant 
coefficients. 
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Figure 4. Amplitude change. 
 

Basically, classical Fourier Analysis consists of two main areas: the Fourier Se-
ries, and the Fourier Transform [3] [4] [5]. The difference between the Fourier 
transform and the Fourier series is that the Fourier transform is applicable for 
non-periodic signals, while the Fourier series is applicable to periodic signals 
where we are interested to represent in this article. 

The foundation of Fourier Series lies in the idea that any periodic signal can 
be approximated by a sum of simpler functions (sine and cosine) that have dif-
ferent frequencies. These frequencies are multiples of the fundamental frequency  

(lowest frequency = 1
T

) of the signal. This approximation is achieved by finding  

the coefficients that determine the amplitude of each components in the series. 
These coefficients can be calculated using integral calculus and are known as 
Fourier coefficients. The more terms we include in the series, the closer the ap-
proximation becomes to the original signal. By using a sufficient number of 
terms, we can accurately represent even highly irregular and complex periodic 
functions. 

In order to apply the Fourier Series, we suppose that we are working with pe-
riodic signals that are well-behaved, meaning that various properties arise. To 
prove the below properties, it is crucial to recall mathematical representation of 
Fourier series and some mathematical conditions to proceed our work in Section 
3.1. 

3.1. Fourier Series Representation 

There are two common forms of the Fourier Series, “Trigonometric” and “Ex-
ponential.” Both are equivalent to each other [6]. Depending on the type of sig-
nal, most convenient representation is chosen.  

In this paper, we limit our work to the trigonometric form, and in all the sub-
sequent work, we denote by ( )f t  the signal studied and ( )( )nS f t  the Fouri-
er series representation.  
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The Fourier series of a periodic signal ( )f t  having a period T defined in 
[ ]0,T  is:  

 ( )( ) ( ) ( )( )0

1
cos sin

2n n n
i

aS f t a nwt b nwt
+∞

=

= + +∑  (5) 

where n integer and 2w
T

=
π  is the angular frequency of the signal. 

The Fourier coefficients 0a , na  and nb  are independent of time and are 
given by the following integrals:  

 
( )

0

0

2 2( )cos d    0,1,2,3,

2 2sin d    1,2,3,

T
n

T
n

nta f t t n
T T

ntb f t t n
T T

  = =   


  = =

π

π
   

∫

∫





 (6) 

Or  

 
( )

( )

1 cos d    0,1,2,3,

1 sin d    1,2,3,

L
n L

L
n L

n ta f t t n
L L

n tb f t t n
L L

−

−


= =


 =

π 
 
 
π 

 
 

=


∫

∫





 (7) 

for 2T L=  and ( )f t  defined on [ ],L L−  instead of [ ]0,T . 
 Mean Value Term a0  

0a  is the average value of the signal ( )f t . When 0 0a =  then the signal 
( )f t  is alternative.  

 Coefficient Term an, bn 
,n na b  are simply the amplitudes of the sinusoidal components(cosine and 

sine)at different frequencies. The higher the value of n, the higher the frequency 
of the corresponding sinusoidal term.  

Note that The frequencies of the sines and cosines are 1 2 3, , ,
T T T

 , i.e., they 

are multiples of the fundamental frequency 1
T

. Therefore the frequency n
T

 is  

called the nth harmonic. The name harmonic stems from the fact for the human 
ear frequencies with integer ratios sound “nice”.  

A graphical representation of Fourier series is given in the following Figure 5. 
As seen in Figure 5, the more we increase n, meaning the more terms of co-

sine and sine we add, the Fourier series becomes closer to the black graph. 
Graphically, the convergence of the Fourier series refers to how well the colored 
graph fits the black initial signal. We say that the series approximates the origi-
nal signal. This convergence depends on the properties of the signal that should 
match the Fourier condition. For smooth signals, the series converges quickly. 
However, for signals with sharp corners or discontinuities, the convergence may 
be slower or even fail at certain points. This is why we are interested in defining 
the Fourier condition or Dirichlet conditions in Subsection 3.2. Based on these 
conditions, we can ensure that the Fourier approximation fits the signal for a 
given integer n. 
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Figure 5. Fourier series for an increasing n. 

3.2. Dirichlet’s Condition for Existence of Fourier Series  

Dirichlet conditions are a set of mathematical conditions that ensure the con-
vergence of the Fourier series representation of a periodic function. They are 
named after the German mathematician Peter Gustav Lejeune Dirichlet, who 
first formulated these conditions in the 19th century. The Dirichlet conditions 
are crucial for establishing the convergence of Fourier series and ensuring that 
the series accurately represents the original periodic function. 

These conditions are as follows:  
1) Periodic and Integrable over period  
( )f t  is a periodic and absolutely integrable over one period i.e.  

( )
0

T
f t < ∞∫  

this guarantees that each coefficient ,k ka b  will be finite.  
2) Finite Number of Extrema 
For a finite integral, ( )f t  is bounded variation, that is there are no more 

than a finite number of maximum or minimum during any single period of the 
signal. This condition ensures that the function does not oscillate too rapidly 
within each period and it is smooth, allowing for convergence of the Fourier se-
ries.  

3) Finite Number of Discontinuities  
For any finite interval, there are only a finite number of discontinuities. A 

discontinuity in a function occurs when there is a sudden jump or break in the 
function’s values. This condition ensures that the function is well-behaved and 
can be accurately represented by a Fourier series.  

4) Piecewise continuous function  
The function ( )f t  must be piecewise continuous on a finite interval. This 

https://doi.org/10.4236/jamp.2024.123052


U. Leith 
 

 

DOI: 10.4236/jamp.2024.123052 849 Journal of Applied Mathematics and Physics 
 

means that while the function may have points where it jumps or changes ab-
ruptly (discontinuities), these points are isolated and do not affect the overall 
continuity of the function on each subinterval.  

To better understand these conditions, let us define some periodic examples 
that violate them.  

Example 1: ( ) 1, 0 1f t t
t

= < ≤  violates condition 1 illustrated in Figure 6.  

Example 2: ( ) 2sin , 0 1f t t
t
π 

 


<


= ≤  violates condition 2 but meets with 

condition 1 illustrated in Figure 7.  
1

0

2sin
t
π 




∞

<∫  however an infinite number of maximum and minimum in 

the interval.  
Example 3: ( )f t  defined in (8) violates condition 3, illustrated in Figure 8. 

The signal is composed of an infinite number of sections, each of which is half of 
the height and half of the width of the previous section. Thus, the area under one 
period is less than 8. However, there is an infinite number of finite discontinui-
ties, thereby violating condition 3.  
 

 

Figure 6. Graph of 1
t

. 

 

 

Figure 7. Graph of 2sin
t
π 

 
 

. 

 

 

Figure 8. Graph of ( )f t . 
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 ( )

1 for  0 < 4
1 for  4 < 6
2
1 for  6 < 7
4
1 for  7 < 7.5  etc
8

t

t

f t
t

t

≤

 ≤
= 

≤

 ≤

 (8) 

These conditions form the theoretical basis for the practical utility of Fourier 
series in modeling and analyzing periodic phenomena across different discip-
lines. By satisfying the Dirichlet conditions, mathematicians and scientists can 
confidently apply Fourier series techniques in various fields, including signal 
processing, heat transfer, vibration analysis, quantum mechanics, and more. 
Here are some key points highlighting its significance under Dirichlet conditions  

1) Signal Reconstruction: In signal processing, signals can often be repre- 
sented as periodic functions. The Fourier series provides an accurate method for 
decomposing these signals into their constituent sinusoidal components, enabl-
ing efficient signal reconstruction and analysis.  

2) Compression: Fourier series representation facilitates signal compression 
by capturing essential information about a signal using a relatively small number 
of coefficients. This is crucial in applications such as audio and image compres-
sion, where reducing data size without significant loss of information is desira-
ble.  

3) Mathematical Modeling: Many physical phenomena and systems exhibit 
periodic behavior, making Fourier series an essential tool for mathematical 
modeling and analysis. By accurately representing these periodic functions, en-
gineers and scientists can gain insights into the underlying dynamics of systems 
and make predictions about their behavior.  

4) Numerical Methods: The accuracy of Fourier series representation under 
Dirichlet conditions is also essential in numerical methods for solving partial 
differential equations. Fourier series can be used to represent the solution of 
certain boundary value problems, providing a powerful technique for solving 
differential equations numerically.  

5) Control Systems: Fourier series are utilized in control systems engineering 
for system analysis and design. Accurate representation of periodic signals and 
system responses allows engineers to design control systems that effectively re-
gulate and manipulate signals in various applications.  

Overall, the accuracy of Fourier series representation under Dirichlet condi-
tions is crucial for a wide range of practical scenarios where understanding and 
manipulating periodic functions are essential. By adhering to these conditions 
and leveraging the convergence properties of Fourier series, engineers, scientists, 
and mathematicians can achieve precise and efficient solutions in their respec-
tive fields. 

The rate of convergence of the Fourier series approximation depends on the 
smoothness of the function. If the function is highly smooth (i.e., has many con-
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tinuous derivatives), then the Fourier series converges rapidly, and a small 
number of terms can provide a good approximation. On the other hand, if the 
function has sharp discontinuities or lacks smoothness, then the convergence 
may be slower, requiring more terms in the series for an accurate representation. 
The convergence of Fourier series refers to the behavior of the partial sums of 
the series as the number of terms increases. The convergence properties depend 
on the nature of the function being approximated. 

If the function satisfies these conditions, then the Fourier series representation 
converges to the function in a least squares sense, meaning the sum of the 
squared errors between the function and its Fourier series approximation ap-
proaches zero as the number of terms in the series approaches infinity. 

However, it’s important to note that there may be cases where the Fourier se-
ries struggles to accurately represent functions with specific characteristics, such 
as highly oscillatory behavior or discontinuities that violate the Dirichlet condi-
tions. The question of convergence for Fourier series outside Dirichlet condi-
tions will not play a significant role in the remainder of this article. More details 
about the convergence of Fourier series are discussed in the following Subsection 
3.2.1.  

3.2.1. Convergence Theorem 
Theorem 1. ( )f t  is a periodic function that varies continuously ( satisfies 

the Dirichlet conditions), then the Fourier series ( )( )nS f t  converges (point-
wise) to the signal everywhere expect the isolated points of discontinuities at 
which the series converge to the average of the left-hand and right-hand limits as 
follows:  

 ( )( )
( ) ( )

( )

for discontinuity points
2

for continuity points

i i

n

f t f t
S f t

f t

+ − +
= 



 (9) 

This theorem establishes the convergence behavior of the Fourier series for 
functions that satisfy Dirichlet’s conditions. Since the signal differ only at dis-
continuities points, then the integral of both signals are identical over any inter-
val. For this reason the two signals behave identically under convolution and 
consequently will see this identification in the application part. 

In other words, under the conditions specified by Dirichlet’s Convergence 
Theorem, for a piecewise continuous periodic function, Fourier series converges 
to the function itself almost everywhere, except possibly at the points of discon-
tinuity where it converges to the average of the left and right limits. 

Additionally, there are other convergence theorems and results related to 
Fourier series, such as the Fejér’s theorem, the Riemann-Lebesgue lemma, and 
the Parseval’s theorem, which provide further insights into the convergence 
properties and behavior of Fourier series under various conditions. These theo-
rems are often used to analyze the convergence and properties of Fourier series 
in specific contexts.  

https://doi.org/10.4236/jamp.2024.123052


U. Leith 
 

 

DOI: 10.4236/jamp.2024.123052 852 Journal of Applied Mathematics and Physics 
 

The calculation of coefficients 0 , na a  and nb  for Fourier representation can 
be a lot easier with knowledge of even and odd functions. A zero coefficient may 
be predicted with the use of these functions without performing the integration. 
The next Subsection 3.2.1, lists the odd and even functions.  

3.2.2. Odd and Even Functions 
Real functions can either be odd or even. In mathematics, even functions are 
symmetric with respect to the y-axis ( ) ( )f t f t− = . In contrast, odd functions 
are symmetric with respect to the origin ( ) ( )f t f t− = − . 

By the definition, it is easy to see that the sum/difference/product of two even 
functions is even, the sum/difference of two odd functions is odd, the product of 
two odd functions is even, the product of an even function and an odd function 
is odd, etc. Note that the sine function is odd and the cosine function is even. 

Also, we have the following integral identities:  
 For odd functions  

( ) ( )
0

d 2 d
L L

L
f t t f t t

−
=∫ ∫  

 For even functions  

( )d 0
L

L
f t t

−
=∫  

By applying the properties of odd and even functions during the calculation of 
coefficients, as defined in Equation (7), the Fourier representation takes the fol-
lowing form:  
 For even functions  

 

( )( )

( )

1

0

sin

0
2 sin d

n n
n

n

L
n

n tS f t b
L

a
n tb f t t

L L

+∞

=

π

π

 =  
 

=

 =  
 

∑

∫

 (10) 

 For odd functions  

 

( )( )

( )

0

0

cos

2 cos d

0

n n
n

L
n

n

n tS f t a
L

n ta f t t
L L

b

+∞

=

 =  
 

 =  
 

=

π

π

∑

∫  (11) 

Understanding whether a function is odd, even, or a combination of both can 
simplify the computation of its Fourier series. Another interesting aspect of the 
Fourier representation is the orthogonality of the sine and cosine functions, as 
illustrated in the following Subsection 3.2.3. 

3.2.3. Orthogonality Conditions for the Sine and Cosine Functions 
Two functions f and g are said to be orthogonal over the interval [a, b] if:  

 ( ) ( ) 0
b

a
f t g t =∫  (12) 
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The functions in the Equation (5), ( )cos nx  and ( )sin nx , are orthogonal 
over the interval [ ],c c T+  in other words, meaning that when multiplied to-
gether and integrated over this interval, the result is zero. If m and n are two 
nonnegative integers, then 

 

( ) ( )

( ) ( )

( ) ( )

0

0

0

0   if
cos cos d

   if

0   if
sin sin d

   if

sin cos d 0  for any positive integers and .

T

T

T

m n
nwt mwt t

T m n

m n
nwt mwt t

T m n

nwt mwt t m n

≠
=  =

≠
=  =

=

∫

∫

∫

 (13) 

To determine the coefficient ,m ma b  for any given integer m, we can multiply 
( )( )nS f t  in Equation (5) throughout by ( )cos mwt  and then integrate2 over 

[ ]0,T , we can write 

( ) ( ) ( )( ) ( )
0 0

cos d cos d
T T

nf t kwt t S f t mwt t=∫ ∫  

 ( )0
0

cos d
2

T a mwt t= ∫  (14) 

( ) ( )
0

1
cos cos d

T
n

i
a nwt mwt t

+∞

=

+∑∫  

 ( ) ( )
0

1
sin cos d

T
n

i
b nwt mwt t

+∞

=

+∑∫  (15) 

Then all the terms on the right-hand side vanish except when n m= , and we 
can solve for the coefficient ma . Repeating the process with ( )sin kwt  we can 
similarly obtain the coefficient mb . In the event the required formulas turn out 
to be as given in Equation (6). 

This property is the basis for Fourier series. By decomposing a signal into its 
orthogonal components, we can analyze its frequency content and manipulate it 
more easily. More explanation for calling these orthogonality conditions is given 
in [7].  

3.2.4. Differentiation and Integration of Fourier Series 
Differentiation and integration of Fourier series can be justified by using some 
theorems, as discussed in [7] and [8]. It must be emphasized, however, that these 
lemmas provide sufficient conditions but not necessary ones. The following 
lemma for integration is especially useful. 

Differentiation and integration of Fourier series can be justified by using some 
theorems as in [7] and [8]. It must be emphasized, however, that those lemmas 
provide sufficient conditions but not necessary. The following lemma for inte-
gration is especially useful.  
 Integration of Fourier Series  

Lemma 2. If ( )f t  is piecewise continuous on [ ],a b  and has a finite num-
ber of maxima and minima within that interval, then the Fourier series can be 

 

 

2Assuming that it is permissible to integrate the infinite series term by term. 
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integrated term by term. The resulting series converges to the integral of ( )f t  
at every point where ( )f t  is continuous, and it converges to the average of the 
left-hand and right-hand limits at points of discontinuity, then  

 
( )( ) ( )( )

1

d d

sin 2 cos 2
2 2

b b
n na a

n n
i

S f t t S f t t

T nt T ntC a b
n T n T

+∞

=

=

    = + −        π 
π π

π

∫ ∫

∑
 (16) 

Here, C is a constant of integration. The properties of ( )f t  and the conver-
gence behavior of the Fourier series play a significant role in determining the va-
lidity of term-wise integration. Additional conditions may be needed for con-
vergence in specific cases.  
 Differentiation of Fourier Series  

Lemma 3. Suppose ( )f t  is a periodic, continuous signal over [ ]0,T , its de-
rivative ( )f t′  is piecewise continuous over [ ]0,T  then the Fourier series of 
the signal can be differentiated term by term and the result is the Fourier series 
of the derivative ( )( )nS f t′ .  

 ( )( ) ( )( ) ( ) ( )
1

0 0

2 2sin 2 cos 2

for discontinuity points
2

n n
i

n n

n nt n nta b
T T T T

S f t S f t
f t f t

+∞

=

+ −

    − +       ′ ′= = 
′

π π
π π

′+


∑
 (17) 

As with integration, It’s important to note that the conditions for term-wise 
differentiation are crucial, and these conditions are usually related to the 
smoothness and continuity properties of the signal ( )f t  and its derivative 

( )f t′ . The convergence behavior can vary, and in some cases, additional condi-
tions may be needed for convergence. 

3.2.5. Parseval Theorem 
Parseval’s theorem states that the integral of the square of its signal ( )f t  is 
equal to the square of the function’s Fourier components. In other words, let us 
define the following theorem  

Theorem 4. Suppose that na  and nb  are the Fourier coefficients corres-
ponding to ( )f t  satisfing the Dirichlet conditions, then Parseval identity is as 
follows:  

 ( ) ( )
2

2 2 20
0

1

2 d
2

T
n n

n

af t t a b
T

+∞

=

= + +∑∫  (18) 

Parseval’s Theorem establishes a vital relationship between the energy of a 
signal in the time domain and its energy in the frequency domain, ensuring that 
energy is conserved during the transformation. Figure 9 illustrates the time and 
frequency domains with different harmonics.  

In medicine applications, this formula can be interpreted as follows: Parseval’s 
identity relates the energy or power of the heartbeat signal in the time domain to 
the energy or power of its frequency components in the frequency domain. 
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Figure 9. Frequency domain and time domain. 
 

The application of Fourier Series on electrocardiogram (ECG) for heartbeat 
signals takes place in the following Section 4.1. Fourier Series application on 
electrocardiogram (ECG) for hearbeat signals take a place in the following Sec-
tion 4.1. 

4. Fourier Series Applications 

Fourier series has played a crucial role in various specific applications and fields, 
including:  
 Audio Engineering and Music Production: 

Fourier series is used in synthesizing musical tones by combining sine waves 
of different frequencies and amplitudes to recreate complex sounds.  
 Electrical Engineering and Signal Processing:  

In telecommunications, Fourier series is used in modulation techniques like 
amplitude modulation (AM) and frequency modulation (FM) to encode infor-
mation onto carrier signals.  
 Digital Image Processing:  

In image compression algorithms like JPEG, Fourier series is utilized to 
transform image data from the spatial domain to the frequency domain, where 
high-frequency components (representing fine details) can be compressed or 
discarded to reduce file size while preserving image quality.  
 Physics and Engineering:  

In mechanical and structural engineering, Fourier series is applied in analyz-
ing vibrations and oscillations of systems h.  
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 Medical Imaging 
In MRI, Fourier transform techniques like Fourier imaging and Fourier re-

construction are employed to convert raw data from MRI scanners into images.  
These specific applications and fields highlight the diverse range of areas 

where Fourier series has played a crucial role, demonstrating its broad signific-
ance across various domains of science, engineering, and technology. 

In the following part we are focusing on medical imaging techniques such as 
electrocardiogram (ECG) [9]. 

Fourier Series with ECG and Human Heart Beat 

The electrocardiogram (ECG) is a first-line test used by your Cardiologist to ob-
tain valuable information about your heart health by measuring the electrical ac-
tivity of the heart. The ECG allows your Cardiologist to detect heart attacks, 
heart rhythm problems, and other heart-related conditions. 

An ECG involves the use of small electrodes attached to your chest, arms and 
legs. These electrodes detect electrical signals produced by the heart, which are 
then translated and recorded by a machine, showing your heart rate, heart 
rhythm and electrical waveforms. A normal resting heart rate for adults is be-
tween 60 and 100 beats per minute. A normal ECG rhythm is described as sinus 
rhythm (regular) and without significant pauses or extra beats.  

A normal ECG waveform includes the:  
 P wave: the electrical activity that causes the atria to contract.  
 Q RS complex: the electrical activity that causes the ventricles to contract.  
 Q RS complex; the electrical activity that causes the ventricles to contract.  
 T wave: this represents the ventricles returning to their resting state  

As seen in Figure 10, the periodicity of heartbeats is crucial for the overall 
well-being of the cardiovascular system. Using its periodicity, the Fourier series 
can be applied. This allows researchers and medical professionals to analyze the 
frequency content of the heartbeat and identify various components.  
 

 

Figure 10. Normal heartbeat signal. 
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For simplicity, we will only model the R wave for this article. To get a more 
accurate model for the heartbeat, we would just need to do a similar process for 
the P, Q, S and T waves and add them to my model. 

A real example is given as follows:  
A heart rate was about 60 beats per minute or 1 beat per second. So the period 

T = 1 second = 1000 milliseconds.  
We observed that R wave was about 2.5 mV (millivolts) high and lasted for a 

total of 40 ms. The shape of the R wave is approached by a polynomial function, 
so the model is as follows (the time units are milliseconds): (Figure 11) 

( ) ( ) [ ]40.0000156 20 2.5    over   0;40f t t= − − +  

1000 ms   and   500T L= =  

Then the coefficients of Fourier Series defined in Equation (7) are given by:  
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Figure 11. R heartbeat signal. 
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The results of na  and nb  are too large, so to simplify, we will not explicitly 
state them here. Then our Fourier Series is:  

( ) ( )( )
( )( )

40 4

0
1

40 4

0
1

0.16 1 0.0000156 20 2.5 cos d cos
2 500 500 500
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n t n tf t t t

n t n tt t

∞

=

∞

=

π π

π

 = + − − + 
 

 + − − + 
 

π

∑ ∫

∑ ∫
 

Graphically, Figure 12 and Figure 13 shows the Fourier series for n = 5 and n 
= 100 terms.  

Figure 13, where (n = 100 terms), provides a reasonable approximation for a 
regular R wave with a period of 1 second. The figure accurately fits the R wave. 
By adding the T wave to this next model, the function ( )f t  will be defined as a 
piecewise continuous function. Graphically, the initial R and T signals together 
are presented in Figure 14, and the Fourier series for 100 terms is depicted in 
Figure 15. We could continue this process by adding the P, Q, and S waves to 
create an even better model.  

It’s important to note that the human heart is a complex organ, and the 
Fourier series is a simplification for analysis. In practice, more advanced signal 
processing techniques, such as Fourier transform or wavelet analysis, may be 
used for a more detailed and accurate representation of the heart’s activity. 
 

 

Figure 12. Fourier series n = 5. 
 

 

Figure 13. Fourier series n = 100. 
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Figure 14. Graph of new ( )f t  including R and T waves. 

 

 

Figure 15. Fourier series n = 100 for R wave and T wave. 

5. Conclusion 

In conclusion, Fourier series is a powerful mathematical tool with a wide range 
of applications. It is a particularly promising approach to quantify periodic va-
riability in underlying phenomena, achieving this by converting periodic signals 
into frequencies driven by sums of sines and cosines. From signal processing to 
image manipulation, and from physics to engineering, Fourier series helps us 
analyze and understand the periodic nature of various phenomena. This article 
is concerned with representing and analyzing periodic phenomena via Fourier 
series. In fact, nonperiodic phenomena (and thus just about any general function) 
provide a pathway from Fourier series to the Fourier transform… the spectrum 
is born. With it comes the most important principle of the future subject. 
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