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Abstract 
The issues of solvability and construction of a solution of the Fredholm 
integral equation of the first kind are considered. It is done by immersing the 
original problem into solving an extremal problem in Hilbert space. Neces-
sary and sufficient conditions for the existence of a solution are obtained. A 
method of constructing a solution of the Fredholm integral equation of the 
first kind is developed. A constructive theory of solvability and construction 
of a solution to a boundary value problem of a linear integrodifferential equa-
tion with a distributed delay in control, generated by the Fredholm integral 
equation of the first kind, has been created. 
 

Keywords 
Integral Equations, Solvability, Solution Construction, Controllability,  
Minimizing Sequences 

 

1. Introduction 

The search for the necessary and sufficient conditions for the existence of a solu-
tion of the Fredholm integral equation of the first kind and the construction of 
its solution is one of the current unsolved problems in mathematics [1] [2]. 

Many problems in natural sciences lead to the Fredholm integral equation of 
the first kind, where it is required to reconstruct the original phenomenon based 
on measurement results. Special cases of the Fredholm integral equation of the 
first kind include the Volterra integral equations of the first kind and Abel's 
integral equation. 

Integrodifferential equations involving the Fredholm integral equation of the 
first kind, particularly including Volterra and Abel integral equations, serve as 
mathematical models for many phenomena in various scientific fields: biology 
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[3], medicine [4], biophysics [5], thermodynamics and biological processes [6], 
mechanics and electrodynamics [7], economics [8] and synergetics [9]. 

The first work dedicated to distributed delay is the monograph [10]. A review 
of scientific research on differential equations with deviating arguments is con-
tained in [11]. A qualitative theory of integrodifferential equations is presented 
in [12]. A review of numerical methods for solving integrodifferential equations 
can be found in [13]. The correct solvability of the initial problem of Volterra 
integral-differential equations is given in [14]. Linear homogeneous systems of 
integrodifferential and integral equations with Volterra and Fredholm matrix 
kernels with initial conditions equal to zero are considered in [15]. Nonlinear 
Volterra equations with loads and bifurcation parameters are described in [16]. 

Based on the results of constructing ща the general solution of the Fredholm 
integral equation of the first kind with a fixed parameter, the following problems 
have been solved: boundary value problems of ordinary differential equations 
with phase and integral constraints without involving the Green’s function [17] 
[18]; optimal control of dynamic systems with constraints without involving 
Pontryagin’s maximum principle [19] [20]; controllability and performance of 
ordinary differential equations and parabolic equations with restrictions [21] 
[22]. The general theory of boundary value problems of dynamic systems is pre-
sented in [23]. 

This work is a continuation of scientific research from [12] [17]-[23]. The 
scientific novelty of the results obtained in this article is the reduction of solva-
bility and construction of a solution of the Fredholm integral equation of the 
first kind to an extremal problem in Hilbert space; construction of minimizing 
sequences and studies of their convergence; determination of weak limit points 
of minimizing sequences; creation of constructive theory of solvability and con-
struction of solutions of integrodifferential equations with distributed delay in 
control. 

2. Problem Definition 

Let’s consider the Fredholm integral equation of the first kind 

( ) ( ) ( ) [ ] [ ]0 1 1, d , , , , ,
b

a
Ku K t u f t t I t t I a bτ τ τ τ= = ∈ = ∈ =∫        (1) 

where ( ) ( ), , , 1, , 1,ijK t K t i n j mτ τ= = = -known matrix of order n × m, the 
elements of the matrix ( ),K t τ  of the function ( ),ijK t τ  are measurable and 
belong to the class 2L  at the set 

( ){ }2
1 0 1, | , ,S t R t t t a bτ τ= ∈ ≤ ≤ ≤ ≤  

( )1

0

2
, d d ,

b t
ija t

K t tτ τ < ∞∫ ∫  

function ( ) ( )2 , nf t L I R∈  – given, ( ) ( )2 1, mu L I Rτ ∈  – desired function, val-
ues 0 1, , ,t t a b  – fixed, 

1 0t t> , b a> , ( ) ( )2 1 2: , ,m nK L I R L I R→ . 

From (1), in particular, we get: 
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1) Volterra integral equation of the first kind 

( ) ( ) ( ) [ ] [ ]
0

1 0 1 2 0, d , , , , ;
t

t
K u K t u f t t I t t I t tτ τ τ τ= = ∈ = ∈ =∫  

2) Abel integral equation 

( ) ( ) [ ] [ ]
0

2 1 0 1 2 0d , , , , ,
t

t

u
K u f t t I t t I t t

t
τ

τ τ
τ

= = ∈ = ∈ =
−∫  

where ( ) 1,K t
t

τ
τ

=
−

. 

3) The Fredholm integral equation of the first kind are 

( ) ( ) [ ] [ ]1

0
3 * * 0 1 0 1, d , , , , , ,

t n
t

K u K t u a t t t t t a Rτ τ τ τ= = ∈ ∈ ∈∫  

where [ ]* 0 1,t t t∈  is a fixed parameter. 
The following tasks are solved: 
Problem 1. Find the necessary and sufficient conditions for the existence of a 

solution to the integral Equation (1) for a given ( ) ( )2 , nf t L I R∈ . 
Problem 2. Find a solution to the integral Equation (1) for a given 
( ) ( )2 , nf t L I R∈  
Problem 3. Find the necessary and sufficient conditions for the existence of a 

solution to the integral Equation (1) for a given ( ) ( )2 , nf t L I R∈ , when the de-
sired function ( ) ( ) ( )2 1, mu U L I Rτ τ∈ ⊂ . Either 

( ) ( ) ( ) ( ) ( ) ( ){ }2 1 1, | , почти всюду ,mU u t L I R u Iτ α τ τ β τ τ= ∈ ≤ ≤ ∈  

or 

( ) ( ) ( ){ }
2

2 2
2 1, | .m

LU u t L I R u Rτ = ∈ ≤  

Problem 4. Find a solution to the integral Equation (1) for a given 
( ) ( )2 , nf t L I R∈ , when ( ) ( ) ( )2 1, mu U L I Rτ τ∈ ⊂ , where ( )U τ , is a bounded 

convex closed set in 2L . 
Let us consider a controlled process described by an integral-differential equa-

tion of the following form 

( ) ( ) ( ) ( ) ( ) ( ) ( )
[ ] [ ]0 1 1

, d ,

, , , ,

b

a
x A t x B t u t C t K t v t

t I t t I a b I

τ τ τ µ

τ

= + + +

∈ = ∈ = ⊂

∫�
        (2) 

boundary value 

( ) ( )0 0 1 1, ,n nx t x R x t x R= ∈ = ∈                  (3) 

where 0 1,n nx R x R∈ ∈  are any fixed points? 
Given data: ( ) ( ) ( ), , ,A t B t C t t I∈  are given matrixes with piecewise conti-

nuous elements of orders n × n, n × m, n × m1 accordingly, ( ),K t τ  is a known 
matrix of order m1 × n1 with elements from 2L , ( ) ( )2 , nt L I Rµ ∈  is a given 
control function 

( ) ( ) ( ) ( )1
2 2 1, , , .nmu u t L I R v v L I Rτ= ∈ = ∈             (4) 
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Definition 1. The solution of Equation (2) generated by the controls 
( ) ( )2 , mu t L I R∈ , ( ) ( )1

2 1, nv L I Rτ ∈  with ( )0 0x t x=  is called the function 
( ) ( )0 0; , , , ,x t x t t x u v t I= ∈  that satisfies the par 

( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
0

0

0

0

d

, d d , .

t

t

t b

t a

x t x t x

x A x B u C K v t I

ξ ξ

ξ ξ ξ ξ ξ ξ τ τ τ µ ξ ξ

= +

 = + + + + ∈  

∫

∫ ∫

�
 

Therefore, the function ( )x t , t I∈  with the primary condition ( )0 0x t x=  
satisfies the par of Newton-Leibnizand belongs to the class of continuous func-
tions ( ), nAC I R , ( ) ( ), nx t AC I R∈ . 

Definition 2. Equation solution (2) the function ( ) ( )0 0; , , , ,x t x t t x u v t I= ∈ , 
generated by the controls ( ) ( )( ) ( ) ( )1

2 2 1, , , nmu t v L I R L I Rτ ∈ ×  is called con-
trolled equation, if the following controls ( ) ( )* 2 , mu t L I R∈ , ( ) ( )1

* 2 1, nv L I Rτ ∈ , 
that change the trajectory of the system (2)-(4) from any given point ( )0 0x x t=  
into the moment of given time 0t , and to any desired end state  ( )1 1x x t=  in 
timing 1t . 

Problem 5. Find the necessary and sufficient conditions for controls of the 
equation (2) solution with the given (3), (4). 

Problem 6. Find a pair ( ) ( )( ) ( ) ( )1
* * 2 2 1, , , nmu t v L I R L I Rτ ∈ × , that changes 

the trajectory of the system (2)-(4) from any given point ( )0 0x x t=  to the 0t , 
to any desired end state ( )1 1x x t=  in timing 1t . 

Problem 7. Find a solution ( ) ( )* 0 0 * *; , , , , nx t t x u v AC I R∈  corresponding to 
the pair ( ) ( )( ) ( ) ( )1

* * 2 2 1, , , nmu t v L I R L I Rτ ∈ × . 

3. Solvability of the Fredholm Integral Equation of the First 
Kind 

Consider the integral Equation (1). To solve problems 1, 2 it is necessary to in-
vestigate an extreme problem: to minimize the functional 

( ) ( ) ( ) ( )1

0

2

, d d
t b

t a
J u f t K t u t infτ τ τ= − →∫ ∫             (5) 

with the condition of 

( ) ( )2 1
mu L I Rτ ∈                        (6) 

where ( ) ( )2 , nf t L I R∈  is given function, ⋅  is the Euclidian norm.  
Theorem 1. Let the core of operator ( ),K t τ  is measured and belongs to the 

class 2L  in the rectangle ( ) [ ] [ ]{ }1 0 1 1, | , , ,S t t I t t I a bτ τ= ∈ = ∈ = . then: 
1) composed function (5) with the condition (6) is continuously differentiates 

on Fréchet, the gradient of functional ( ) ( )2 1, mJ u L I R′ ∈  in any point of  
( ) ( )2 1, mu L I Rτ ∈  is defined by the formula 

( ) ( ) ( ) ( ) ( ) ( ) ( )1 1

0 0

* *
2 12 , d 2 , , d d , ;

t t b m
t t a

J u K t f t t K t K t u t L I Rτ τ σ σ σ′ = − + ∈∫ ∫ ∫  (7) 

2) gradient of function ( ) ( )2 1, mJ u L I R′ ∈  satisfies the Lipschitz condition,  

( ) ( )J u h J u l h′ ′+ − ≤ , for any u and ( )2 1, mu h L I R+ ∈ ;         (8) 
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3) composed functional (5) with the condition (6) is convex functional 

( )( ) ( ) ( ) ( )1 1J u v J u J vα α α α+ − ≤ + −  for any ( )2 1, , mu v L I R∈ ,   (9) 

if 0α ≥ , [ ]0,1α ∈ ; 
4) second Fréchet derivative is equal to 

( ) ( ) ( )1

0

*2 , , d ;
t

t
J u K t K t tσ τ′′ = ∫                  (10) 

5) if the following inequation is accomplished 

( ) ( ) ( ) ( )

( ) ( )

( ) ( ) ( )

1

0

1

0

* *

2

2
2 1

, , d d d

, d d

d , 0, , ,

b b t

a a t

t b

t a

b m
a

f

K t K t t

K t t

L Ior an Ry

ξ σ σ τ ξ τ τ σ

τ ξ τ τ

µ ξ τ τ µ ξ τ

 
  

 =   

≥ > ∈

∫ ∫ ∫

∫ ∫

∫

          (11) 

the functional (5) with condition (6) is strongly convex. 
Proof. As follows from (5), the functional 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1

0

* *

* *

2 , d

, , d d .

t b

t a

b b

a a

J u f t f t f t K t u

u K t K t u t

τ τ τ

τ τ σ σ σ

= −
+ 

∫ ∫

∫ ∫
 

Then the excess functional 

( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1

0

* * *

* *

2 , d 2 , , d d

, , d d d .

t b b b

t a a a

b b

a a

J J u h J u

f t K t h h K t K t u

h K t K t h t

τ τ τ τ τ σ σ τ σ

τ τ σ σ τ σ

∆ = + −

= − +
+ 

∫ ∫ ∫ ∫

∫ ∫

 

It follows that the Fréchet differential is equal to 

( )

( ) ( ) ( ) ( ) ( ) ( ) ( )1

0

* * *

,

2 , d 2 , , d d d .
t b b b

t a a a

dJ u h

f t K t h h K t K t u tτ τ τ τ τ σ σ τ σ = − +  ∫ ∫ ∫ ∫
 

Then, applying Fubini’s theorem to the variables of integration, we have 

( ) ( ) ( ) ( ) ( ) ( ) ( )1 1

0 0

* * *, 2 , d 2 , , d d d .
b t t b

a t t a
dJ u h h K t f t t K t K t u tτ τ τ σ σ σ τ = − +  ∫ ∫ ∫ ∫  

Then Fréchet’s derivative is 

( ) ( ) ( ) ( ) ( ) ( )1 1

0 0

* *2 , d 2 , , d d ,
t t b

t t a
J u K t f t t K t K t u tτ τ σ σ σ′ = − +∫ ∫ ∫  

where 
( ) ( ) ( ) ( )

2
, ,

L
J J u h J u J u h o h′∆ = + − = +  

( ) ( ) ( ) ( ) ( )1

20

2* *
1, , d d d .

t b b

Lt a a
o h h K t K t h t c hτ τ σ σ σ τ = ≤  ∫ ∫ ∫  

It follows that ( )J u′  is defined on formula (7). since 

( ) ( ) ( ) ( ) ( )1

0

*2 , , d d ,
t b

t a
J u h J u K t K t h tτ σ σ σ′ ′+ − = ∫ ∫  

then 
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( ) ( ) ( ) ( ) ( )

( ) ( )

1

0

2

*

2 2 1

2 , , d d

, 0, .

t b

t a

L

J u h J u K t K t h t

C h C I

τ σ σ σ

τ τ τ

′ ′+ − ≤

≤ > ∈

∫ ∫  

therefore 

( ) ( ) ( ) ( )( ) 22

1 22
d ,

b

LL a
J u h J u J u h J u l hτ′ ′ ′ ′+ − = + − ≤∫  

for any ( )2 1, , mu u h L I R+ ∈ . It follows this inequation (8). 
Let us show that functional (5) with the condition (6) is convex. 
For any ( )2 1, , mu v L I R∈  this inequation is true. 

( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ){ }
( ) ( ) ( )

2

1

0 2

1

0

1

0

*

* *

2

,

2 , , d d ,

2 , , d d d

2 , d d 0.

L

t b

t a L

b t b

a t a

t b

t a

J u J v u v

K t K t u v t u v

u v K t K t u v t

K t u v t

τ σ σ σ σ

σ σ τ σ σ σ σ τ

σ σ σ σ

′ ′− −

= − −  

= − −      

 = − ≥    

∫ ∫

∫ ∫ ∫

∫ ∫

 

It means that functional (5) with condition (6) is convex. 
Hence, the inequation (9) is solved. As it follows from (7) 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

1

2 0 2

1

0

*

*

, 2 , , d ,

2 , , d d .

t

L t L

t b

t a

J u h J u J u h K t K t t h

K t K t h t

τ σ

τ σ σ σ

′ ′ ′′+ − = =

=

∫

∫ ∫
 

Hence, ( )J u′′  is defined by formula (10). From (10), (11) it follows that 

( ) 2,J u ξ ξ µ ξ′′ ≥  with all ( )2 1, mu L I R∈ , ( )2 1, mL I Rξ ∈ . 

It means, that functional (5) with condition (6) is strongly convex в 

( )2 1, mL I R . The Theorem is proven. 
Lemma 1. Let this ( ) ( )* 2 1, mu L I Rτ ∈  be a solution to the optimal control 

problem (5), (6). For the Fredholm integral equation of the first kind (1) to have 
a solution, it is necessary and sufficient that the value ( )* 0J u = . 

Proof. As follows from the optimal control problem (5), (6), the value 
( )* 0J u = , if and only if 

( ) ( ) ( )*, d 0
b

a
f t K t uτ τ τ− =∫ , for all t I∈ . 

It means the function ( )*u τ , 1Iτ ∈  is a solution to the integral Equation (1). 
The Lemma is proven. 

Thus, for the existence of a solution of the integral Equation (1), it is necessary 
and sufficient that the value of ( )* 0J u =  (the solution of problem 1). 

Lemma 2. Let this ( ) ( )* 2 1, mu t U L I R∈ ⊂  be a solution for optimal control 
problem: minimize the functional 

( ) ( ) ( ) ( ) ( )1

0

2

1 , d d , .
t b

t a
J u f t K t u t inf u Uτ τ τ τ= − → ∈∫ ∫        (12) 

For the Fredholm integral equation of the first kind (1) with  
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( ) ( )2 1, mu U L I Rτ ∈ ⊂  has a solution, it is necessary and sufficient that the value 
of ( )1 * 0J u = . 

Proof. The value ( )1 * 0J u = , ( )*u Uτ ∈ , then and only then, when  
( ) ( ) ( )*, d 0

b

a
f t K t uτ τ τ− =∫ , with all t I∈ . Hence ( )*u Uτ ∈  is the integral 

equation’ solution (1) with this condition ( )u Uτ ∈  (problem 3 solution). The 
Lemma is proven. 

4. Construction of the Solution of the Fredholm Integral  
Equation of the First Kind 

Consider the integral Equation (1). The solution to problem 2 follows from the 
following theorem. 

Theorem 2. Let for the extreme problem (5), (6) the sequence 

( ){ } ( )2 1, m
nu L I Rτ ⊂  with algorithm 

( ) ( ) ( ) ( ) ( )1 , min , 0,n n n n n n nu u J u g gτ τ α α α α+ ′= − = ≥  

( ) ( )( ) , 0,1,2, ,n n ng J u J u nα α ′= − = �  

where ( )nJ u′  is defined by formula (7) with nu u= , ( )0 0u u τ=  is the start-
ing point. 

Then: 
1) the numerical sequence is strictly decreasing ( ){ }nJ u  the limit  

( )lim 0n nJ u→∞ ′ = ; 
If the set ( ) ( ) ( ) ( ) ( ){ }0 2 1 0, |mM u u t L I R J u J u= ∈ ≤  is limited, then: 
2) the sequence ( ){ } ( )0nu M uτ ⊂  is a minimizing  

( ) ( )*lim infn nJ u J J u→∞ = = , ( )0u M u∈ ; 
3) the sequence { } ( )0nu M u⊂  weakly converges to the set ( )* 0X M u⊂ , 

where 

( ) ( ) ( )
( )

( )
( )

( ){ }
0 0

* * 0 * *| min inf ;
u M u u M u

X u M u J u J u J J uτ
∈ ∈

= ∈ = = =  

4) the following estimate of the convergence rate is valid 

( ) ( ) 0
* 00 , , 1,2,n

mJ u J u m const n
n

< − ≤ = = �            (13) 

5) if inequality (11) is fulfilled, then the sequence is { } ( )0nu M u⊂  strongly 
converges to the ( )* *u Xτ ∈ . The following convergence estimates are valid 

( ) ( ) ( ) ( )* 0 *0 , 1 , 0 1, 0n
nJ u J u J u J u q q q

l
µ µ ≤ − ≤ − = − ≤ ≤ >   

( ) ( )* 0 *
2 , 0,1,2, ,n

nu u J u J u q n
µ
 − ≤ − =  �           (14) 

where 0l > , 0µ >  are constant from (8), (11)accordingly; 
6) For the Fredholm integral equation of the first kind (1) to have a solution, it 

is necessary and sufficient that the value ( )* 0J u = , * *u X∈ . In this case 
( )* * *u u Xτ= ∈  is a solution for integral Equation (1); 

7) if the value is ( )* 0J u > , then integral Equation (1) doesn’t have a solution 
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with the given ( ) ( )2 , nf t L I R∈ . 
Proof. Since ( ) ( )n n ng gα α≤ , then ( ) ( ) ( ) ( )( )1n n n n nJ u J u J u J u J uα+ ′− ≥ − − , 

0α ≥ , 0,1,2,n = �  from the inclusion of ( ) ( )( )1,1
2 1, mJ u C L I R∈  it follows, 

that 

( ) ( )( ) ( ) 2
1 , 0,1,2,

2n n n n
lJ u J u J u J u nαα α  ′ ′− − ≥ − = 

 
�  

Then ( ) ( ) ( ) 2
1

1 0
2n n nJ u J u J u
l+ ′− ≥ > . Hence, the numerical sequence is  

strictly decreasing and ( )lim 0n nJ u→∞ ′ = . The first statement of the theorem is 
proved. 

Since the funcitonal ( )J u  is convex with the 2u L∈ , then set of ( )0M u . 
Hence the ( )0M u  is bounded convex closed set in 2L  weakly bicompact. 
Convex continuously differentiable functional ( )J u  is weakly semicontinuous 
from below on the set ( )0M u . Hence the set *X ≠ ∅ , ∅  is a null set, 

( )* 0X M u⊂ , the following inequation is valid. 

( ) ( ) ( ) ( ) ( )* * *0 , ,n n n n n nJ u J u J u u u J u u u D J u′ ′ ′≤ − ≤ − ≤ − ≤  

where D is a the ( )0M u  diameter. Notice, that 

( ) ( ) ( ) ( ) ( )* * *0 lim lim 0, lim .n n nn n n
J u J u D J u J u J u J

→∞ →∞ →∞
′≤ − ≤ = = =  

Hence, on the set ( )0M u  the lower bound of the functional ( )J u  in point 

* *u X∈ , the sequence { } 0nu M⊂  is minimized. Hence, the second statement of 
the theorem is proved. 

third statement of the theorem follows from the inclusion of { } ( )0nu M u⊂ , 
( )0M u  that is weakly semi-compact set, ( ) ( ) ( )* *min infJ u J u J J u= = = , 

( )0u M u∈ . Hence, сл
*nu u→  при n →∞ . 

From inequations 

( ) ( ) ( ) ( ) ( ) ( )2
1 *

1 , 0 ,
2n n n n nJ u J u J u J u J u D J u
l+ ′ ′− ≥ ≤ − ≤  

where сл
*nu u→  npu n →∞  estimate follows (13), where 2

0 2m D l= . The 
fourth statement of the theorem is proved. 

If inequality (11) is satisfied, then the functional (5) under condition (6) is 
strongly convex. Then 

( ) ( ) ( ) ( ) 22
* * *, 2 , 0,1,2,

2n n n n nJ u J u J u u u u u J u nµ µ′ ′− ≤ − − − ≤ = �  

( ) ( ) ( ) 2
1

1 , 0,1,2,
2n n nJ u J u J u n
l+ ′− ≥ = �  

It follows that 1n n na a a
l
µ

+− ≥ , where ( ) ( )*n na J u J u= − . Hence,  

10 1n n na a qa
l
µ

+
 ≤ ≤ − = 
 

 then 2
1 2 0

n
n n na qa q a q a− −≤ ≤ ≤ ≤� , where 

( ) ( )0 0 *a J u J u= − . Hence the estimate (14) follows. The fifth statement is 
proved. 
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As follows from (6), the value of ( ) 0J u ≥ , with all ( ) ( )2 1, mu t L I R∈ . Se-
quence  { } ( )0nu M u⊂  is minimizing for any starting point  

( ) ( )0 0 0u u M uτ= ∈ , where ( ) ( ) ( ) ( ) ( )
0 0* *min infu M u u M uJ u J u J J u∈ ∈= = = . 

If ( )* 0J u = , thus ( ) ( ) ( )*, d
b

a
f t K t uτ τ τ= ∫ . Thus, the integral Equation (1) 

has a solution if and only if the value ( )* 0J u = , where ( ) ( )* * 0u u M uτ= ∈  is 
the solution to the integral Equation (1). If value ( )* 0J u > , mo

 ( ) ( ) ( )*, d
b

a
f t K t uτ τ τ≠ ∫ , thus ( ) ( )* * 0u u M uτ= ∈  is not a solution of the 

integral Equation (1). The theorem is proved. 
Example 1. An integral equation is given 

( ) ( ) ( ) ( ) ( ) [ ]1 1 2
0

1e d , e 1 , 0,1 .
2

t tKu u f t f t t I
t

τ τ τ+ += = = − ∈ =
+∫      (15) 

The optimization problems (5), (6) will be written in the following form 

( ) ( ) ( ) ( )

( ) ( ) [ ]

2
1 1 12
0 0

1
2 1 1

1 e 1 e d d
2

, , , 0,1

ttJ u u t
t

inf u L I R I

τ τ τ

τ

++ = − − + 

→ ∈ =

∫ ∫  

The gradient of the functional 

( ) ( ) ( ) ( ) ( )
21 1 11 1 1

0 0 0

e 12 e d 2 e e d d .
2

t
t t tJ u t u t

t
τ τ σ σ σ

+
+ + +−′ = − ⋅ +

+∫ ∫ ∫  

Lipschitz constant: ( )1 1 2 1

0 0
2 e d dtl tτ τ+≤ ∫ ∫ . 

Sequence: ( ) ( ) ( )1n n n nu u J uτ τ α+ ′= − , ( ) ( )( )0minn n n ng J u J uαα α≥ ′= − ,  
0,1,2,n = � . 

The sequence { }nu  converges to the element ( )* eu ττ = , [ ]0,1τ ∈ . The val-
ue ( )* 0J u = , the solution of the integral equation (15) is ( )* eu ττ = , [ ]0,1τ ∈ . 
It is easy to find that ( )* 0J u′ = . 

5. Solvability of the Fredholm Integral Equation of the First 
Kind with Constraint 

Consider the integral equation (1), when ( ) ( ) ( )2 , mu U L I Rτ τ∈ ⊂ , where 
( )U τ  is a bounded convex closed set in 2L . 
The solution to problem 3,4 can be obtained from the solution of the optimi-

zation problem as 
minimize the functional: 

( ) ( ) ( ) ( )
20

2 2
1 , , d d

t b

Lt a
J u v f t K t u t u v infτ τ τ= − + − →∫ ∫        (16) 

with condition 

( ) ( ) ( ) ( ) ( ) ( ) ( )2 1 2 1 1 2, , , , , , .m m nu L I R v U L I R I f t L I Rτ τ τ τ∈ ∈ ⊂ ∈ ∈    (17) 

Theorem 3. Let the operator kernel be measurable ( ),K t τ  and belongs to 

2L  in the rectangle 

( ){ }2
1 1, | , .S t R t I Iτ τ= ∈ ∈ ∈  

Then: 
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1) the functional (16) under condition (17) is continuously differentiable by 
Fréchet, the gradient of the functional 

( ) ( ) ( )( ) ( ) ( )1 1 1 2 1 2 1, , , , , ,m m
u vJ u v J u v J u v L I R L I R′ ′ ′= ∈ ×  

in any point ( ) ( ) ( )2 1, , mu v L I R U τ∈ ×  defined by the formula 

( ) ( ) ( ) ( ) ( ) ( ) ( )

( )

1 1

0 0

* *
1

2 1

, 2 , d 2 , , d d 2

, ,

t t b

t t a

m

J u v K t f t t K t K t u t u v

L I R

τ τ σ σ σ′ = − + + −

∈

∫ ∫ ∫  

( ) ( ) ( )1 2 1, 2 , ;m
vJ u v u v L I R′ = − − ∈  

2) the gradient of the functional ( )1 ,J u v′  satisfies the Lipschitz condition 

( ) ( ) ( )1 1 1 1 1, , ,J u h v h J u v l h h′ ′+ + − ≤ +  

for all ( ) ( ) ( )1 2 1, , mu h v h L I R U τ+ + ∈ × ; 
3) functional (16) with conditions (17) is convex. 
The proof of the theorem is similar to the proof of Theorem 1. 
Theorem 4. Let for the optimization problem (16), (17) the last sequence 
( ){ } ( ){ },n nu vτ τ  on algorithm 

( ) ( ) ( )
( ) ( )

1 1

1 1

, ,

, , 0,1,2, ,
n n n u n n

n U n n v n n

u u J u v

v P v J u v n

τ τ α

τ α
+

+

′= −

′ = − =  �
 

if 0
1 1

2
2n l

ε α
ε

≤ ≤
+

, 0 0ε > , 1 0ε >  or 
1

1
n l

α = , 0,1,2,n = � . 

Thus: 
1) The numerical sequence ( ){ }1 ,n nJ u v  is strictly decreasing. 
2) 1lim 0n n nu u→∞ +− = , 1lim 0n n nv v→∞ +− = ; 
If, in addition, the set ( ) ( ) ( ) ( ){ }0 0 2 1 1 0 0, , | , ,M u v u v L U J u v J u v= ∈ × ≤  is li-

mited, then: 
3) sequence { } ( )0 0, ,n nu v M u v⊂  is minimizing 

( ) ( ) ( )1 1* 1 2lim , inf , , , ;n nn
J u v J J u v u v L U

→∞
= = ∈ ×  

4) *
weak

nu u→ , *
weak

nv v→  when n →∞ ,  

( ) ( ) ( ) ( ){
( ) ( ) }

* * * * * 2 1 * * 1

* 1 2

, , | , min ,

inf , , , ;

u v U u v L U J u v J u v

J J u v u v L U

∈ = ∈ × =

= = ∈ ×
 

5) so that the integral Equation (1) under the condition ( )u Uτ ∈  has a solu-
tion, it is necessary and sufficient that the value of ( )1 * *, 0J u v = . 

The proof of the theorem is like the proof of Theorem 2. 

6. Controllability of a Linear Integra-Differential System 

Let us consider the solutions of problems 5 - 7 for the process described by a li-
near system of integrodifferential Equations (2) under conditions (3), (4). To 
solve Problems 5 - 7, it is necessary to investigate the controllability of an aux-
iliary system of the following kind 
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( ) ( ) ( ) ( ) ( ) ( )1 2 ,y A t y B t w t C t w t t t Iµ= + + + ∈� ,           (18) 

( ) ( ) ( ) ( )0 0 0 1 1 1 0 1, , , ,n ny t x x t y t x x t x R x R= = = = ∈ ∈          (19) 

( ) ( ) ( ) ( )1
1 2 2 2, , , .mmw t L I R w t L I R∈ ∈                 (20) 

Let’s introduce the notation 
( ) ( ) ( )( )1 ,B t B t C t= , ( ) ( ) ( )( )*1 2,w t w t w t= , t I∈ . Then the system (18)-(20) 

will be written as 

( ) ( ) ( ) ( )1 ,y A t y B t w t t t Iµ= + + ∈� ,                (21) 

( ) ( ) ( ) ( )0 0 0 1 1 1, ,y t x x t y t x x t= = = =                 (22) 

( ) ( )1
2 , ,m mw t L I R +∈                       (23) 

where ( )1 ,B t t I∈  matrix of order ( )1n m m× + . 
Solution of differential Equation (21) with the initial condition ( )0 0y t x=  

has the following form 

( ) ( ) ( ) ( ) ( ) ( ) ( )
0 0

0 0 1, , d , d , ,
t t

t t
y t t t x t B w t t Iτ τ τ τ τ µ τ τ= Φ + Φ + Φ ∈∫ ∫    (24) 

where ( ) ( ) ( )1,t tτ θ τ−Φ = Θ , ( )tΘ  is the fundamental matrix of solutions of a 
linear homogeneous system ( )A tξ ξ=� , ( ) ( ) ( )t A t tΘ = Θ� , ( )0 nt EΘ = , nE  is 
the unit matrix of order n n× . 

From given (24) considering, that ( )1 1y t x= , ( ) ( ) ( )1 1 0 0, , ,t t t t t tΦ =Φ Φ , we 
have 

( ) ( ) ( )1

0
0 1, d ,

t

t
t t B t w t t aΦ =∫                    (25) 

where ( ) ( ) ( )1

0
0 1 1 0 0, , d

t

t
a t t x x t t t tµ= Φ − − Φ∫ . Thus, the solution of the boun-

dary problem (21)-(23) is a solution of the integral equation (25). 
Theorem 5. For the existence of control ( ) ( )1

* 2 , m mw t L I R +∈ , which trans-
lates the trajectory of equation (21) from any starting point ( )0 0

ny t x R= ∈  at 
any given time𝑡𝑡0to any desired end state ( )1 1

ny t x R= ∈ , it is necessary and suf-
ficient that the matrix 

( ) ( ) ( ) ( ) ( )1

0

* *
0 1 0 1 1 0, , , d

t

t
W t t t t B t B t t t t= Φ Φ∫             (26) 

order of n n×  (matrix) to be positively determined, where (∗ ) is a transposi-
tion symbol. At the same time, the control 

( ) ( ) ( ) ( )* * 1
* 1 0 0 1, , ,w t B t t t W t t a−= Φ                 (27) 

is the solution of the differential Equation (21), is relevant to control  
( ) ( )1

* 2 , m mw t L I R +∈  that defined by the formula 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( )1

0 0

1 1
* 0 1 0 1 0 0 0 0 1 0 1 1

1
0 0 0 1 0

, , , , , , ,

, d , , , , d , ,
t t

t t

y t t t W t t W t t x t t W t t W t t t t x

t t t W t t W t t t t t t t Iτ µ τ τ µ

− −

−

= Φ +Φ Φ

+ Φ −Φ Φ ∈∫ ∫
  

(28) 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
0

* *
0 0 1 1 0 1 0 1 0, , , d , , , , .

t

t
W t t t B B t W t t W t t W t tτ τ τ τ τ= Φ Φ = −∫  (29) 
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The proof of the theorem for the general case is given in [17]. Control ( )*w t , 
t I∈  defined by formula (27) (control with the minimum norm) is found by 
Kalman R.Е. [19] [20]. 

From (26), (27) as follows 

( ) ( )
( )

( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

* * 1
1* 0 0 1 * * 1

* 1 0 0 1* * 1
2* 0 0 1

, ,
, , ,

, ,
w t B t t t W t t a

w t B t t W t t a
w t C t t t W t t a

−
−

−

   Φ
= = = Φ    Φ   

 

where 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

* * 1
1* 0 0 1

* * 1
2* 0 0 1

, , ,

, , , .

w t B t t t W t t a

w t C t t t W t t a t I

−

−

= Φ

= Φ ∈
             (30) 

( ) ( ) ( )1

0
0 1 1 0 0, , d .

t

t
a t t x x t t t tµ= Φ − − Φ∫               (31) 

The solution of problem 5 follows from the following theorem. 
Theorem 6: For controllability of the solution of the linear integrodifferential 

Equation (2) under conditions (3), (4) it is necessary and sufficient to satisfy the 
following conditions: 

1) set ( )0 1,W t t  defined by formula (26) was positively defined. 
2) identical equations are satisfied 

( ) ( ) ( ) ( ) ( )* 1* * 2*, , d , ,
b

a
u t w t K t v w t t Iτ τ τ= = ∈∫          (32) 

where ( ) ( ) ( ) ( )1
1* 2 2* 2, , , mmw t L I R w t L I R∈ ∈  defined by formulas(30), (31). 

Proof. Let ( ) ( )* * 0 0 * *; , , , ,x t x t t x u v t I= ∈  is the solution to the controllability 
problem for the system (2)-(4), where ( )* 0 0x t x= , ( )* 1 1x t x= ,  

( ) ( )* 2 , mu t L I R∈ , ( ) ( )1
* 2 1, nv L I Rτ ∈ . Function ( ) ( )* * 0 1* 2*; , ,y t y t t w w=  t I∈  

is the solution for the control system problem (18)-(20), where ( )* 0 0y t x= , 
( )* 1 1y t x= , ( ) ( )1* 2 , mw t L I R∈ , ( ) ( )1

2* 2 , mw t L I R∈ , set ( )0 1, 0W t t > . 
So ( ) ( )* *x t y t= , t I∈ , it is necessary and sufficient that the set 
( )0 1, 0W t t >  and the identical equations are satisfied (32). The connection be-

tween the solutions of the control problem (2)-(4) and (18)-(20) is defined by 
equations (32). From the controllability of the system (18)-(20) follows the con-
trollability of the system (2)-(4). The theorem is proved. 

As follows from identities (32), the desired control, 

( ) ( ) ( ) ( ) ( ) ( ) ( )1

0

* * 1
* 0 0 1 0 1 1 0 0, , , , d , ,

t

t
u t B t t t W t t t t x x t t t t t Iµ−  = Φ Φ − − Φ ∈  ∫  

the control ( )*v τ  1Iτ ∈  is determined from the solution of the optimization 
problem 

( ) ( ) ( ) ( )1

0

2

2* , d d
t b

t a
J v w t K t v t infτ τ τ= − →∫ ∫            (33) 

with the following conditions 

( ) ( )1
2 1, ,nv L I Rτ ∈                       (34) 

where 
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( ) ( ) ( ) ( ) ( ) ( ) ( )1

0

* * 1
2* 0 0 1 0 1 1 0 0, , , , d , .

t

t
w t C t t t W t t t t x x t t t t t Iµ−  = Φ Φ − − Φ ∈  ∫  

The solution to the optimization problem (33), (34) is given in part 2, where
( ) ( )2*w t f t= , t I∈ , ( ) ( )u vτ τ= , 1t I∈ . 

The solution of problems 6, 7 follows from the following theorem. 
Theorem 7. Let the set ( )0 1, 0W t t > , the value ( )* 0J v = , where 

( ) ( )1
* * 2 1, nv v t L I R= ∈  is the solution of optimization problem (33)-(34). then: 
1) the pair ( ) ( )( ) ( ) ( )1

* * 2 2 1, , , nmu t v t L I R L I R∈ ×  translates the trajectory of 
the system (2)-(4) from any starting point ( )0 0x x t=  in the time 0t  to any de-
sired end state ( )1 1x x t=  in the time 1t ; 

2) solution of the controllability problem for the system (2)-(4) function 

( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )1

0 0

* *

1 1
0 1 0 1 0 0 0 0 1 0 1 1

1
0 0 0 1 0

, , , , , , ,

, d , , , , d , .
t t

t t

x t y t

t t W t t W t t x t t W t t W t t t t x

t t t W t t W t t t t t t t Iτ µ τ τ µ

− −

−

=

= Φ +Φ Φ

+ Φ −Φ Φ ∈∫ ∫

 

The proof of the theorem follows from Theorems 5, 6. 
Example 2. Consider a controllable process 

( ) ( ) [ ] [ ]2 1
1 2 2 11

, e d , 0,2 , 1,2 ,tx x x u v t I Iτ τ τ τ+= = + ∈ = ∈ =∫� �  

( ) ( ) ( ) ( )1 10 2 20 1 11 2 210 , 0 , 2 , 2 ,x x x x x x x x= = = =            (35) 

( ) ( ) ( ) ( )1 1
2 2 1, , , .u t L I R v L I Rτ∈ ∈  

In vector form, the system (35) will be written as 
( ) ( )2 1

11
e d , ,tx Ax Bu C v t I Iτ τ τ τ+= + + ∈ ∈∫�  

101 11
0 1

202 21

, , ,
xx x

x x x
xx x

    
= = =    
    

                 (36) 

( ) ( ) ( ) ( )1 1
2 2 1, , , ,u t L I R v L I Rτ∈ ∈  

where 
0 1 0 0

, , .
0 0 1 1

A B C     
= = =     
     

 

1) Necessary and sufficient conditions of controllability. A linear controlled 
system has the form (see (18)-(20)). 

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( )

1 2

1 1 2
1 2 2 2 1 2 2

, 0 0 , 2 2 ,

, , , , , , ,

y Ay Bw t Cw t y x y x

w t L I R w t L I R w t w t w t L I R

= + + = =

∈ ∈ = ∈

�
  (37) 

where the sets are 

( ) ( ) ( )
1

0 0 1
, , , e , e ,

1 1 0 1
A t At t

B B C t ττ −   
= = Φ = =   

   
 

( )*1 1 0
e , e , e , .

0 1 1
At A t Att

t t I
t

− −−   
= = Θ = ∈   −   

 

Using the initial point, we find the following vectors and matrixes: 
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( ) ( ) ( ) ( ) ( ) 11 21 102

21 20

2
0,2 2 0 e 2 0 ,A x x x

a x x x x
x x

− − − 
= Φ − = − =  − 

 

( ) ( ) ( ) ( )2 * * 1
1 10

3 316 4 4 40,2 0, 0, d 0, 0,2 .3
34 4 1
4

W t B B t t W −

    − = Φ Φ = > =      −     

∫  

The matrix ( )0,2W  is positively determined. Consequently, there exists a con-
trol. ( ) ( ) ( )( )* 1* 2*, ,w t w t w t t I= ∈ , where 

( ) ( ) ( )
( ) ( )

* * 1
1*

10 20 11 21

0, 0,2

3 1 3 13 4 3 2 ,
4 4 4 4

w t B t W a

t tt tx x x x

−= Φ

− −− −
= + + +

 

( ) ( ) ( )
( ) ( )

* * 1
2*

10 20 11 21

0, 0,2

3 1 3 13 4 3 2 .
4 4 4 4

w t C t W a

t tt tx x x x

−= Φ

− −− −
= + + +

 

Function  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( )( )

1 1
*

1* 2*

,0 ,2 0,2 0 ,0 0, 0,2 0,2 2

,

y t t W t W x t W t W x

y t y t

− −= Φ +Φ Φ

=
,  

where 

( ) ( ) ( )

( )

3
2

* *
1 10

2

2 2

2

2
0, 0, 0, d ,3

2

16 2 4
,2 .3 3

4 4 2

t
t tW t B B
t t

t t
W t

t t

τ τ τ
 

− = Φ Φ =   − 
 − − + =   − + − 

∫
 

then 

( )
3 2 3 2 3 2 3 2

1* 10 20 11 21
3 12 4 4 4 3 2 ,

4 4 4 4
t t t t t t t t t ty t x x x x+ − + − + − + −

= + + +  

( )
2 2 2 2

2* 10 20 11 21
3 6 3 8 4 3 6 3 4 , .

4 4 4 4
t t t t t t t ty t x x x x t I− − + − + −

= + + + ∈  

Now the necessary and sufficient controllability conditions for the system (37) 
will be written as 

( )

( ) ( ) ( ) ( )
* 1* 10 20 11 21

0,2 0,

3 1 3 13 4 3 2 , ,
4 4 4 4

W

t tt tu t w t x x x x t I

>

− −− −
= = + + + ∈

 

( ) ( )

( ) ( ) ( )

2 1
*1

2* 10 20 11 21

e d

3 1 3 13 4 3 2 , .
4 4 4 4

t v

t tt tw t x x x x t I

τ τ τ+

− −− −
= = + + + ∈

∫
 

2) Construction of a solution to the controllability problem. The control 
( ) ( )1

* 2 1,v L I Rτ ∈  is defined as a solution of optimization problem: there is need 
to find a minimum of 
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( ) ( ) ( ) ( ) ( ) ( )
22 2 1 1

2* 2 10 1
e d d , , .tJ v w t v t inf v L I Rτ τ τ τ+= − → ∈∫ ∫  

The Freche function derivative 

( ) ( ) ( ) ( ) ( ) ( )2 2 21 1 1
2*0 0 1

2 e d 2 e e d dt t t
vJ v w t t v tτ τ σ σ σ+ + +′ = − +∫ ∫ ∫  

at any point ( ) ( )1
2 1,v L I Rτ ∈ . Minimizing sequence 

( ) ( ) ( )1 , min , 0,n n n v n n n nv v J v g gα α α α+ ′= − = ≥  

( ) ( )( ) , 0,1,2, ,n n ng J v J v nα α ′= − = �  

where ( ) ( )*
weak

nv vτ τ→  if n →∞ . 

7. Conclusions 

As a result of scientific research, the following results were obtained: 
• solvability and construction of the Fredholm integral equation of the first 

kind are reduced to solving an extremal problem in a Hilbert space; 
• necessary and sufficient conditions for the existence of a solution of the 

Fredholm integral equation of the first kind are obtained; 
• algorithms for constructing minimizing sequences have been developed, their 

convergence to solutions of Fredholm integral equations of the first kind has 
been proven for cases with and without restrictions on the desired solution; 

• a constructive theory of solvability and construction of a solution to a linear 
integrodifferential equation with distributed control delay was created; 

• the scientific novelty of the results obtained lies in the fact that a new method 
has been created for studying of the Fredholm integral equation of the first 
kind based on convex analysis and the theory of extremal problems in Hilbert 
space; 

• the practical value of the results obtained lies in the fact that a constructive 
algorithm has been created for solving the Fredholm integral equation of the 
first kind and an integrodifferential equation with distributed control, easily 
implemented by modern means of computational mathematics and comput-
er technology. 
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