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Abstract 
Black-Scholes Model (B-SM) simulates the dynamics of financial market and 
contains instruments such as options and puts which are major indices re-
quiring solution. B-SM is known to estimate the correct prices of European 
Stock options and establish the theoretical foundation for Option pricing. 
Therefore, this paper evaluates the Black-Schole model in simulating the Eu-
ropean call in a cash flow in the dependent drift and focuses on obtaining 
analytic and then approximate solution for the model. The work also ex-
amines Fokker Planck Equation (FPE) and extracts the  link between FPE 
and B-SM for non equilibrium systems. The B-SM is then solved via the Elza-
ki transform method (ETM). The computational procedures were obtained 
using MAPLE 18 with the solution provided in the form of convergent series. 
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1. Introduction 

Volatility has to do with the degree of variation in prices of financial instruments 
over a period of time. The market expectation of future price fluctuations can be 
measured and expressed as a financial model. The Black-Scholes model is a par-
tial differential equation responsible for the mathematical analysis of price evo-
lution in a European call ([1] [2]). Basically, the Black-Scholes Model (B-SM) as 
the foundation for option pricing can be used to explore a variety of options in a 
European call. It is efficient to compute the price of an option correctly [3]. It 
can also be used to reveal different observable factors such as underlying price 
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options, determine the range of price movements, rates and other factors not 
simultaneously observable and underlying fear factors according to Hicks [4]. 
For a European call depending on stock paying with no dividends, the B-SM is 
given as [5] 

2
2 2

2
1 0
2

V S V rS V rV
t SS

ϕ∂ ∂ ∂
+ + − =

∂ ∂∂
                (1) 

with 

( ) ( ) ( ),0 e , , er T trTV S S K V S t S K −= − = −  as S →∞ .           (2) 

where; 
• V is the price of the option; 
• ϕ  is the volatility of the stock; 
• S is the stock price; and 
• r is the rate-free interest rate. 

Biazar et al. [6] carried out a detailed study of Equation (1) and suggested a 
straightforward version which is rewritten as 

( ) ( ) ( ) ( )
2

2 2
2

1, , , ,
2

V S t S V S t rV S t rS V S t
t SS

ϕ∂ ∂ ∂
+ = −

∂ ∂∂
,         (3) 

for proper financial interpretation. Equation (3) is referred to as the standard 
B-SM. 

FOKKER-PLANCK EQUATION ([7] [8]) 
Let us consider the general form of a nonlinear FPE 

( ) ( )2

2

, , , ,A x t u u B x t uu u
t x x

 ∂ ∂∂
= − + 

∂ ∂ ∂  
                (4) 

With initial conditions as ( ) ( ),0u x f x= , x R∈ . Such that ( ),u x t  is the 
unknown distribution function in Equation (4). Also, a special case of equation 
(4) is the FPE derived from Plasma Physics having the form 

( ) ( )
2

1 2 2
2

1 1 1, ,
2 2 4

P x P x t x P x t
t xx

− −∂ ∂ ∂   = −   ∂ ∂∂    
             (5) 

( ),P x t  in Equation (5) is the probability density function. Expressing 

( ) ( ) ( )2 1 2 2 1 22 2, 2 , , ,
2 1

P x t x r y r t y xω− += = =
+

 


 

and substituting for it, then Equation (5) is reduced to a linear Brownian motion 
of FPE given as 

( )
2

2
1,
2

r y
r y y y

ω ωω
 ∂ ∂ ∂

= −  ∂ ∂ ∂ ∂ 
 

with initial conditions  

( ) 2 22 210, erf 2 e e
2

y yy yω  = +  
 

Or as 
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( ) ( ) ( ) ( ) ( )
2

2 2
2

1, , , , , ,
2

C S t V S t s C S t rS C S t rC S t
t SS
∂ ∂ ∂

= + −
∂ ∂∂

      (6) 

using the Mellin transformation [9]. 
S is the the exact price that undergoes Brownian motion, ( ),C s t  is the call 

option price, V is the volatility and r is the interest rate. Equation (6) is more 
useful if the problem is to determine the call option. However, B-SM when 
solved provides a strategy for determining not just the prices of underlying secu-
rity, current time and time of expiration, and return of the free-risk assets but 
also eliminating the risk involved in the whole process. 

Assumptions of the Black-Scholes Model 
• The model B-SM computes the present value of a call option without divi-

dends. 
• The model requires the value of the standard deviation. It can be calculated 

from the variance by taking the square root. 
• The hedge ratio is the ratio of the expected stock price at expiration to the 

current stock price at the onset. 
• Free risk assets, underlying prices, strike prices and expiration can be used to 

hedge positions on the option. 
Equation (1) can both be solved analytically and numerically. The few availa-

ble analytic methods are complex and difficult to handle requiring linearization, 
perturbation, or weak assumptions. Therefore, several numerical methods have 
been developed and implemented over the years for seeking the solution of the 
Black-Scholes equation. The Finite Difference Method (FDM) has often been the 
most privileged numerical scheme used by many researchers in recent times to 
seek the approximate solutions of the B-SM. For instance, Andallah and Anwar 
[5] used the FDM for the numerical solution of B-SM. Dura and Mosneagu [10] 
also considered the numerical approximation of the B-SM via the FDM. Duffy 
[11] employed the FDM in financial engineering through the B-SM. A unitary 
transformation has been applied to the classical B-SM to obtain the quantum ef-
fects associated with the market fear factor especially that causing the increase in 
volatility rate [12]. Characterizing and determining volatility rate has also been 
the focus of many researchers [13]. There is also the non-commutative B-SM 
presented in Accardi and Boukas [14] that was transformed into an integral eq-
uation. Wei [15] listed the three benchmarks of a stochastic system for B-SM to 
test the accuracy of Fokker-Planck Equation (FPE) via time-dependent methods 
of FDM, Finite Volume and Finite Element. The B-SM of option pricing can also 
be regarded as a reaction-diffusion equation that is entirely based on stochastic 
analysis. Here, the B-SM is first transformed into a simple FPE and then ana-
lyzed. Several research has been carried out in the computational sense for the 
numerical solution of this derived FPE ([9] [15] [16]). 

The empirical performance of B-SM has been examined in [17]. However, the 
link between B-SM and FPE has been investigated and analyzed by many re-
searchers. These include [18]; they even introduced Fractional FPE in their work 
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by deriving the fractional FPE order governing the dynamics of the equation and 
then determine the Black-Scholes differential equation that involves the stock 
asset and fair prices of the European option. Before this, others have used frac-
tional to analyze stock exchange market dynamics ([19] [20] [21]). Consequently, 
once the market prices have been observed for the option, the B-SM can be in-
verted to determine the volatility. In addition, the B-SM when solved provides a 
strategy for eliminating the risk and determining the prices of underlying secu-
rity ([22] [23]). 

In recent years, the focus on B-SM has been on reviews in terms of redefini-
tion ([24] [25]), Computations [26], Applications ([27] [28]) and solution me-
thods [29] and sensitivity analysis [30]. 

This paper is motivated to seek the numerical solution of the B-SM using the 
Elzaki transform method (ETM). This method is necessitated by its simplicity, 
less computational rigor, and rapid rate of convergence as will be observed in 
section 3. 

2. Elzaki Transform Method 

The set [31] 

( ) ( ) ( ) [ ){ }1 2: , and 0 : e , if 1 0,j jtg t N g t N tαα α∃ > < ∈ −Ω = × ∞ ,     (7) 

define by 

( ) ( ) ( ) ( )1 20
e d , ,t rE g t r g t t T r r α α−∞

= = ∈ −   ∫ ,            (8) 

is called the Elzaki transform of the function ( )g t . 

2.1. Properties of Elzaki Transforms Method 

1) 
( ) ( ) ( ), 1 , ,0

u x t
E T x q qu x

t q
∂ 

= − ∂ 
. 

2) 
( ) ( ) ( ) ( )

2

2 2

, ,01 , ,0
u x t u x

E T x q q u x
tx q

 ∂ ∂
= − − 

∂∂  
. 

3) ( ) ( ) ( )1 2
0

, ,0
,

k
m m k

m m kk

T x q u x
T x q q

q t
− − +
=

∂
= −

∂∑ , m is the order of the highest 

derivative. 
4) 2!n nE t n q +  =  . 

5) 1 2

!

n
n tE q

n
− +  =  . 

2.2. Elzaki Transform Method for Black-Scholes Model 

Here, we apply the ETM to solve B-S equation of the form (1). 
Applying the Elzaki transform on both sides of Equation (2), we have 

( ) ( ) ( ) ( )
2

2 2
2

1, , , ,
2

E V S t E rV S t rS V S t S V S t
t S S

ϕ
 ∂ ∂ ∂  = − −  ∂ ∂ ∂   

     (9) 
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Using 2.1(iii), we have that 

( ) ( )

( ) ( ) ( )

1 2
0

2
2 2

2

,
,

1, , ,
2

k
m m k

kk

V S t
E V S t q

t

qE rV S t rS V S t S V S t
S S

ϕ

− − +
=

∂
=   ∂

 ∂ ∂
+ − − ∂ ∂ 

∑
    (10) 

Having the inverse on both sides if Equation (10), we have 

( ) ( )

( ) ( ) ( )

11 2
0

2
2 2

2

,
,

1, , ,
2

k
m m k

kk

V S t
V S t E q

t

qE rV S t rS V S t S V S t
S S

ϕ

−− − +
=

 ∂
= 

∂
 ∂ ∂

+ − −  ∂ ∂ 

∑
     (11) 

Thus the approximate solution is given as 

( ) ( )
0

, ,n
n

V S t V S t
∞

=

= ∑  

Thus, Equation (11) becomes  

( ) ( )

( ) ( ) ( )

11 2
0 0

2
2 2

2

,
,

1, , ,
2

k
m m k

n kn k

V S t
V S t E q

t

qE rV S t rS V S t S V S t
S S

ϕ

∞ −− − +
= =

 ∂
= 

∂
 ∂ ∂

+ − −  ∂ ∂ 

∑ ∑
  (12) 

By comparing both sides of Equation (12), we obtain the recurrence relations 

( ) ( )11 2
0 0

, ,0
, ,

k
m nm k

kk

c s v
V S t E q

t
−− − +
=

 ∂
=  

∂  
∑              (13) 

( ) ( ) ( ) ( )
2

1 2 2
1 2

1, , , ,
2n n n nV S t E qE rV S t rS V S t S V S t

S S
ϕ−

+

  ∂ ∂
= − −  ∂ ∂  

  (14) 

Hence, ( ) ( ) ( )1 2, , , , , ,nV S t V S t V S t�  for 1n ≥  are calculated using the Equ-
ations (13) and (14). 

Finally, the required approximate solution of the Black-Scholes equation be-
comes 

( ) ( )0, ,nnV S t V S t∞

=
= ∑                     (15) 

Equation (15) is the determining index for cash flow, risk profile for buying and 
selling underlying asset and predicting future price movement. 

3. Numerical Illustrations 

Here, we implement the ETM on the B-SM using Maple 18 software. Results ob-
tained is presented as a power series. 

Thus, using the ETM scheme (13) and (14) on 
2

2 2
2

1 0
2

V S V rS V rV
t SS

ϕ∂ ∂ ∂
+ + − =

∂ ∂∂
, 

with the parameters 0.12r = , 1T = , 100K =  and 0.10ϕ = , (Andallah and 
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Anwar, 2018), we obtain the following approximations: 

0 112.7496852V S= −  

2 2
1

2
3

V S t= −  

2 4
2 0.5341666665V S t=  

2 5
3 0.1599741666V S t= −  

2 6
4 0.04266786181V S t=  

�  

Thus, the required computed solution is 

( ) 2 2 2 4

2 5 2 6

2, 112.7496852 0.5341666665
3

0.1599741666 0.04266786181

V S t S S t S t

S t S t

= − − +

− +
        (16) 

Using the values of the call option on Equation (16) over the range 0 ≤ S ≤ 100 
for t = 0 to 1, the striking price is illustrated in Figure 1 produced by MAPLE 18. 
The approximate values of the model t = 0 to 1 

Example 2 
Let 

( ) ( )0, n
i iiC S t a tϕ

=
=∑                    (17) 

be an approximate solution of (6) with ia 's  being constant parameters, and i'sϕ , 
Mamadu-Njoseh polynomials. 
 

 
Figure 1. Numerical simulation for European call at different time 
steps with 0.12r = , 1T = , 100K =  and 0.10ϕ = . 
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Now, substituting (17) into (6), we get 

( ) 2 2 2
1 2 3 2 3

2
1 2 3

2 3
0 1 2 3

10 42 3 1 10 84,
3 5 5 2 3 5

10 42 3
3 5 5

5 2 14 3
3 5 5 5

C S T a a t a t V S a a

rs a a s a s

r a a t a t a t t

   = + + − − +   
   

  + + + −  
  

    − + + − + −    
    

     (18) 

Evaluating (18) at the conditions 

( ) ( ), max , 0 ,C S T S K S= − ≤ < ∞  

( )0, 0, 0 ,C t t T= ≤ <  

( ) ( ), e as ,r T tC s T S S− −= − →∞  

we obtain the following system of equations: 

2 2 2
1 2 3 2 3

2
1 2 3

2 3 0.3676425560
0 1 2 3

10 42 3 1 10 84
3 5 5 2 3 5

10 42 3
3 5 5

5 2 14 3 e
3 5 5 5

r

a a t a t V S a a

rs a a s a s

r a a t a t a t t S K

   + + − − +   
   

  + + + −  
  

    − + + − + − = −    
    

 

2 2 2
1 2 3 2 3

2
1 2 3

2 3 0.3676425560
0 1 2 3

10 42 3 1 10 84
3 5 5 2 3 5

10 42 3
3 5 5

5 2 14 3 e
3 5 5 5

r

a a t a t V S a a

rs a a s a s

r a a t a t a t t S K −

   + + − − +   
   

  + + + −  
  

    − + + − + − = −    
    

 

2 2 2
1 2 3 2 3

2
1 2 3

2 3 0.8756710201
0 1 2 3

10 42 3 1 10 84
3 5 5 2 3 5

10 42 3
3 5 5

5 2 14 3 e
3 5 5 5

r

a a t a t V S a a

rs a a s a s

r a a t a t a t t S K

   + + − − +   
   

  + + + −  
  

    − + + − + − = −    
    

 

2 2 2
1 2 3 2 3

2
1 2 3

2 3 0.8756710201
0 1 2 3

10 42 3 1 10 84
3 5 5 2 3 5

10 42 3
3 5 5

5 2 14 3 e
3 5 5 5

r

a a t a t V S a a

rs a a s a s

r a a t a t a t t S K −

   + + − − +   
   

  + + + −  
  

    − + + − + − = −    
    

   (19) 

Thus, solving the above equations for , 0,1,2,3ia i = , using the estimates 
0.2V = , 60S = , 0.01r = , 1t = , 100K = , we obtain Figure 2 below. 
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Figure 2. Numerical simulation for Equation (6) at different time 
steps with 0.2V = , 1T = , 100K = , 60S =  and 0.01r = .  

 
0 1

2 3

41888.37454, 303.5807685,
0.6107413174, 0.0006165491976

a a
a a

= =

= =
 

Substituting the above into (17) yields the approximate solution to (6). Further 
simulation gives. 

4. Conclusion 

We have considered the numerical solution of the B-SM using the Elzaki trans-
form method. Results obtained showed that the ETM is very reliable for simu-
lating the call depending on stock paying with no dividends. The numerical illu-
stration shows that the method is accurate for solving the FPE, hence for B-S 
equation. Also, the results agreed with those found in the literature ([5] [31]) for 
comparison. B-SM in its numerous modifications and expansion [31] can be 
used for hedging and risk mitigation, put and call options, Forex options, cash 
call, assets with continuous yielding dividends, stock options etc (DF, 2022) [32]. 
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