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Abstract 
The manuscript introduces an “ab initio” quantum model to deduce the 
Maxwell equations. After general considerations and laying out the model’s 
theoretical framework, these equations can be derived alongside a broad va-
riety of other results. Specifically, a corollary of the present model proposes a 
possible mechanism underlying the formation of magnetic monopoles and 
allows estimating their formation energy in order of magnitude. 
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1. Introduction 

The Maxwell equations are the basis of classical electrodynamics; as such, how-
ever, they do not explain quantum effects such as photon-photon interaction, 
Planck’s law and threshold feature of the photoelectric effect. The aim of this 
paper is to highlight how to extend the applicability range of the Maxwell equa-
tions implementing their quantum basis. After preliminary considerations in the 
Section 2, the Maxwell equations turn out to be in the Section 3 one of the out-
comes that emphasize the generality of the proposed model. The Section 4 out-
lines the possible mechanism to explain the formation of magnetic monopoles 
and estimates an order of magnitude of formation energy. The text is organized 
in order to be as self-contained as possible. 

2. Preliminary Conceptual Frame 

This section sketches the quantum basis of the next Section 3. The initial equa-
tion is the statistical formulation of quantum uncertainty  

 ,xp x n tδ δ δεδ= =  (1) 
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introduced in [1] and obtained as a corollary of the space time constant  

 
3

2 .G length
timec

=
  (2) 

In fact (1) are rooted on Panck length and momentum, whose product 

Pl Plp =   summed n times reads Pl Pln p n=  . As at the left side n is factor of 
two Planck quantities, put * *

pn n n=


: *n


 and *
pn  are arbitrary real numbers, n 

arbitrary integer. Thus * *
x px p n nδ δ =



  putting *
Plx nδ =



  and *
x p Plp n pδ = . 

Repeating this reasoning for tδ δε  one finds (1), whose physical meaning is: a 
corpuscle of mass m having random energy ε  and momentum component xp  
falling within δε  and xpδ  is delocalized in xδ  during a time lapse tδ . On 
the one hand (1) do not imply a specific reference sistem R: they read actually 

* * * *
p tn n n n nε≡ ≡



. On the other hand, replacing the local values of conjugate dy-
namical variables with the respective uncertainty ranges the physical problems 
are formulated overcoming both classical determinism and specific reference to 
any particular R. In other words, let (1) be xx p nδ δ′ ′ ′=   in a different R′ : ac-
tually xx pδ δ  and xx pδ δ′ ′  are indistinguishable, because n symbolizes an ar-
bitrary number among all allowed quantum states, i.e.  

 1,2, 1,2,n n′= =   (3) 

All information of this section is rooted on (1). Rewrite now (1) as  

 ( )12 ,n t hδε ω πδ ω δε δ ν−= = ⇒ =  (4) 

and define 1 0δε ε ε= −  as the energy range corresponding to all i-th quantum 
states 0 1in n n≤ ≤  of the respective 0 1iε ε ε≤ ≤ ; all iε  are allowed by the time 
range tδ  defining 1ν − , while 1 0 nδν ν ν ν= − =  means that 1ν  differs from 

0ν  by a discrete set of intermediate frequencies iν . Then (1) and (4) yield also  

,x x x kin
xv p v
t

δδε δ δε δ
δ

= = ⇒ = ⋅v p  

and  

 0
0

.x x
x x x

v vhnh nh p v n p nh
n

ν λ λ ν ν
λ λ λ

= = = = = ⇒ = ⋅p v  (5) 

In fact xx pδ δ  is one component of δ δ⋅x p : on the one hand (1) admit in 
principle an arbitrary number of extra-dimensions hidden in the scalar of con-
jugate dynamical variables, on the other hand for any rp  allowed in rpδ  also 
follow 

 
2

r
r r

r
r

hp

n
r

r n

δ δ δ
λ

δ λ
πδ λ

   
= =   

   
= ⇒

=




 





 (6) 

The left hand side means that the size of rδ  is equivalent to n reduced wa-
velengths r , which in fact agrees at the right hand side with (6). Let us show 
that ( )rhδ λ  yields  
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 ( ) ( )1 .
g

h
h

v
δ ν

δ λ− =  (7) 

The concept of velocity is definable through (1) as x tδ δ  or xpδε δ : the 
former is the usual length/time ratio, the second depends implicitly upon the 
number of states as actually (1) reads xx t pδ δ δε δ=  skipping however n . 
Replacing the size of xδ  with the extent of λ , write via v = v  and p = p  
for an e.m. wave  

( )1 n
n

g
g

v c vv v
t p c v
λ δε δν δν ν
δ δ δ ν λδλ−= = = ⇒ = = =  

where gv  is the group velocity of a wave packet, v the phase velocity and n the 
refractive index. It highlights the physical meaning of ( )1 rδ λ  in (7). 

The general concepts of energy and momentum implied in principle by (1), 
must be specified in fact case by case depending on the physical problem of in-
terest; four relevant examples clarify this point. 

1) Equations (4) and (6) are mere different ways to rewrite the initial (1). Im-
plement their correlation to describe the photoelectric effect specifying first 
( ) kineVδ δε= , being V the acceleration voltage acting on the charge e. Thus 
Vδ  and kinδε  imply ( ) ( )kineV hδ δε δ ν= =  and explain the linear trend of 
Vδ  vs δν  with slope h/e. Also, writing ( ) ( )kin const hδ ε δ ν+ =  i.e.  

kin h constε ν= − , appears also the threshold character of 0const hν=  defined by 
( )0kin hε ν ν= − , i.e. the standard equation of the photoelectric effect with 

0ν ν> . To clarify how the local values kinε  and hν  are related to the respec-
tive uncertainty ranges, write explicitly 

 
0 0 1 0 1 01 1

1 0

1 1 0 0 ,

n h n h h hV V
e e e e e e e

n n

ε ε ν ν ν νε εε

ν ν ν ν

− −
≤ ≤ ⇒ − = − = =

= =
 (8) 

which explains in a natural way the physical meaning of stopping voltage and 
irradiation frequency 0V  and 0ν . Both boundaries of the ranges are arbitrary: 
this allows fitting any experimental irradiation conditions, e.g. intensity and 
frequency spectrum of the light beam, and work function 0hν  of metal irra-
diated. Yet (1), (7) and (6) emphasize contextually gv  and wave character of 
the photon too, thus overcoming Millikan’s skepticism about Einstein’s explana-
tion of the photoelectric effect. 

2) Note that owing to (7) and (6) and putting v = v  and p = p , (2) yields 

 2 2 .
22

m
m m

r v rhG h mG pr v r v
n p m pc c
δλ δελ

π δπ
= = = = = =  (9) 

These definitions are linked: m has been introduced to fulfill (2) via mr  and v 
involving respectively G and p. At the moment regard m and v as dimensional 
parameters. To examine the meaning of m, let us merge p h mvλ= ∝  and call 
the proportionality factor 1β − , being β  a function to be defined. Next, mul-
tiplying both sides of h mvλ β=  by v, one finds 2h m vν β=  being vν λ= . 
This result yields  
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2 2
* 2 * 2 * 2 * 2 2 * 2 *

2 21v m v hh m v m c m c m c m p m v
vc c
νν β β

β
= = = − = = − = =  

and therefore  

 
2 2

* 2 *
2 2 .v mc mv Evh E E m c p m v

c c
ν

β β
= = = = = =  (10) 

Moreover h p h mvλ β= =  yields as a limit case the length *h m c . More 
specifically, owing to (4),  

 ( )* 2 * * :C C C
c nhm c h nh n

mc
βδ ν ν λ λ λ β

ν
= = ⇒ = = =  (11) 

of course *
Cλ  tends to the classical Compton length Cλ  of m for v c . As 

Cλ  corresponds to 0v = , the physical meaning of this result is that cλ ν=  is 
the Lorentz contraction of the proper length Cnλ  for 0v = , which in turn im-
plies the Lorentz time dilation too. 

The fact of regarding reasonably the wavelengths as a multiple of the Comp-
ton Cλ  implies that m, hidden in Cλ , is proportional via 2c−  to the energy 
gap hδν . This approach merges quantum ideas, special relativity and classical 
physics. Putting 1β ≈  the last (9) reads in particular ( )2 2p p pδ δ=  and 
thus with notation analogous to (8)  

 
22 2
01

1 02 2 2kin
pp pconst

m m m
ε ε ε− = − ⇒ + =  (12) 

having defined constants the terms labeled with 0: the lower boundaries of the 
ranges play here the role of the arbitrary constant defining the energy, i.e. the 
boundary conditions. Moreover merging wave and corpuscular definitions of p 
via (2) implies owing to (6) and (9)  

2

2 2 2 2 2

2 3 3 2 ,

m m

m

mG mG t mGr n c t
c c t

n r mG r

δ δ δ
δ ω δ

ω δ δ δ

= = = = =

⇒ = =











 

having factorized two arbitrary lengths 2
mδ   into a unique 3rδ . For 1n =  

this result has the form of the classical third Kepler law. No less, the relativity is 
just one step further. As the constant can be in principle positive or negative, 
think for example to the potential energy due to an attractive constant field, one 
can rewrite (12) with const− ; then multiplying side by side (12) and its mod-
ified form, one finds  

 ( )
( )

44
2 2 2 2

2 22
;

4 2
kin kin

pcpconst const
m mc

ε ε− = ⇒ = +  (13) 

to make this result consistent with (10), introduce an arbitrary proportionality 
factor ζ  such that  

2 22 .
2

hc hpc h mc mc νζ ζ ν ζ ζ
λ

= = = =  

So, not only (13) reads  
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 ( )22 2 ,kin p c const p pζ′ ′= + =  (14) 

analogous to and consistent with that inferred from (10), but also the rest energy 
2mc  appears to be equivalent to the zero point delocalization energy of a har-

monic oscillator with quantized frequencies ζν . 
Note now that with nλ  quantized in (6), (11) yields 

 
2

2
0 0

mc mh m c m
n n

ν = = =  (15) 

whose meaning is not merely formal: (9) suggests introducing the arbitrary mass 

0m  to write 

 
0 02 .m

m m
rG r v r r
nc

δ= =
  (16) 

The third Kepler law takes the usual form as a function of 0m  of (15), which 
also implies that mr  expressed as a function of 0m  reads in turn, quoting for 
brevity two numbers n of states only,  

 

0
2

0
2

0
2

1

2 2

m

m G n
cnm Gr

c
m G n
c

=

= =

=





 (17) 

The fact that in (16) rδ  is quantized shows that the meaning of (6) goes well 
beyond its early purpose of regarding the electron as a wave interacting with a 
nucleus; thus   plays the role of reference space length whose extent is ana-
logous to the range size xδ  in (1). Once more corpuscular and wave interpre-
tations are compatible and equivalent. 

These definitions, inferred via the physical dimensions of (2) through the 
quantization of λ  only, are further concerned in the Section 5. Note here that 
(9) merge wave and corpuscular character of momentum, and provide further 
information. As ( ) ( )2 2 32p p p hδ δ λ δλ= = − , write then  

 
( )
( )

( )
( )

2 2

2 2
1 1 1
2 2

pc pc

h h

δ δδλ νδ
λ νν ν

= − ⇒ = −  (18) 

that yields  

( )
( )

( )
( )

( )2 2 2

2 2 2 2
1 1 .
2 2 2

pc pc pc hp
cc ph h c

δδϕ νϕ
ν ν

′= − ⇒ = − = − =
′

 

Owing to (18) is relevant the result, with the notation (8),  

 1 0 1 0
12

0

.
c

ϕ ϕ ν ν
ν ν

ν
− −

= − =  (19) 

Physical dimensions and sign of ϕ  suggest its meaning of potential energy 
per unit mass; δϕ  is related to δν  with respect to arbitrary reference values 
of 0ν  and corresponding p′ . The classical approximation of ϕ  is easily 
guessed replacing p mv≈ , which yields 2 2cl vϕ ≈ − . As owing to (9)  
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2 22 cl Mc MG rc r rϕ = − = −  is the potential energy at of a body at a distance r 
from M. The result (19) is sensible: e.g. elementary considerations show that the 
classical escape velocity of a body r apart from M is 2MG r≈ . 

Consider eventually the following chains of equations; owing to (12), (16) and 
(17)  

 

2 2 2

2 2 2

2 2
2

2
2 2

2 2 ,bh bh bh bh

G p h m Gh h
mc m c

mGr r n
c

λ
λ

π λ

= = = =

⇒ = = =

 

   

  

 (20) 

being   and   arbitrary energy and volume by dimensional reasons. Moreo-
ver the first (9) reads identically  

 2 ,m
m m

rG mv mr v r v v p mv m
c

β
β β β

′ ′
′ ′ ′ ′ ′= = = ⇒ = = =

′ ′ ′


  (21) 

being β ′  a function to be defined. The shortest way to examine (21) is to put 
2 21 v cβ ′ ′= − . Then  

2 2 2
2 2

2 2 2 2 2 2 2 2
;

1 1 1 1
v v m v m cv v p
v c v c v c v c

′ ′ ′ ′
′ ′ ′= ⇒ = = =

′− + ′ ′− −
  

replacing next ( )2
4 2 3v v v v v′ = +  and 2 3v v v= , all velocities are arbitrary, 

one finds via trivial steps  

 2 3
4 42

2 3

.
1

v vv v c
v v c
+

= ⇒ ≤
+

 (22) 

These preliminary results are not surprising. They emphasize how mass, time 
and length already inherent the physical dimensions of the constants defining (2) 
are extracted explicitly or recombined implicitly via the positions (9), (10) and 
(20). 

3) Eventually follows in this frame based on (1) and (2) only also the quanti-
zation of the electric charge. Let q be an arbitrary amount of charge and q0 a ref-
erence charge, e.g. that of the electron. Write then by dimensional reasons 

2q rε =  in the c.g.s. system; so, differentiating ε  one finds owing to (1)  

 
2

2
0 0

.q q qt r t n n
q qr

δεδ δ δ= − = = =   (23) 

The last position is now checked. Depending on the sign of q0, it follows 

 

2
0 0

2
0
2

r r r r
r r

r r

q q qr r
r r t r r n t

q p F p nF p
n n t n n t rr

δ δ
δ δ
δ δ

δ
δ δ δ

± = ⇒ ± =

⇒ ± = = = =

 



 (24) 

i.e. the radial Coulomb force Fr via charge quantization (23). 
4) This subsection concerns more specifically the way to find the Maxwell eq-

uations. 
As momentum/volume = flux = mass/(surface × time) by dimensional reasons, 

consider an arbitrary surface ( ),A A y z=  normal to the x-axis crossed by a flux 
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of particles of total mass m, initially assumed moving at the same velocity xv ; 
thus x xp v  of (7) introduces x xp v   that in turn defines the flux component 

xj  per unit surface and time of the particles crossing ( ),A y z  delocalized in 
  with momentum xp . Thus 

 x
x x x

p mvj p vε ε= = ⇒ = ⋅ =p v j
 

  (25) 

yield  

 ;x
x x

p mj v
V

ρ ρ= = =


 (26) 

the component notation of v  and p  is used to remark their reference to (1). 
Note that x xp v ρ=  implies  

 
2

2
2 2 ,x x x x

x
p mv mv c vp mc

c c
= = ⇒ = =




  
 (27) 

which clarifies that in fact x xp mv=  holds provided that m is replaced by 2c  
in agreement with (9). 

The results (27) and (4) along with (22) and (10) exemplify the chance of ob-
taining via (1) quantum and relativistic outcomes even starting from a classical 
conceptual frame. Also, (26) relates xpδ  of (1) to the corresponding  

x x xj v vδ δρ ρδ= + ; differentiating (26) one finds 

 ( ) .x x x
x x x

p j vv j v
x x x

δ δδρδ δ ρ δ ρ
δ δ δ

  = = = + 
 

 (28) 

Therefore the left hand side of (28) reads, owing to (26),  

 
( )

2 1
2 1 2 2 1 1

2 1

2 1 2 2 1 1 ,

x x
x x x x x

p pj j j v v

v

δ ρ ρ

ρ ρ δ δ ρ

= − = − = −

⇒ − = − =j j v v j
   (29) 

which in turn admit two chances formally identical:  

 

2 1
2 2 2 1 1 1

2 1

2 1
1 1 1 2 2 2

2 1

or

x x
x x x x

x x
x x x x

p pj v j v

p pj v j v

ρ ρ

ρ ρ

= = = =

= − = − = − = −

 

 

 (30) 

however different from a physical point of view. This appears rewriting (28) ac-
cording to x xj vρ= ±  as  

 
( )

:x x x
x

p j vv
x x x x

δ δ δδρ ρ
δ δ δ δ

⇒ ± = ± ±


 (31) 

reasonably the x-components xv  of v  and its change xvδ  can take in prin-
ciple both signs. Merging (29) and (31), j  and ∇ ⋅ j  read in general  

 i

i i

xv
x t
ρρ ρ ρ ρ ρ ρ ρ
∂∂

= ∇ ⋅ = ⋅∇ + ∇ ⋅ = ± ± ∇ ⋅ = = ⋅∇
∂ ∂∑ j j v v v v  (32) 

and thus, according to (26), also  

 .p δδ δ×
= × = = = −

r p M p jj r j j 
    

 (33) 
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It is known that in fluid dynamics the divergence of velocity vector implies the 
rate of time change of a moving fluid element per unit volume: so 0∇ ⋅ =v  
concerns a stationary model where const=  and the fluid is incompressible 
[2]. Instead 0∇ ⋅ ≠v  implies non-conservation of mass moving out of a diffe-
rential volume d  during dt , which means decreasing amount of mass in   
with positive divergence of stream density. The notation 1j  and 2j  has been 
so far implemented, e.g. in (29), to introduce δ j  and justify ∇ ⋅ j  with the 
formalism of the uncertainty ranges starting from (1). Now to implement (33) is 
more significant the notation +j  and −j  that reminds the signs of (32); consi-
dering separately both chances allowed for ∇ ⋅ j , these equations with the minus 
sign agree with Fick’s law 

 0 0.ρ− −∇ ⋅ + = ∇ ⋅ =j v  (34) 

Moreover this reasonable result pairs with the further chance  

 2 0.ρ σ σ ρ ρ+ +∇ ⋅ + = = ∇ ⋅ + ≠ j v  (35) 

Realistically − +≠v v , as their physical meaning is different too: −v  fulfills 
the continuity Equation (34), +v  in general does not, except in a specific case 
where *

+v  verifies in particular  

 * 2 0.ρ ρ+∇ ⋅ + =v  (36) 

Consider that (1) require introducing range boundaries, regardless of the 
random local values x and xp  included in the respective ranges; this holds in 
particular for the dynamical variables in (26). Therefore, once considering only 
the boundary values of xj , as in (1), becomes inessential the condition of equal 

xv  for all particles delocalized in   concurring to the whole value of m: in-
deed appear in (29) the velocity boundary values 1v  and 2v , regardless of the 
actual velocity distribution of the i-th components 1 2i ix xi xv v v≤ ≤ . Now define 
  via an arbitrary surface A such that  

 ( ) 0,mA A A y z x x x
x

ρ δ
δ

= = = −  (37) 

and calculate ( )A xρ∂ ∂ ; in agreement with (27) one finds  

2 2 3 3 ,xmvm m A x mA t
x t x tx x t x x
ρ ρ δδ

δ δδ δ δ δ δ
∂ ∂

− = = ⇒ − = =
∂ ∂

 

which reads, owing to (25),  

 .x x
A mD v j D D

x t A x
ρ ρ ρ ρ

δ δ
∂

− = = = = ⇒ = − ∇
∂

j  (38) 

Clearly D is the diffusion coefficient governing the flow of m through the sur-
face A due to the mass density gradient ρ∇ ; the sign of (38) agrees with the first 
Fick law. The connection of (38) with D is not surprising owing to (36), which in 
fact yields  

 
* *

0 0 0 0

exp exp exp
2 2

actt tD D
D D

ρ ρκ
ρ ρ κ

+ +   ∇ ⋅ ∇ ⋅  = − ⇒ = − = −     
    

v v 


 (39) 
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being 0ρ  integration constant and κ  an appropriate dimensional constant. 
Define indeed  

( )
* 2

3 t
τ

τ τ+ = ′ ′′ +
rv  

so that *
+v  does not diverge for 0t →  or t →∞ . Replacing in (39) one finds  

 
0

2exp :
3

D t h h
D t τ τ τ

′  ′= − = = ′′ ′+ 


 


 (40) 

the exponential tends to the constant ratio of two energies that with appropriate 
values of the arbitrary constants τ  and τ ′  is in principle compatible with the 
aforesaid act kT . After an initial transient, arbitrarily short depending on the 
time lapse τ ′′ , (40) takes the usual form of activation energy act  driven de-
pendence of D upon the temperature T. 

This result follows in the particular case where holds (36) despite, in general, 

+v  fulfills (35). It appears also noting that 0ρ −∇ ⋅ ≡v  anyway, whereas for 

+v  it applies for * 2ρ ρ+∇ ⋅ = − v  only; i.e.  

 ( ) ( )0 0.ρ ρ− +∇ ⋅ ∇ ⋅ ≡ ∇ ⋅ ∇ ⋅ ≠v v  (41) 

- On the one hand, it is interesting to note that  

 
( ) ( );xx x

x x

vj j D D
t v t v x x x

ρ ρρ ρ
∂∂ ∂∂ ∂ ∂ ∂ = − = − = − ⇒ ∇ ⋅ = −∇ ⋅ ∇ ∂ ∂ ∂ ∂ ∂ ∂ ∂ 

 j  (42) 

therefore  

 ( ) x x

x

j jD
t v x

ρ ρ
∂ ∂∂

= ∇ ⋅ ∇ ⇔ =
∂ ∂ ∂

  (43) 

i.e. xj  fulfills the Lagrangian because the left hand side is the second Fourier 
equation that concerns the heat diffusion equation. 
- On the other hand, if (38) and (32) are correct, then even the first equality 

(38) should have its own identifiable physical meaning. To check this point 
note that  

 exp ,x xv dx v xd
D D

δρ ρ
ρ ρ

 = − ⇒ = − ′  
 (44) 

having assumed for simplicity xv  constant. Of course nothing hinders regard-
ing 0ρ ρ ρ′ = ± , so that 

0
0exp 1 expx xv x v x

D D
δ ρ δρ ρ ρ ρ

ρ ρ
′     ′= ⇒ ± = = ±   

   
 

yields  

 0 0 0

0

:
exp 1 exp 1 exp 1x x nv x mv x

D mD

ρ ρ ρ
ρ ρ

δ δ τ δ
τ

= = ⇒ =
     
          









 (45) 

the physical meaning of (45), merely inferred with the help of dimensional rea-
soning, is recognizable considering that any result obtained from (1) actually re-
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fers to the n-th quantum state defined by uncertainty ranges of dynamical va-
riables: it explains the notation nδε  related to ( ) xm v xτ δ . The analytic form 
of (45) corresponds to two possible statistical distributions of energy of particles 
in the n-th quantum state with respect to the reference energy 0  uniquely de-
fined by mD τ  for an arbitrary m. 

An analogous reasoning concerns the differential dρ  of (44). Consider now  

( )( )0
0

log log log log .dd d d dρ ρρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ
ρ ρ

′
′= = = + − = = +  

Regard now the generic ρ  as the value pertinent to the n-th allowed quan-
tum states; then  

0 0
0 0 0

log logn n n
n n n nd d d constρ ρ ρ

ρ ρ ρ ρ ρ ρ ρ ρ
ρ ρ ρ
′ ′

′ ′→ → ⇒ = = =
′ ′ ′

 

which means  

 
0 0 0

log log .n n n
n n n n n

n n

d dw w w S w wρ ρ ρ
ρ ρ ρ

′
= = ⇒ = − = −

′ ′ ′∑ ∑  (46) 

In addition to (45) one infers the statistical formulation of the classical entro-
py. 

Equations (42), (45) and (46) have been explicitly introduced to emphasize 
that n is not mere quantum number, but the number of quantum states allowed 
to any physical system. This feature of n implies a additional relevant corollary 
concerned in the Section 5. Anyway, the basic considerations and ancillary re-
sults hitherto exposed assure the generality and validity of this theoretical 
framework. 

At this point regard (1) as a reliable quantum basis to introduce the specific 
theoretical frame bringing to the Maxwell equations. It is clear that (38) and (32) 
hold also for a distribution of en  electric charges simply replacing m with en e : 
multiplying by en e m  both sides of the last (38), the mass flow j  turns into 
charge flow J  of en  charges in   displacing at average rate v  while ρ  is 
from now on charge density in  . 

3. The Maxwell Equations 

Consider two vectors 1U  and 2U  corresponding to and inferred from 1J  
and 2J . As 1U  and 2U  must be compliant with (32), (33) and (34), plug 
reasonably both vectors in the same conceptual frame proven consistent with 
(27), (42), (43), (45) and (46). 

Define first the correspondence of 1J  with 1U  via (34) putting 1 1c= ∇×J U , 
which yields 

 ( )1 0 ;c ρ −∇ ⋅ ∇× = = ∇ ⋅ + ≡U J J J  (47) 

so J  fullfills (34). Also, guess the correspondence of 2J  with 2U  defining 

 2 ρ∇ ⋅ =U  (48) 

in order that  
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 2 ;
t

ρ
∂

∇ ⋅ =
∂



U  (49) 

once having expressed 1J  and 2J  via 1U  and 2U , (47) reads owing to (49)  

 ( ) 2
1 .c

t
∂

∇ ⋅ ∇× = ∇ ⋅ +∇ ⋅
∂
UU J  (50) 

Next, eliminate ∇ ⋅  from this equation, in order that (50) is not trivial equal-
ity of terms identically null. Rewrite indeed ( )1 2 0c t∇ ⋅ ∇× − − ∂ ∂ =U J U  as  

 ( ) ( )2
1 :c

t
∂ +

∇× + − − =
∂

U
U J Q


  (51) 

the arbitrary vector fields , ,Q   , dutifully introduced for sake of generality, 
are definable as  

 ( ) ( ) ( ), ,t t x y z= = =Q Q      (52) 

but also less restrictively as  

( ) ( ) ( ) ( ), , ,
, , , , , , , , , .

x y z t
x y z t x y z t x y z t

t
′∂

′ ′ ′= ∇× = ∇× =
∂

Q Q


    (53) 

The vector fields , , Q   and , ,′ ′ ′Q   are mere consequence of the 
positions (47) and (48), neither of which requires “ad hoc” hypotheses additional 
to the charge conservation (34). Despite the mathematical implications of (51) 
and (53) would deserve a separate discussion, e.g. to infer the Lorentz condition, 
attention is focused now on the more essential (50) putting for brevity  

 2
1 , , 0 , , 0.c

t
∂ ′ ′ ′∇× = + = =
∂
UU J Q Q     (54) 

Regard 1U  as a sum of two fields and 2U  as a difference of two fields, say 
preliminarily for a more immediate and simple assessment of (51)  

 2 1 ;= − = +U E H U E H  (55) 

at both right hand sides appear two combinations of the same E  and H  
fields for simplicity, being clearly unnecessary and redundant to introduce fur-
ther fields additional to that of (51) and (53). So, implementing (48) and the 
simplified form (54) of (50), one finds  

 ( ) ( ) ( ) :c J
t

ρ
∂ −

∇ ⋅ − = ∇× + = +
∂

E H
E H E H  (56) 

the first (56) yields  

 ( ) 0,ρ∇ ⋅ −∇× = ∇ ⋅ = = ∇× ∇ ⋅ =E A E H A H  (57) 

whereas the second (56) splits in turn as  

 .c c
t t

∂ ∂
∇× = − ∇× = +

∂ ∂
H EE H J  (58) 

It appears that (58) plus the two ones deductible from the first (56), i.e. 
c ρ∇ ⋅ =E  and 0c∇ ⋅ =H , are closely related to the Maxwell equations, which 

are therefore inferred from (1) through the steps (26) to (34). In summary the 
equations of interest are (57) and (58), which read in the c.g.s. system  
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 1 14 4 0;e c t c t
πρ π∂ ∂ ∇ ⋅ = ∇× = − ∇× = + ∇ ⋅ = ∂ ∂ 

H EE E H J H  (59) 

the factor 4π  in the first equation, which results from 4 eρ πρ=  and therefore 
appears also in the definition of J , is due to the Gauss theorem fulfilled by eρ  
in agreement with (34). 

In this respect two further chances in principle possible to split the second (56) 
are dutifully worth noting: 

 c c
t t

∂ ∂
∇× = ∇× = − +

∂ ∂
E HE H J  (60) 

or  

 .c c
t t

∂ ∂
∇× = + ∇× = −

∂ ∂
E HE J H  (61) 

These equations have their own physical meaning alternative to (58) and (57); 
in principle there is no reason to exclude these chances, which however have 
scarce physical interest. Indeed (60) and (61) actually concern separate fields, 
either ( ), , ,x y z t=E E  and ( ), , , ,x y z t=H H J  or ( ), , ,x y z t=H H  and  

( ), , , ,x y z t=E E J . The solutions of these equations, whatever they might be, 
would provide space and time profiles of independent magnetic and electric 
fields: instead, only combining these fields as in (56) and (58), even with the 
mere (54) one actually introduces via (55) the e.m. field and finds in fact the 
classical Maxwell equations (59). 

Some further considerations on this approach deserve attention. 
1) Are significant the definitions of J  in the Section 2, in particular the 

double signs in (32). 
- In this regard the first and third (59) yield, according to (32) expressed as a 

function of charges,  

( ) ( ) ( )1 44 0 4 4 :
t c c

ππρ πρ π ρ ρ ρ∂
∇ ⋅ = ⇒ ∇ ⋅ ∇× = = + ∇ ⋅ = ± ± ∇ ⋅

∂
   

E H J v  (62) 

i.e. the right hand side of (62) reads, in agreement with (35) and (34),  
 with plus sign 2 or with minus sign 0.ρ ρ ρ+ −→ ∇ ⋅ = − → ∇ ⋅ =v v  (63) 

- The minus sign in (62) implies the continuity equation of electric charges i.e. 
a stationary model where the volume element const=  enclosing the 
charges is incompressible; owing to (34), (62) yields  

 ( ) 40 .
c
π ρ −∇ ⋅ ∇× = = − ∇ ⋅H v  (64) 

- The plus sign allows obtaining an analogous form of (62) assuming  
2 2 0ρ ρ ++ ∇ ⋅ = v : this does not contradict (35), which requires  

2 0σ ρ ρ ρ+ += + ∇ ⋅ = − ∇ ⋅ ≠ v v . So the first (63) yields 

 ( ) ( )40 2 2 2 2 0.
c
π ρ ρ ρ ρ+ +∇ ⋅ ∇× = = + ∇ ⋅ + ∇ ⋅ = H v v  (65) 

The left hand side is fulfilled by 0∇× =H  itself, but in principle even by an 
arbitrary ( )′∇× +H H . A possible way to rewrite the first (65) is then 
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 ( )4 2 2 0;
c
π ρ ρ +′∇ ⋅∇× = + ∇ ⋅ =H v  (66) 

it fullfils (65), (66) and ′H  itself. The second (63) is a particular case of the first 
one for 0ρ = , which in turn depends upon the number of charges in   and 
upon   itself. If ( )t=   and ( )e en n t= , then  

 ( ) ( )2
1 :e e e e

e e
e

n e n n e ne t n n t
V t n t

δ δ
ρ ρ ρ

δ δ
 

= ⇒ = − = − = = 
 

 



 
 

 
 (67) 

(67) emphasizes that 0ρ ≠ , through which has been defined +∇ ⋅ v  in (65), 
requires in general variable volume of space and number en  of charges; thus 
the third (66) does not exclude even  

 ( ) ( )0 .e et n n t′∇ ⋅ ≠ = =H    (68) 

The physical meaning of 0≠  and 0en ≠  along with the consequent (68) 
will be concerned in the next section, focused precisely on the new field ′H . 

2) In fact this model introduces contextually the fields E  and H  via the 
vectors +U  and −U  according to (55). Let us show that this feature is not 
merely formal, i.e. +E H  and −E H  have actual physical meaning; in effect, 
once having discarded (60) and (61), the e.m. field is reasonably due to a com-
bination of both fields. Calculate from the second and third (59)  

 
2 2

2 2
1 1 4

t c t c c tt t
π∂ ∂ ∂ ∂ ∂

∇× = − ∇× = +
∂ ∂ ∂∂ ∂
E H H E J  (69) 

and put  

 
( )2 2

2 2
2 2

41 1 ;
c

c c
t c t ct t

π∂ −∇×∂ ∂ ∂
∇× = −∇ = − − = ∇ =

∂ ∂∂ ∂
J HE H EH E  (70) 

then one infers  

 
2 2

2 2
2 2 2 2

1 1 ,
c t c t

∂ ∂
∇ = ∇ =

∂ ∂
H EH E  (71) 

which of course are concurrently obtained and require  

 ( )2 24
.

c
c c

t t
π∂ −∇×∂

∇× = −∇ − = ∇
∂ ∂

J HE H E  (72) 

Thus the e.m. waves are characterized by their fields both propagating at the 
same velocity c according to the respective ( ) ( )x ct x ct+ + −f g , along a given 
coordinate x-axis defined in agreement with (37) by the constant unit vector 0x  
that identifies the components 0xH = ⋅H x  and 0xE = ⋅E x  of the fields. 

3) The balance between number of unknowns and equations, taking of course 
the local coordinates , , ,x y z t  as free input parameters, is: 

8 unknown values at any coordinate where the functions  
( 2 2 2 2, , , , , , ,t t t tρ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂v E H E H E H ) are calculable.  

8 equations i.e. 4 in (59) + 2 in (71) + 2 in (72). 
Thus also (71), concerning in particular the wavelike propagation of the e.m. 

field, are admissible in the conceptual frame of the Maxwell equations compliant 
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with the simplifying assumptions (54). 
4) As a further corollary of (59) and owing to (58), quote  

 
( ) 2 2

2

2 2

4

,

L

L

c c e tc c
v e

cc c

π

ρ

∂ ⋅ − ⋅ ∇× = ∇ ⋅ × = ∇ ⋅ = ⋅ +  ∂ 
⋅

= = ×

Fv v v E v JH H

v J vF H
 (73) 

being LF  the Lorentz force. Put now  

 .L L= ∇F   (74) 

Note that not necessarily the energy L  must be related to the meaning of 
potential energy, it is enough to implement the dimensional worth of the pro-
posed definition; then (74) and (73) yield  

( ) ( )2
2

2 2 2

2 2 2

4

4 4 .

L L
ev e
tc

e e v e
t tc c c

π

π π

∂ 
∇ ⋅ = ∇ = ⋅ + ∂ 

 ∂ ∂
= ⋅ + = ⋅ + = ∂ ∂ 

E
F J

v vv E



 
 



 

Multiply both sides by the proportionality factor ( )2hc  , being   energy; 
the result reads  

 
( )2 2 2 2 2 24 ,Lhc h e h v

t V
π∇ ⋅∂

= +
∂

v
  

  (75) 

where all terms have physical dimensions of square energy. Owing to (27), 2v  
is proportional to ( ) ( )2 2pc cε , i.e. the second addend accounts for the form 
of square energy proportional to ( )2pc . So this result reads  

 ( )22 2 2 2 ,pcε ε ε ε′ ′′ ′′= + ∝  (76) 

i.e. it is consistent with the invariant energy equation of the special relativity. 
5) The Maxwell equations, as written in (59) and (72)  

 
( ) ( ) ( )

( ) ( )2 2

4 4

4 ,

c J
t

Jc c
t t

πρ π

π

∂ ±
∇ ⋅ ± = ∇× ± = +

∂
∂ ± ∂

∇× = ∇ ± +
∂ ∂

E H
E H E H

E H
E H

 (77) 

can be merged via  
 ,= + = −E H E H   (78) 

being of course  

 .
2 2
+ −

= =E H     (79) 

The electric and magnetic fields combined as new fields   and   yield  

 2 2 2 2 2 22 2E H E H E H⋅ = − ⋅ = + + ⋅ ⋅ = + − ⋅E H E H       (80) 

while being in principle  

 0 or 0;⋅ = ⋅E H E H   (81) 

if in particular E  and H  are orthogonal, e.g. an e.m. wave in the vacuum, 
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then 

 ( ) ( ) 2 .× = − × + = ×E H E H E H   (82) 

Also: 
-   and   fulfill the D’Alembert wave equation, as it appears summing or 

subtracting (71) side by side; 
- If E  and H  are orthogonal then 2 2≡   represents a free e.m. wave 

propagating along the direction of v . 
- The propagation of the e.m. wave does not imply the presence of free charges, 

i.e. E  and H  are intrinsic properties of the wave. 
- On the one hand (80) to (82) show that   and   have actual physical 

meaning: ×   implies the Poynting vector, calculable via (59) as it is 
known, ⋅   the Lagrangian density of a free field. 

- On the other hand the coefficient 2 in (80) and the fact that 2 ⋅E H  does not 
appear in ⋅   suggest regarding (80) as Lagrangian and Hamiltonian 
densities:  

 
( ) ( )
( ) ( ) 2 ;

V T U T U

T U T U

= ± ⋅ − ± ⋅ = −

= ± ⋅ + ± ⋅ = + ± ⋅

E H E H

E H E H E H
   

    




 (83) 

i.e., whatever VT  and VU  might be, both T and U actually include the scalar 
⋅E H , which in turn accounts for the presence of free charges in the space time 

with 0⋅ ≠E H . Indeed merge both chances (81) to write  

 0,w fc w fc w w= + = + ⋅ =H H H E E E E H  (84) 

where the subscripts stand for wave and free charge. Owing to the last position, 
the orthogonal character of the wE  and wH  fields is still definable for any e.m. 
wave regardless of the possible presence of free charges. In other words, these 
positions are compatible with both inequalities (81) while being also compliant 
with the properties of the e.m. wave itself, which results consisting of two or-
thogonal fields propagating through the vacuum or a matter medium: “matter” 
is by definition everything allowing and requiring c<v . 

In principle, therefore, neither new terms nor additional hypotheses are ne-
cessary to introduce explicitly in (80) free charges in the space time through 
which propagates the e.m. wave characterized by its own wE  and wH . Thus 
(78), which imply (71) and (84), are not “ad hoc” hypotheses, rather they aim to 
plug the fields into the frame of a propagating e.m. wave. At this point, specify 
also v  defining J  in (59) as  

 w fc= +v v v  (85) 

with analogous meaning of symbols; so wv  is the velocity of the e.m. wave, 
whereas fcv  is the average velocity of the charges possibly present in the envi-
ronment where travels the wave. Clearly it is convenient to define wv  normal 
to wE  and wH  in order that these three vectors define effectively the fields of 
an e.m. wave and its propagation direction. Put now  

( ) 0 0 :w fc w fc fc fc w w w w w w⋅ = ⋅ + ⋅ + ⋅ ⋅ = ⋅ = ⋅ =E H H E E H E H E H E v H v  (86) 
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once having already found (59), the physical meaning of (86) is intuitively un-
derstood according to the Maxwell equations. Reasonably (84) and (85) concern 
and account for the quantum fields (54). Analogous considerations hold in prin-
ciple rewriting (84) as w w′= +H H H  and w w′= +E E E , with ⋅E H  describing 
now photon-photon interaction through w w′⋅E H  and w w′ ⋅E H  of e.m. waves 
propagating along wv  and w′v . 

4. Corollary of the Model 

Equation (68) outlines the possible existence of magnetic monopoles, thought of 
as isolated north and south poles of ordinary magnets [3]. If magnetic mono-
poles floating independently each other as separate magnetic charges actually 
existed, continuity equation for monopole currents should be also definable. Al-
ternatively regard the monopoles as mere quantum energy fluctuations ran-
domly forming and annihilating in  , i.e. a virtual cloud instead of a real 
stream of particles, due to the interaction between ordinary nanosized magnets 
and quantum vacuum. To explain this idea rewrite first ρ  of (35) to (68) with 
explicit notation  

 ,H H
H H H H H H H

q q
ρ ρ ρ ρ′ ′

′ ′ ′ ′ ′ ′ ′+= = ≡ = −




J v v v 
  

 (87) 

being Hq ′  the amount of virtual magnetic charges that displace randomly in 
  at the average velocity +v  of (35). Comparing (35) and (87),  

 2 2 2 2 ,H H H
H

H H H H

q
q

ρ ρσ
ρ ρ ρ

′ ′ ′
′

′ ′ ′ ′

= ∇ ⋅ − ⇔ = −


  

v 


 (88) 

one infers that  

 2 H
H

H

q
q

′
′

′

∇ ⋅ ⇔


v  (89) 

whereas the non-conservation term σ  of (35) corresponds to  

 2 .
H

hσ
ρ ′

⇔



 (90) 

Owing to (68) 0′∇ ⋅ ≠H  is justified by 0≠  and thus by 0σ ≠ , which in 
turn skips the continuity Equation (34). The physical meaning of (90) agrees 
with the idea of creation and annihilation of couples of virtual magnetic mono-
poles in a resonant system quantum vacuum ↔ nanosized magnet in  , cohe-
rently with the factor 2, whereas H ′J  of (87) describes the displacement of sep-
arate virtual magnetic charges Hq ′  non-conserved by definition due to their 
transient lifetime. In general to release free particles from a bound system are 
necessary splitting energy plus additional energy to give the split particles the 
necessary kinetic energy to escape independently each other. To explain this 
point write according to (1)  

 0 02 2 .H H H vac vach h nδ η
+ −′ ′ ′= + + = − = =

 



 
      

 
 (91) 
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Let the driving energy to form free monopoles be 2h    of (90); it stems 
from the time evolution of quantum vacuum, e.g. its expansion rate per unit vo-
lume. Moreover let 0  be the binding energy of the monopoles in a standard 
nanosized magnet and H H+ −′ ′+   the kinetic energies of free magnetic mono-
poles. Thus the magnetic charges already existing in their bound state split into 
couples of separate free particles in a variable volume Ht nδ δ ′+ = + 

     , 
provided that 0Hδ ′ >  accounts for the kinetic energy of the monopoles acti-
vated by the splitting process. This model reminds the idea of light driven pho-
toelectric effect in solids to introduce an analogous quantum vacuum fluctuation 
driven “nanomagnet-vacuum” interaction: the splitting energy 0  plays the 
threshold role analogous to the electron work function, whereas 2h    and 

Hδ ′  replace hν  and kinδ  of (8). So (91) yield two equations  

 

2
2 2

2
=

2 2
2

vac vac
H H

H H

vac H

vac

h

monopole kinetic energy

h
vacuum energy per monopole

δ

+ −

+ −

′ ′

′ ′

′

   = + + +   
   

+
=

−
=









 
 


 

 




 (92) 

both involving 2vac . The first equation, energy balance of monopole-quantum 
vacuum interaction, emphasizes that vac  is shared between both magnetic 
charges; the second equation required by (1) reads  

 2 .
2 2 2
vac vac

H H
nh t n h

t
δ δ δ

δ′ ′

 
− = ⇒ = − = 

 

 





  
 

 
 (93) 

So 0V =  highligths that vac  in (92) balances binding energy of Hq
+′

 and 

Hq
−′

, while 2h    provides the additional energy to exceed vac  and allows 
the kinetic energies H+′

  and H−′
  inherent H ′v  of H ′J  of (87). In short, ac-

cording to (92) the key property that triggers the interaction is actually the zero 
point energy of the quantum vacuum per monopole, i.e. vac  rises the whole 
nanosized magnet to its upper limit of stability, whereas the further vacuum 
fluctuation energy provides both monopoles with kinetic energy. 
- On the one hand this mechanism requires   such that its corresponding 

enclosed energy fulfills the threshold energy necessary to create at least one 
couple of monopoles: the smaller vacη , the greater   corresponding to 

vac vacη=   of the third (91). 
- On the other hand the energy balance of the splitting mechanism should fit 

the form of the first (92). Note the the sequence of possible n/2 in (93) reads 
1/2, 1, 3/2, 2, … i.e. 1/2, 1, 1 + 1/2, 2, …: so, whatever in general the arbitrary 
n might be, the sequence of allowed energy states consists of arbitrary integ-
ers to each one of which is summed its own zero point term n + 1/2. In effect, 
with quantized H+′

  and H−′
 , this is the form (92) of both monopoles once 

regarding 0ε  as quantum vacuum zero point energy: this confirms that the 
upper limit of stability of the nanosized magnet interacting with the quantum 
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vacuum concerns the vacuum zero point energy, whose fluctuations merely 
govern the kinetic energies of the escaped monopoles during their lifetime 

tδ . In this threshold model all allowed energies n 

   include the zero 
point energy, the left hand side of (93) fulfills 2H tδ δ′ ≥  . 

The order of magnitude of 0  is estimated via (91). To evaluate vacη  note 
that owing to (26) and (27)  

 
2

2 ,vac vac vac vac
vac

c p J
v vc

η
ρ= = = =


 

 (94) 

which defines 2
vac vaccη ρ=  via vac vacJ vρ= , as reasonably expected. These val-

ues are calculated from cosmological data in [4]: vacρ  and vacη  are equal to 
(60.3 ± 1.3) × 10−31 g/cm3 and 5.4 × 10−9 erg/cm3. Here it is sketched how to find 
these values starting from (2) in the conceptual frame hitherto exposed. 

By dimensional reasons ( )2 3h G c energy length= × ; thus, being  
3energy lengthη = , write in general  

 
2 2 2

6 2
2

2 2 ,G c G
c

π π η
η

= =
 

   (95) 

where ε  and   symbolize the characteristic energy and length of the splitting 
process. The resulting η  is  

( ) ( )
2 2

1 12 2 .c cG Gη π π τ
τ

− −   = = =   
   








 

In this result appear only fundamental constants of nature and the time con-
stant τ , now defined to give η  the specific physical meaning of vacuum ener-
gy density. A straightforward way to express η  entirely as a function of cos-
mological data is to replace 1τ −  with today’s value of the Hubble factor uH , 
which actually has physical dimensions 1time− . In fact the universe expansion 
has been previously mentioned to exemplify a possible chance of justifying 
   in (90); this preliminary idea is now implemented in (95) to evaluate nu-

merically the vacuum energy density vacη  of universe. Thus  

 
( )2

18 12.2 10 s
2

u
u

H c
H

G
η

π
− −= = ×  (96) 

yields, replacing in (95),  

2 2 2
u u

hH H= = ± =


 


 


 

suggests that merging (93) and (95) to calculate 0 2 , one finds  

( )
1

22 2 6

2 2 2
1 2 2 1 ;

2 2 2 2
u vac

vac vac vac
vac

H ch G G
Gc c c

ηπ πη η ρ
πη

 
= = = = = 

 



 



 


 (97) 

i.e. the vacuum energy density is the zero point energy per unit volume of quan-
tum vacuum fluctuations (93) n 

   triggered by the dynamical expansion 
energy of universe uhH . The numerical values are  

 
9 31

3 3

13 46

erg g5.2 10 58 10
cm cm

6.8 10 cm 8.2 10 erg.

vac vacη ρ− −

− −

= × = ×

= × = × 
 (98) 
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The good agreement of vacη  and vacρ  with the values [4] supports (96) and 
(97), while being  

 19 11.2 10 s .− −= ×



 (99) 

To implement (98) introduce the physical features of  . Define 2V e∝  . 
Indeed 2e   has physical dimensions of velocity, so that any velocity can be in 
principle expressed as 2eκ  . As by definition   is the volume of quantum 
vacuum whose fluctuation allows splitting the monopoles, then: the greater their 
average velocity as soon as they form, the greater the volume allowing in fact 
their own delocalization. In other words the condition consistent with finite life 
time of monopoles flying independently each other reads  

 
2 2

82.2 10 cm s,e eκ= = ×
 

  (100) 

being κ  a dimensionless proportionality coefficient. If the reasoning is correct, 
κ  of (100) should be of the order of unity; in general, a proportionality con-
stant significantly different from 1 means that some hidden effect is missing in 
the proposed reasoning. So 1κ =  for an order of magnitude estimate of   
yields  

 8 3 11 3 12.2 10 cm 2.7 10 cm s ;− −≈ × ≈ × ⋅   (101) 

this is the volume where is delocalized the nano-sized magnet with upper thre-
shold energy vac  along with the possible H+

  and H−
 , both with their own 

kinetic energy triggered by the n-th vacuum fluctuation. So, for a couple of 
magnetic monopoles,  

9 8 27
0 05.3 10 2 10 1.1erg ~ 687 GeV ~ 10 s;vac tη δ− −= ≈ × × × ≈ ⇒    (102) 

thus each monopole should require a threshold energy ~340 GeV to be formed. 
Eventually, as concerns   of (98), note that comparing h  and   one 
finds consistent values ~1.8 × 10−37 erg∙cm3. The fact that h=   suggests re-
garding   as a physical property of the quantum vacuum-nanosized magnet 
interaction in the aforesaid vacuum-magnetic interaction, reminiscent of the 
analogous Fermi constant of the weak interaction. 

As concerns the magnetic charges of (87) and (91), the quantized result ob-
tained by Dirac in 1931 reads The analytical form of the equation that introduces 
the magnetic charge Hq ′  of the monopole, either Hq

+′
 or Hq

−′
, reminds (1). 

The quantization of the electric charge has been inferred in (23) and (24); thus 
(103) is reasonably related to these equations, while both Hq ′  refer to the field 
′H  of (66). Read (23) as  

 2
2 ,rq n c c t

r
δ δ δ δ± = =



   (103) 

which yields  

 22 2 2 :H H H H H
rq q n c q q q q q
r

δ δ
+ −′ ′ ′ ′ ′= = = +



   (104) 

https://doi.org/10.4236/jamp.2024.123046


S. Tosto 
 

 

DOI: 10.4236/jamp.2024.123046 756 Journal of Applied Mathematics and Physics 
 

the first position is mere rewriting of the given definition of Hq ′ , coherent with 
(91) in turn related to (88), the third position reminds that (91) requires 2 mag-
netic charges contextually involved from the splitting of one nano-sized magnet. 
The second position is the key definition; it implies  

 
( )3

3

2 2

,

H H
n c qq q r
q r

qr r
r

δ δ δ δ

δ δ δ δ δ

′ ′
 = ± = ⋅ = ⋅ 
 

= = =





r E S

S u E r





 (105) 

being u  unit vector normal to δS . So, with the notation (8), 1 0δ = −r r r  and 

1 0r r rδ = −    define δE  and δS . This reasonable conclusion of (104) con-
firms that the first (105) is the Dirac result once specifying q e≡ . 

5. Discussion 

As stated in the Section 1, the Maxwell equations are the main result among 
many outcomes obtainable through the present model: e.g. (43), (8) and (45) are 
also obtained as a byproduct of (1). This approach configures the model into a 
broad framework, purposely aimed to emphasize the link between the Maxwell 
equations and fundamental laws of physics. 

The chance of plugging (59) in a broad context of physical information is 
likely more significant than the initial motivation alone. An example is the link 
between vacuum energy density (95) consequent to (2) and monopole formation 
mechanism, which however must be experimentally confirmed at the indicated 
energy. Despite the classical character of the Section 2, have been obtained 
through the uncertainty the Equations (118) and (27) of the special relativity 
along with the successive (76) without additional hypotheses. 

The quantum basis is coherent with the corpuscle/wave quantum properties 
of matter inherent (1): defining conjugate xδ  and xpδ  implies that the ran-
dom delocalization of a corpuscle in xδ  and its wave behavior inherent (7) and 
(6) along with (4) itself are aspects of matter behavior conceptually correlated. 
Actually Equations (1) overcome the quantum duality wave/corpuscle by ac-
counting straightforwardly for both: (4), (9) and (18) imply the wave behavior of 
light, including the quantization driven photoelectric effect of (8) as well, whe-
reas (44) and (45) concern corpuscles of matter. In fact the wave equation is ex-
plictly inferred itself. Divide both sides of (1) by x and define  

( )
0 0

0 , ,x x
xp x x p

x x x x
δψ δψ ψ ψ= = > =

+ +


 

being 0x  a constant coordinate and ψ  a function to be found. The physical 
dimensions of these definitions are consistent. Assume for simplicity 0x x  
and then divide side by side the resulting equations; it yields  

 .x
x x

x x np
x x p p

δ δ δψ ψψ δψ
δ

= = ⇒ = =




 (106) 

The result at the right hand side shows that replacing xp xδ δ  with xp xδ  
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implies replacing n with δψ ψ , which therefore has analogous physical mean-
ing: as xp  alone cannot define a range of allowed quantum states concurring to 
the total n, the conclusion is that now likewise to (4) nδψ ψ=  indicates gener-
ically 

min maxk k kψ ψ ψ≤ ≤  for 
min maxk kkn n n≤ ≤ . With the definitions (106), (1) 

turns into  
1 ,x x xn p p n p

x x
δψ δψψ δψδ ψ
δ δ

= = ⇒ =



 

whereas by consequence  

 ( )
0

log i.e. exp .x xp x p xδ δψδ ψ
ψ

 = =  
  

 (107) 

Despite in this way the function ψ  diverges for xδ →∞  with finite xp , it 
is enough to multiply both sides of the first (107) by i; i.e., replacing x xp iP→  
and iψ ψ→ , one obtains  

 
* *

*

0

along with exp x
x

iP xi P
x

δδψ ψψ
δ ψ

 = =  
  

 (108) 

with *ψ  complex and xP  real, while 0ψ  is normalization constant of *ψ ψ . 
Analogous reasoning holds for the classical energy wave equation. 

Today the quantum theory is implemented prevalently via its wave formula-
tion [5]; nevertheless this is clearly reductive. The way to calculate the energy le-
vels of hydrogenlike and many electron atoms is shown in [1]. Here is sketched 
for completeness how (1) regards this problem via (9). Write with the help of (1)  

( )
2

2 2 2
2 2 .G mG r r nv n m r E t r

t t Ec nc
δ δ δ δ δ δ δ δ
δ δ δ

= = ⇒ = = = ⋅
 

 r r  

Specify Eδ  as energy range allowed to an e.m. system of charges rδ  apart, 
i.e. 2E Ze rδ δ= . Replacing this condition of classical Coulomb approximation 
in the equation of Eδ , one finds ( )2 2n Zme rδ=  that in turn yields  

( )22 4E Z e m nδ =  . Therefore with the notation of (8)  

 
( )

( )22 4
2

1 0 1 02 2 .
nZ e mE E E r r r E r Ze

Zmen
δ δ δ δ= − = = − = ⇒ =





 (109) 

Follow now the reasoning carried out in (30) to correlate 1 0E E−  and 1 0r r− , 
i.e. either: 1 1E r↔  and 0 0E r↔  or 1 0E r− ↔  and 0 1E r− ↔ . The latter case 
is more interesting because it implies  

( )
( )

( )
( )2 22 4 2 4

0 1
2 2 2 2

1 0

:
n nZ e m Z e m
Zme Zmen n

− ↔ − ↔
 

 

 

so ( )2 2
1 1r n Zmeδ =   is related to the negative energy 0E− ; the same holds for 
( )2 2

0 0r n Zmeδ =   related to 1E− . The opposite would clearly be true relating 

1rδ  and 0rδ  to the respective positive energies 1E  and 0E . The former case 
is interesting as it concerns binding e.m. interaction between opposite charges. 
Actually 1n  and 0n  do not define different numbers of allowed quantum 
states, because n symbolizes by definition any integer as stated in (3). This way 
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to account for both 2e rδ±  is relevant: ( )2 2n Zme  yields clearly the se-
quence of Bohr radii, whatever the notation of n might be, whereas ( )22 4Z e m n  
is twice the Bohr energy level whatever the notation of n might be. Rewrite now 
the last (109) as ( )2 2E rδ δ : this model implements uncertainty ranges, not 
deterministic positions and distances. Thus an electron at a radial distance Bohrr  
from the nucleus must be regarded as an electron delocalized in a diametral un-
certainty range 2 Bohrr , whence the idea of defining 2Eδ  by consequence as 
the actual Bohr energy, i.e.  

 
( )

( )

2 2 4
0

2 2 .
2

Bohr Bohr

n Z e mr E
Zme n

= = −




 (110) 

According to (45) and (46) n concerns a statistical set of many particles, whe-
reas (110) show that in fact n counts different quantum states of a single particle. 
Hence δε  of (1) includes in principle all iε  defining the whole energy distri-
bution of several atoms in a solid body or the progressive energy levels iε  of a 
unique particle, e.g. one electron in hydrogenlike atoms. In other words it means 
regarding n either as the total number of states allowed to all i-th particles in a 
set or all i-th energy levels of one particle only: in the former case in nΣ =  im-
plies arbitrary integers 1in ≠  respectively pertaining to the different particles 
of a body, whereas in the latter case 1in ≡  by definition, being however still 
true that in nΣ =  once summing n times the occupancy of a unique electron 
over all its possible energy levels. The significant fact is that anyway n counts 
two possible occupancy ways of allowed states in a physical system, by means of 
various 1in ≠  of different particles or different quantum states of a unique par-
ticle, thus with same 0in =  or 1in =  depending on which level is actually oc-
cupied. This implies in turn that the signs of (45) are actually related to either 
filling mode of allowed quantum states: even regardless of the spin of particles, 
involved by reasons concerned in [6], simple considerations show that the dis-
tribution (45) with the minus sign only allows to condensate all particles in a 
unique ground level under appropriate physical conditions. 

Moreover follows now an example of information obtainable merging cor-
puscular and wave information, i.e.  

2

2 ;h pp mv m m h T
p m

λν ν ν= = = ⇒ = =
 

 

owing to (1) and (4) hν  reads  

 2 2 0 ,UT T U
n t n t

δ δ
δ δ

= ⇒ + = = −
   (111) 

having defined  

.r r r
r

r r

r p F r pU F
n t n t
δ δ δ δ

δ
δ δ

= − = − =  

As in fact Uδ  is energy range, anyway it must fulfill rn U tδ δ= . So (111) is 
the classical virial theorem. If for example ( )kU n const rδ= − , then by diffe-
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rentiating  

1 2 .k
constU k r T k U

r
δ δ δ

δ += ⇒ =  

Once having defined U via quantum uncertainty, is self-evident the idea of 
concerning in (111) average values of all local dynamical variables enclosed in 
their own ranges. 

Intuitively the corpuscular implications of (1), already emphasized, bring 
straightforwardly to the relativity. Precisely for this reason the present model in-
troduces further information necessary to bridge quantum world and relativity, 
while configuring in (25) to (35) the framework leading in particular to (8) and 
classical (59). 

To emphasize once more the significance of (2), consider 2
mr mG c=  of (9) 

to calculate Ac implementing the surface area A defined in (37). As in fact 
3Ac length time= , compare this definition with the dimensionless Beckens-

tein-Hawking entropy BHS  via (2); i.e. 

( )

( )

222 2

2 2

222 2

2 2 3

44 4

4 24 4 .
4 4 4

m

bh bh

Pl Pl

mG c cr c m G
cG c G c

mG cA m G
cG c

ππ π

ππ π

= =

⇔ = = =

 



  

 

The dimensionless ratio at the left hand side is precisely BHS . It shows that 

BHS  is actually a property of the definition (2) of space time: it has been found 
without introducing preliminarily the black hole radius, which however has been 
already introduced in (17) via the quantum number of allowed states 2n =  for 
the amount m of matter and reasonably appears here. 

It is not surprising that the uncertainty, and thus the Maxwell equations 
themselves, are compliant with the special relativity. A further consideration 
appears appropriate in this regard: (1) imply 0x xv pδε δ− = , which in turn for 
any *

x xv v≠  takes the explicit forms 
* * .x x x xv p f v p fδε δ δε δ+ −′ ′′+ = − =  

The new variable *
xv  can be indeed added or subtracted, while no hypothesis 

is necessary about the resulting functions f ′  and f ′′ . Indeed, multiplying side 
by side these equations, one finds  

 2 *2 2 2 ,x xv p f fδε δ δε δε δε+ −′ ′′− = =  (112) 

which in turn owing to (1) yields also  

 ( ) ( ) ( )
( ) ( )

22 *2 2
*2

2 2 2 2 .x
x

x v tn n f fv f f
t x x t n

δ δ

δ δ δ δ

− ′ ′′
′ ′′− = ⇒ =

 



 (113) 

The results (112) and (113) merge then into  

 
( ) ( )

2 *2 22 *2 2

2 2 .xv px v t
x t n

δε δδ δ
δ δ

−−
=



 (114) 
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A possible way to regard the denominators of (114) is to correlate precisely 
x tδ δ  and n . Thus x t nδ δ ∝   implies 2 *2 2 2 *2 2

x x xx v t v pδ δ δε δ− ∝ − ; trivial 
considerations on the proportionality constants allow writing 

2 *2 2 2 *2 2 2 *2 2 2 *2 20 0
0 0 0 0 0 0

0

.x x x
x tx tx v t x v t v p v p

n n
δ δδ δδ δ δ δ δε δ δε δ− = − = − = −

 

 (115) 

Let xδ  and tδ  be defined in a reference system R, whereas the corres-
ponding labeled with 0 in a reference system 0R . Boundary condition: for 

0x xδ δ≡  and 0t tδ δ≡ , hold for n the previous remarks. Then x tδ δ  must be 
an invariant in different reference systems. Thus the same must be true for the 
numerator of (114), i.e. *v  must be constant; then also the numerator is an in-
variant, i.e. *v c≡ . 

Equations (114) and (115) merely rewrite (1). Now exemplify how to extend 
further the implications of (1). 

2) Implement (11) rewritten in two ways formally equivalent  

 ( ) ( )2 2 21 1 .mc nh mc n h h mc n h hν ν ν ν ν= ⇒ = + − = − +  (116) 

Reminding that h hc pcν λ= = , as done in (11), the last equations read  

( ) ( )2 21 1 .mc n h pc mc n h pcν ν= + − = − +  

A possible way to merge these two results is to multiply them side by side; so 
trivial manipulations yield  

 ( ) ( ) ( )
( )

22 22 2
2

2 pc hpc mc pc nh
pc n

νε ξ ε ξ ε ν−
= + − = =  (117) 

So 0ξ →  for 2 pc hν≈  and/or for n →∞ , in which case (117) reduces to 
the familiar energy equation of special relativity. I general, however, (117) in-
cludes a small correction to the standard energy Equation (14); ξ  is defined by 
terms that decrease with the shared n, whereas ε  at the left hand side increases 
with n. So ξ  becomes more and more negligible for large numbers of states. 
Note that ξ  has physical dimensions of reciprocal energy. Regard thus more 
expressively 12ξ −=  , which means ( )1ξ ξ −=  . The series expansion of ξ  
yields in general a zero order constant term 0ξ  plus higher order terms k

ka −  
with coefficients ka ; however, since the correction term is expected to be small 
itself, then it is possible to write (117) as ( )2

0 pcξ ε− . Yet with this correction, 
compatible with (14) via appropriate reasoning about ζ  previously omitted for 
brevity, (117) is known equation of quantum gravity that solves three cosmolog-
ical paradoxes [7]; no new hypthesis is necessary to obtain this result. 

1) Define by dimensional reasons the energy  

 
4 2

2
4

e a
c

ε θ=  (118) 

being 2a  square proper acceleration of a charged particle in the vacuum and 
θ  proportionality constant. Implement (117); neglecting for simplicity and 
brevity the small correction term putting 0ξ = , one finds  
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( ) ( ) ( )( ) ( )
2 2 2 2 222 22 2

3 2 3 .e e a c e apc mc pc
c c e c

δ ε δ θ δ δ δ θ
    = + = ⇒ =    

    
 

Thus  

 ( )
2 2 2 2

2
3 3 2

2 ,
3

e a e a cW W const W pc
c c e

δ δ θ θ θ
 

= ⇒ = + = = 
 

 (119) 

being W power by dimensional reasons. With 0const =  and the given value of 
θ  the result yields the Lorentz invariant power dissipated in an arbitrary vo-
lume of space   by an accelerating charge e. 

The proportionality coefficient 2 3θ =  concerns the case of radiation back 
reflected at the boundaries of an arbitrary ideal   enclosing e. To justify this 
factor, find the relationship between pressure P and energy density η . Define 
the volume   as 3

0
k kx x−= , where 0x  is an arbitrary constant length and x 

an arbitrary variable length. As 1 3k≤ ≤  by definition, differentiate  : trivial 
steps yield x x kδ δ =  . Multiplying both sides by an arbitrary force xF , the 
result is  

 1 1, 2, 3.x xF F k
x k xδ δ
= =

 
 (120) 

Put then 

 whereas :x x x
x yz

yz

F F F xP xA
x A

δ
η

δ
⇒ = = = =




  
 (121) 

the first result defines the pressure exerted by xF  on the surface yzA ; the 
second result implies the work xF xδ  done by xF  to change the volume   
by δ  when x is stretched by xδ . Note however that actually  

;y yx x x xz zF y F yF x F x F x F xF z F zδδ δ δ
δ δ δ δ

⇒ + + ⇒ + +
       

 

as by symmetry the three addends are equivalent, the sums suggest a factor 3 
multiplying both sides of (120) to obtain from (121) a result compliant with a 
true 3D effect. Is known the physical meaning of  

 .
3
kP η=  (122) 

2) Implement again the definition (118) and (14) to obtain for a charge of 
mass m traveling in the vacuum  

( ) ( )( ) ( ) ( )24 222 4 4222 2
4 4 2 41 .

c mcp mc ca pc mc
e e c e

ε
θ θ θ

 
 = = + = +
 
 

 

Since the last factor is of course acceleration, write the result having dimen-
sions velocity/time as follows  

( )2 22

2 2
0 0

1
c mcv v va

t t t tc eθ
′ ′

= ± + =
+ +

 

where 0t  is added to fuflill any possible boundary condition for a, e.g. at 0t = , 
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without divergence. So 

( ) 2 2
02 2

2 21 1

a a
a a

a

v vv v t t a v v v
v v
c c

′ ′= = + ⇒ = =

+ +

 

reduces to the classical ( )0v t t a′ = +  for av c . Note that even if 0m = , it is 
still possible to write  

 
3 3 2

2 2
pc hc ca
e e

λ
θαθ θλ

= = =  (123) 

whose physical meaning is under investigation; reasonably this condition con-
cerns a field rather than a charged particle. Preliminary considerations suggest 
that the differential ( )1a Yδ δ λ= , being 2Y c θα=  a constant, yields owing 
to (7) gv a Yδ δν=  and thus  

2 ,g gv v aa
Y c

θα δδ δν δϕ δν δϕ
ν ν ν ν

= ⇒ = − − =  

which matches (18) and (19). In other words, 2c λ  has to do with the defini-
tion of gravitational potential governing the gravitational red shift. 

3) Implement (9), the equation through which have been calculated the elec-
tron energy levels, to find now  

2 20mG mGconst v r v r
nc nc

δ δ δ = ⇒ =  
 

 

i.e.  

 2 2 20 ;G m mGv r v r n n integer
nc n c
δ δ δ δ δ= − = ±  

clearly the sign of nδ  depends upon the chances of increasing or decreasing n. 
Write thus  

2

2 2 2 :G m mG r const Gv r v n const
r nnc c c

δ δδ δ
δ

= = =
  

multiplying both sides by an arbitrary mass m′  one finds  
2

2 .m mG const m c n
r n v r

δ δ
δ δ
′ ′

=  

Therefore the result is  
2

2 ,m m G m cn const m m
r n v r

δ δ
δ δ
′ ′′ ′

′′= ± = =


  

because the difference 1 0m m mδ = −  of two masses is clearly a new mass itself. 
With the minus sign, the left hand side reports the Newton energy, which how-
ever is defined now via rδ  and not r. The main problem of the classical New-
ton law is not the fact that it is approximate, several equations of physics are ac-
ceptable even so; the main problem, which worried Newton himself, is that the 
deterministic r implies an instantaneous action at a distance. On the one hand, 
now the uncertainty range implies propagation time of an appropriate force 
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vector (graviton?), as (1) require ( )r rr p t v tδ δε δ δ δ= =  ( rv c= ?). On the 
other hand the Newton energy appears to be quantized via nδ , the difference 
of integers is an integer itself. The idea is that the number n of allowed quantum 
states significantly determines the gravity force, as in general  

2
xp n x x n xδ δ δ δ δ= − +  

  . 

6. Conclusion 

The matter tells the space time how to deform, xδ  , the space time tells the 
matter how to move, xpδ , and how to change its number of allowed quantum 
states, nδ   [6]. This is reasonable because (1) imply the equivalence principle as 
a corollary. Write indeed 1 0x x xδ = −    and let for simplicity 0 0x = , i.e. the 
upper range boundary only is time dependent, which however is enough to give 
rise a force field xF  in xδ  due to 0xpδ ≠ ; indeed even so 0xδ ≠ . An ob-
server sitting on 1x  experiences xF  and concludes that he moves with respect 
to the origin O of the arbitrary reference system R where is defined xδ . Anoth-
er observer sitting on 0x  also experiences the same force although he is at rest: 
so he concludes that he is in a gravity field. As of course xF  is the same for 
both, the conclusion is that gravity field is indistinguishable from accelerating 
system. This holds also for a local force when the size of 0xδ → . 
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