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Abstract 
In mathematics, space encompasses various structured sets such as Euclidean, 
metric, or vector space. This article introduces temporal space—a novel con-
cept independent of traditional spatial dimensions and frames of reference, 
accommodating multiple object-oriented durations in a dynamical system. 
The novelty of building temporal space using finite geometry is rooted in re-
cent advancements in the theory of relationalism which utilizes Euclidean 
geometry, set theory, dimensional analysis, and a causal signal system. Mul-
tiple independent and co-existing cyclic durations are measurable as a net-
work of finite one-dimensional timelines. The work aligns with Leibniz’s 
comments on relational measures of duration with the addition of using dis-
crete cyclic relational events that define these finite temporal spaces, applica-
ble to quantum and classical physics. Ancient formulas have symmetry along 
with divisional and subdivisional orders of operations that create discrete and 
ordered temporal geometric elements. Elements have cyclically conserved 
symmetry but unique cyclic dimensional quantities applicable for anchoring 
temporal equivalence relations in linear time. We present both fixed equiva-
lences and expanded periods of temporal space offering a non-Greek calendar 
methodology consistent with ancient global timekeeping descriptions. Novel 
applications of Euclid’s division algorithm and Cantor’s pairing function in-
troduce a novel paired function equation. The mathematical description of 
finite temporal space within relationalism theory offers an alternative discrete 
geometric methodology for examining ancient timekeeping with new hypo-
theses for Egyptian calendars. 
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1. Introduction 

We expand upon a recently introduced rishta (Rt) system that introduced new 
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concepts for relationalism, capable of separating planes of matter, extensions of 
space (relational distance), and time (duration) for discrete Euclidean geometric 
modelling. [1] In this article, we describe independent and overlapping networks 
of object-oriented relational timelines, durations measurable by dimensional 
time that can be equated to a shared temporal space. Alternatively, relativity uses 
mathematical approaches that include continuums in time, or the speed of light 
as a measure that requires displacement through space to measure time. Never-
theless, discrete observations in quantum states, like discrete gravity and discon-
tinuous motion, pose challenges for relativity-based modelling when describing 
quantum phenomena. The relational-based rishta (Rt) system is being developed 
as a potential alternative for studying classical and quantum physics as it uses 
discrete signals for geometric-based modelling. 

This article is motivated to propel modeling of time that is detached from spa-
tial constraints while also being relevant across quantum and classical scales. 
One of the objectives is to build an innovative dimensional-based geometric 
computational tool, particularly in the field of discrete event simulations. These 
simulations demand a tool capable of representing object-relational change at 
discrete points with varying durations separating those points. Addressing the 
intricacies of modeling temporal dynamics, especially within complex systems, 
presents inherent challenges. The introduction of a 1D geometric temporal space 
is proposed to simplify the representation of time, facilitating the development 
of mathematical models, algorithms, and computations for both analytical solu-
tions and numerical simulations. 

Throughout history, three primary methods have been employed to model 
space and time. These encompass Galilean relativity (Newtonian space-time) 
utilizing absolute time, Leibniz’s descriptions based on relationalism [2]-[7] 
which stem from earlier work of Plato and Aristotle, and Einstein’s relativistic 
Minkowski spacetime. Prior to the introduction of Rt relationalism [1], all sys-
tems relied on motion as a function of continuous time, encompassing inertial 
frames of reference. 

Relativity successfully reconciled the discord between Newtonian mechanics 
and Maxwell’s electromagnetic theory. Maxwell’s equations and Leibniz’s theo-
ries were challenged given two inertial frames of reference are needed. [8] Tak-
ing a departure from conventional paths, the rishta system introduces the possi-
bility of a universal frame characterized by zero-dimensional attributes and uses 
discrete geometry to model motion. [1] Relational durations and dimensional 
time is added into the model by utilizing shifts in relational space expressed us-
ing geometry, Euclidean translations, and time integrals of displacement, like 
absement [L∙T] applying object-relational spatiotemporal units. Several charac-
teristics are still in the early stages of development as Rt relationalism has only 
been recently introduced, including its formalization in set, group, and mea-
surement theories. 

The discrete Rt approach eschews the use of inertial frames, calculus, infinite-
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simals, motion in continuous time, or derivatives related to time such as velocity 
or acceleration. Consequently, Newton’s laws of motion are managed much dif-
ferently in this mathematical approach as time derivatives of displacement are 
not applicable. Predictions into the future are computed using non-causal oper-
ations that leverage archival datasets from the past and present inputs from a 
causal system. [1] The causal-based system focuses on recording and communi-
cating data from a dynamical system that can be used as inputs for modern 
functions, offering new tools for ongoing development. 

Aristotle characterized time as an unbroken, linear continuum. Aristotle states 
“change is always faster or slower, whereas time is not.” (p. 69) [9] Aristotle goes 
on to propose that “time is present equally everywhere and with all things”, 
adding “Clearly then it [time] is not movement.” Newton’s describes time as 
“absolute, true, and mathematical time, of itself, and from its own natural flows 
equable without regard to anything external.” (p. 77) [10] Newton followed by 
adding another premise that a “duration: relative, apparent, and common 
time… measure of duration by means of motion.” Leibniz proposed time (gen-
erally speaking) as being based on relations yet was unable to provide a metho-
dology that was consistent with his thesis. [7] [8] Leibniz considered time as be-
ing a duration, commenting “duration is a successive repetition” (p251) and that 
“duration is a multitude of something or the duration of something.” (p179) [11] 

The recent introduction of Rt relationalism, a duration was defined as being 
related to a period between discrete cyclic events from object-oriented signals, 
consistent with ancient timekeeping systems. [1] The work aligns with Leibniz’ 
comments whereby “…extension is to space as duration is to time.”(p261) [11] 
Relativity in context of Rt relationalism can be seen as the relativity of a network 
of independent durations, a methodology described as in more detail in this ar-
ticle. As opposed to Einstein’s approach to relativity, Rt relationalism can in-
clude multiple privileged points of reference and does not use inertial frames.  

Continuous time is used in modern equations for physics that use time deriv-
atives of displacement, and time can only approach zero but never reach it, t ≠ 0. 
The mathematical use of continuous time extends to infinity in the past and fu-
ture, is mapped on a real number line, uses infinitesimals, and necessitates the 
application of calculus. In contrast, in Rt relationalism physical durations are 
taken from within continuous time, based on signals from normal matter, 
measured by dimensional time using fundamental constants from this universe 
in a scale relevant to us. Physical time is also applicable to discrete Euclidean 
geometry, includes time points of no parts, is separated by relational temporal 
line elements, has a bound beginning and end, and is mapped on a natural 
number line with either wholes cycles (W) or counted parts of a whole (k). [1] 
Physical time is applicable for computational and discrete geometric modelling 
where discrete functions describe dynamical systems. Physical time uses zero [t 
= 0] [1] which is not possible in continuous time models.  

In mathematics, dimensions can be inclusive of Euclidean geometry with ze-
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ro-dimensional points (zero-D), one-dimensional lines (1D), two-dimensional 
planes (2D), or three-dimensional (3D) objects. In the theory of relativity, time 
is added as a fourth dimension (4D) spacetime, where time is a coordinate in 
Minkowski’s light cone. In quantum physics, the mathematics of string theory 
introduces many more dimensions. On the other hand, in metrology, dimen-
sions are quantities like the dimension of time [T] and length [L]. Dimensional 
quantities are defined as fundamental constants in the universe, such as the 
speed of light, with precision limited by the technology to measure and not the 
definition. In dimensional analysis, base quantities are divided into base units 
using operations with dimensional quantities associated as parts of a whole. [12] 
[13] Russell’s work from the early twentieth century is interpreted where base 
units are “individuals” from the perspective of a unit being the whole. [14] [15] 
Russell’s definition is applicable to the familiar modern-day application of di-
mensional units for time, or seconds.  

The concept of a network of overlapping dimensional relational time [Tr] was 
recently introduced as part of the rishta system. [1] Here, a duration has a fi-
nite-dimensional quantity (seconds) with a description of relational physical 
time (cyclic duration), and is applicable to geometric dimensions (1D) and di-
mensional analysis. From this unique cyclic duration, operations build an or-
dered set of units unique in dimensional quantities but having conserved cyclic 
symmetry. Spatial quantities, or the concept of metric space, is an independent 
quantity, added as necessary for the model’s scale, from the limits of nanotech-
nology to a spatial scale of a fixed geometric model that spans Europe for exam-
ple. 

In Rt relationalism, time can be continuous using an infinite scale, but physi-
cal durations are bound to our physical reality. Relational time is dependent 
upon object-oriented signals, thus finite with a beginning and end. Unlike con-
tinuous infinitesimal time, physical durations are bound to Planck’s limits. In 
contrast to using the speed of light as the measure of time through space, which 
requires displacement in space, in relationalism, time is fundamental and not 
linked to spacetime as there is no spatial information in the measure. The ap-
proach, which includes the application of a causal signal system, opens oppor-
tunities for using a fundamental measure of time whereby discrete functions can 
model dynamical systems that do not require a distortion of space or continuous 
states of matter [1], both of which are necessary for conventional mathematical 
formulas and assumed to be factually linked for models like quantum loop [16] 
and string theory [17]. 

In a sense, Rt relationalism takes a perspective as being an omniscient ob-
server overlooking the observers defined by the theory of relativity. When 
considering the concept of an observation, in relativity an “observation” 
means the observed event is within the mathematical construct of spacetime. 
An observation of an event in relativity is the spacetime coordinates of where 
and when an event occurred, and not as the observer “sees” it. A privileged 
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observer is at a privileged point of reference that can be interpreted as being 
equivalent to the origin of a light cone, or “null cone”. Einstein’s relativity is 
focused on events in the light cone of spacetime. In contrast, for ob-
ject-oriented time, a privileged point received the signal (ρ) at the origin of 
the light cone and captures only the cyclic duration between one signal and 
the next as the light cone moves through continuous time (Figure 1(a)). A 
proposition is that the progression of dimensional quantities of time (e.g., 
seconds) at each privileged point in temporal space is the same, measured by 
standardized dimensional time that uses natural constants of the physical 
(normal matter) universe. Support of this is that an atomic clock is precise 
relative to itself in spacetime.  

A privileged point may in many respects also be considered an inertial point 
of reference, however, there are notable differences. A privileged point is iso-
lated, no forces act upon it, it has zero-velocity as time derivatives of displace-
ment are not used in Rt relationalism, has zero-dimensional quantities (includ-
ing mass) relative to itself in space and time, simply a location for downstream 
relational coordinates. A point is a location set upon a zero-D universal frame of 
reference. A model output of Rt relationalism is a physical static geometric mod-
el built upon a universal zero-dimensional frame, each zero-dimensional point is 
at rest relative to itself and other privileged points. [1] Motion is added to a 2D 
Euclidean lattice using Euclidean translations with discrete geometric-based di-
mensional relational functions applicable for relational-based integral kinemat-
ics (e.g., absement; [Lr·Tr] and absity; Lr· 2

rT ), including the example of a 1D or-
bital model (Figure 1(b)). [1] 

Temporal space contains a network of overlapping object-oriented durations, 
however temporal space itself can also be considered a duration. Each duration 
can be organized into groups based on shared features, like a whole temporal 
space duration, or an object-oriented orbit (extrinsic duration) or rotation (in-
trinsic duration). Cyclic durations have a conserved symmetry yet are cyclically  
 

 
Figure 1. Temporal space and spatiotemporal coordinates. (a) 4D spacetime light cones 
in continuous time (infinitesimal) compared with a relational duration of a cyclic signal 
measured in dimensional time at a privileged point. (b) Discrete zero-D geometric object 
centroidal origin point within a cyclic duration for an object-specific spatiotemporal 
coordinate mapped in a 1D orbital model. 
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unique when using aperiodic signals creating unique dimensional quantities 
each cycle. The structure of ancient formulas provides tremendous inherent ca-
pabilities. Inherently, ancient formulas provide divisions of a whole element, a 
cycle or temporal element spanning temporal space, consistent with dihedral 
symmetry group classifications with ordered elements (radix groups). [1] 

In Hindu timekeeping, the Rig Veda references a chakra, or a wheel of 360 
spokes placed in the sky. (p. 184) [18] A 360-unit cycle divided into 12 equal 
units is also referenced in ancient Chinese (Shang Dynasty) bone carvings (p. 75) 
[19] [20], Babylonian and Persian calendars (p. 610) [21], pre-Roman Egyptian 
time units and calendars. [22] [23] [24] Greeks applied the formula 12(301) in a 
few different ways that including their lunisolar calendar where a count of 12 
lunation signals with about 30 Earth days signals each lunation (an average of 
29.530589 days). Evidence was also found supporting noted findings at Neolithic 
site of Göbekli Tepe [25], the formula is again used as a time unit system where 
time is divided into 12 zodiac signs with 30 degrees each. The most recent note is 
in an architectural study proposing 12(30) divisional structures in the design of 
Stonehenge. [26] In India, Earth’s orbital period was divided into a greater 
number of units, resulting in N = 12(302) = 10,800 units, known as “muhūrta,” 
within a year. The rishta system uses an aligned approach to ancient Vedic and 
Hindu timekeeping, and other ancient civilizations, an alternative to Greek de-
fined applications. This article begins to expand the application of ancient for-
mulas and the proposed cyclic and discrete symmetry of time, first considered to 
be related to D12. [1] 

As an application for mapping temporal space, we explore a well-defined ca-
lendar system from ancient Egypt. In 600 BCE, Thales of Miletus introduced the 
Egyptian year of 365 days to the Greeks. (p. 451) [22] The 365-day calendar was 
compared against Greek methodologies which led to interpretations that ancient 
timekeeping systems were vague, and accumulated errors, making the system 
“…further and further away from reality”. (p. 24) [27] However, the authors of 
this article argue there have been unrecognized Eurocentric assumptions when 
interpreting ancient calendars using Greek methodologies. These potential re-
searcher biases become apparent when an alternative methodology for ancient 
units and calendars is understood.  

The first section of this article details temporal space and object-oriented cyc-
lic durations that span space. We highlight how the whole temporal space can be 
equated to mathematical object-oriented sets of temporally equated elements 
using various principles consistent with Euclidean geometry and ancient formu-
las. The second section introduces novel applications of Euclid’s division algo-
rithm, Cantor’s pairing function, and Gödel numbering for introducing a calen-
dric methodology consistent with ancient timekeeping descriptions. The me-
thodology is used in a preliminary re-interpretation of the ancient Egyptian ca-
lendar systems, the first non-Greek-based interpretation that can be found by 
the author at the time this article is written. 
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2. Methods 

Relational durations begin at the first cyclic physical signal (alpha) and ends 
with the last signal (omega). In Rt relationism, time is measured by dimensional 
units of time (seconds) taken as a duration between discrete signals defined from 
a privileged point of reference. Thus, we can construct an overlapping network 
of object-oriented durations of time measurable by SI units, each independent of 
space. 

Dihedral symmetry at this stage is considered a mathematical feature of the 
system that is preserved or remains unchanged. We present a methodology 
where symmetry groups are shared by similar mathematical objects such as or-
bits and rotation as well as dimensional time and metric space. Ancient division-
al formulas were found to mathematically introduce the inherent group and 
numerical positions that include symmetry properties applicable to set and 
group theory. These are preserved in later geometric and algebraic outputs. 
Symmetries are inclusive of spatial symmetry (D360), time symmetry (D12), rota-
tion symmetry (D24), scale symmetry (D10), and a proposed orbital symmetry 
(D18). Given there is currently only one example discovered in the literature for 
D18 divisional references (e.g., Mesoamerica) that the author has identified, at 
this point this is a conjectured proposal. [1] 

Euclid’s definitions are exceptionally well suited to describe temporal space 
and object conditions since his universal approach allows mathematical objects 
to exist without prerequisite parts, properties, quantities, and so on. Applications 
create an ability to use geometry to map temporal space using layers of ob-
ject-oriented dimensional quantities like time (relational duration); length (rela-
tional extension), mass represented in the scale of our dimensional reality. Euc-
lid’s work spanned 13 books, we will focus on Book I, V, VII, and X [28] to 
frame our application definitions for point, line, and unit, or part of a whole line.  

2.1. Temporal Space with a Network of Object-Oriented Durations 

Temporal space begins as a set with no elements, capable of spanning some por-
tion of continuous time which is abstract and cannot be described by set theory. 
The limits for temporal space are bound by non-abstract signals creating dimen-
sionally measurable durations within a scale of our dimensional reality based on 
fundamental constants of our universe.  

To define a finite temporal space as an interval measurable by dimensional 
time, we introduce object-oriented cyclic signals that set the boundaries. If sig-
nals occur at the same point of dimensional time, there is no duration to meas-
ure. Therefore, quantum superposition is proposed as being at the dimensional 
limit [t = 0] for relational time. Such a concept of zero-time is not possible for 
abstract continuous time, which is without physical dimensional limits.  

An object-oriented cyclic signal, like a New Moon conjunction, is marked 
through a relationship with a start/stop signal received at a privileged point of 
reference. These signals define the limits of a particular temporal space. The dis-
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crete non-dimensional (geometric) points [Øt] are zero-dimensional instants in 
discrete physical time [t = 0] mapped upon a natural number line. In conven-
tional physics based on continuous time, there cannot be absolute zero (t ≠ 0) on 
a real number line. The accuracy of the finite relational dimension of time, or 
base quantity, is limited by our ability to measure it and not by the definition. 
Following the definitions of a signal system, a single cycle is a sample period [Ts] 
and multiple recurrent sample periods are referred to as a frame period [Tf] and 
each is measurable using SI unit seconds. 

Euclid’s third definition describes a line segment with extremities of a line 
being points, in this application defined by cyclic signals marking. The temporal 
space between [Øt, Øt] begins undefined with no dimensional elements, {·}, and 
only until the interval is measured in SI seconds is a dimensional temporal line 
element created (Figure 2). This subscript notation for a point is needed for 
consistency to distinguish temporal zero-D points from those used in metric 
space which includes centroidal origins of matter. [1] 
 

 
Figure 2. Co-existing network of overlapping object-oriented durations within temporal 

space and continuous time. ΑΩ  alpha-omega line segment, t t∅∅  sample (Ts) period, 
and Rt (temporal rishtar) units of a unique whole cyclic period for a particular ob-
ject-oriented relationship. 
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Within temporal space, the greatest object-oriented temporal line segment is a 
set that contains the first signal, each subsequent signal in the lifetime of the re-
lationship from a privileged point, the final signal. This segment is termed the 
alpha-omega segment, or (ΑΩ ) (Figure 2). For example, from the first solar 
rotation (day) signal of what will become Earth, to the last. This segment is a fi-
nite number line of temporal signal points from whole cycles, consistent with 
Euclid’s fourth definition, where points [Øt] can lie on the straight-line. These 
points, define a set of temporal zero-D points on a natural number line, and the 
object-oriented relationship between points (temporal lines) creates segments 
that are lesser than the greater, defined as a period ( t t∅ ∅ ). A single sample pe-
riod, between two recurrent points on the natural number line, is defined as a 
whole cycle. Aperiodic signals create periods that are not dimensionally identi-
cal, rather they are unique temporal anchors, unique line elements, that can be 
identified on a natural number line. 

Each unique period is a whole cycle measurable in dimensional units, applica-
ble to set theory where each whole can then be divided and subdivided into parts 
of a whole, creating unit multiples with a base quantity, referred to as temporal 
rishtars. The approach is consistent with Euclid’s descriptions of units in refer-
ence to Book V on proportions and relationships between magnitudes as well as 
Book VII, elementary number theory. We can also compare a rishtar unit (ele-
ment) with Russell’s work from the early twentieth century which is interpreted 
where base units as “individuals” from the perspective of a unit being the whole. 
[14] [15] 

2.2. Units; Dimension, Symmetry, Order, and Zero 

In Book V, Proportions, Euclid explores the concept of proportional relation-
ships between magnitudes which includes ratios. Consistent with definition six, 
each Rtn unit (a magnitude) a subset of the object relative segment (ΑΩ ), and 
the same lesser defined period, ( t t∅ ∅ ), is a ratio of a whole. As we understand 
astronomical cycles are dynamical with aperiodic signals, no two object-oriented 
(ΑΩ ) will be the same, no two lesser periods ( t t∅ ∅ ) within the greater are the 
same, and finally, the proportionality of the lesser Rtn units in totality are only 
proportional to the defined period of which these magnitudes are the lesser.  

In studying ancient timekeeping formulas to create units from a whole period 
(parts of a whole). The approach aligns with the advanced complexity of Vedic 
and Hindu time from ancient India which has been simplified by European 
based translations to fit within familiar definitions of days, hours, seconds. [29] 
We recognized universal mathematical patterns and conjecture applications of 
symmetry groups (dihedral) and positional numerals (radices), properties that 
can be mathematically applied and expanded upon for applications that extend 
far beyond current known uses. Formulas introduced orders of operations, thus 
far the first division is used to assign uniform dihedral symmetry with properties 
of rotation and reflection where examples include D360, D24, D12, D18, and so on. 
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When studying time in isolation as a 1D line, applications for dihedral proper-
ties of rotation and reflection are not overly apparent. However, downstream 
discrete dimensional geometric modelling (beyond this article) using discrete 
steps in independent time coupled with independent space, rotation, and so on, 
unlocks tremendous possibilities. Therefore, these groups share properties that 
create an “individual class of objects”, to use Euclid’s translation. The symmetry 
group can also be referred to as a class like that defined by Russell (1919), “the 
number of a class is the class of all those classes that are similar to it.” 

In general, once symmetry is assigned, a second operation of an ancient for-
mula can integrate a positional numeral system, radix (e.g., base-10, base-20, 
base-30, base-60) which creates an order to the set of Rt elements, or units. Or-
dered elements are important for many applications, including Cantor pairing 
functions used in mathematically modelling ancient calendars as will be de-
scribed. 

Temporal space as a whole is measured by dimensional time, creating a time-
line divisible by the ancient 12(30x) formula which creates temporal base units 
that are parts of a whole. Measuring temporal space in seconds defines the pe-
riod as singleton element for temporal space to build time dimensional base unit 
multiples of the period, or a set with multiplicity of N = 12(30x). This contrasts 
Greek applications for counts of lunations or vague alignment of twelve months 
with about 30 days each for 365.24 days in one orbit for example.  

In Rt system notation, k/N represents (ordered part in whole)/(all parts of 
whole) and not (divided) ÷ (divisor). Consistent with a unit fraction, the k 
counts are a ratio, and conserves ancient methodologies for unit fractions. Find-
ing a path for reduction to the simplest form is more complicated given the 
complexity of the formula, understanding symmetry alone is different than 
symmetry with dimensional quantities, and awareness of dimensional limits for 
normal matter. For example, each cycle shares the same symmetry each cycle, 
but the dimensional quantities will shift cycle to cycle. 

In a mixed-number Rt unit fraction count, k, represents an ordered part of 
one complete count of ordered units in a cycle, with the whole number (W) in 
the mixed fraction representing the count of completed cycles. [1] There are an 
overwhelming finite number of ordered sample periods, frame periods, ob-
ject-relations, and so on mapped over the duration of the universe and each can 
be uniquely identifiable by notation, and eventually geometric models. To provide 
initial notation (term 1), and expanding upon previous work, the rishta cyclic 
term includes the properties so far introduced, including count (k), objectcondition 
(description of a whole period, e.g., Earthrotation or Luniterranean year 
13-lunations), multiplicity of the multiset (N), symmetry (n), and signal [ρ], 
with the whole number (W) in the mixed fraction representing the count of 
completed cycles, which is used where cyclic terms in temporal Rtn units are 
shown as, 

Cyclic term 
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[ ]conditionObject Rtn
kW
N

ρ                       (1) 

Book VII of Euclid helps define a unit as where a unit is a part of temporal 
space and said to be one and the number is a multitude composed of units which 
are natural numbers not including zero. Therefore, in this application, 1 unit is a 
ratio of 1:360 and 2 units is a ratio of 2:360 using N = 12(301) = 360 where the 
full ratio, or 360:360 (k:N), is temporally congruent to the period ( t t∅ ∅ ). Fol-
lowing Euclid’s third definition, the number (unit count, or k) is part of another 
number (the period count), the lesser of the greater (ΑΩ ) when it (the unit) 
measures the greater (period).  

Euclid’s definitions from Book X, Incommensurable Magnitudes, opens an 
important clarification of the definition of irrational numbers from today verses 
how Euclid used them. Today ratios of numbers are known as rational numbers 
while other real numbers (specifically, infinite, non-repeating decimals) are 
known as irrational numbers. Combining Euclid’s first three definitions, Euclid 
defines magnitudes (temporal segments) measured by the same measure (ob-
ject-oriented temporal measure for the same period) as being commensurable, 
but those which no (magnitude) admits being a common measure are said to be 
incommensurable. Therefore, elements r E∈  are commensurable and ele-
ments that are not a member of set E (e.g., a different object-oriented set) are 
incommensurable. Euclid continues, straight-lines can be commensurable 
meaning rational, and incommensurable being called irrational. 

Units are members of a set where a whole period element is divided into base 
unit multiples with an ordered count of N which is a natural number (ℕ ). In 
mathematical terms, this is often represented using a set and the concept of par-
titions. Let set E be the whole element divided into unit multiples with a multip-
licity of N. Note, k = 0 is not a unit alone, but a point element of a unit that is at 
the terminal of the unit’s line element. The notation can be expressed as: 

( ){ }, , |1 , ,k k k kE Rt Rt Rt k N Rt UnitMultiples k N= ≤ ≤ ∈ ∈         (2) 

In this notation: 
• E is the whole element. 
• Each Rtk represents a unit multiple within the ordered sequence. 
• The ordered sequences are within distinct subsets, (Rtk1, Rtk2, ∙∙∙, Rtkj). 
• 1 < k < N indicates that there are N distinct subsets. 

Notation conveys that set E is a set where the unit multiples are ordered with-
in each subset, and where there are N such subsets and N is a natural number, ℕ .  

Discrete-time point elements are separated by non-abstract geometric line 
elements, both components to a rishtar element which is also a part of a whole 
and used as a base unit once the multiplicity of the set (N) is finalized by an op-
eration. Let us represent the temporal element (Rt) containing both a line ele-
ment (˫) and a point element (◦), with the line element being a unit multiple 
counted with natural numbers where 1 < k < N using mathematical notation as 
follows: 

https://doi.org/10.4236/jamp.2024.122044


S. D. P. Moore 
 

 

DOI: 10.4236/jamp.2024.122044 694 Journal of Applied Mathematics and Physics 
 

( ){ }, | ,1Rt k k k N= ∈ ≤ ≤� �                    (3) 

This notation communicates that a count k of a temporal rishtar contains or-
dered pairs (˫, ◦), where each ordered pair consists of a line element k  (an or-
dered unit multiple counted with natural numbers where 1 k N< < ) and the 
corresponding terminal point element◦. Line elements contain object-condition- 
specific information which describes a relationship and mathematical features 
consistent between the discrete points, and where a discrete temporal point is at 
the terminus of the line. [1] 

The approach shares consistencies with ideographic scripts beginning with 
Shang oracle bone form, coin form, and later bronze form. [30] Interpretations 
of the discussed ancient cycles agree in general that cycles begin at 10 out of 10, 
this was concluded by the authors since the successive count from 1 to 9 has an 
additional place-value component in these examples. Using these examples in 
the context of the proposed temporal rishtar, the 10th symbol in this example 
ends one cycle, using the line element, and overlaps the next using the point 
element.  

Let us consider two recurrent and unique cycles with conserved symmetry, 
each with ten ordered rishtars as the parts of the whole (where D10 is either a po-
tential scale symmetry (cycle-like) or base-10 radix group). Using the described 
counting notation, the first cycle completes at the tenth line element (˫), or 
10/10, which is also equal to 1 [(0)/(10)] being consistent with the point element 
(◦) of the tenth rishtar of that period, or cycle. In the next cyclic set of 1 to 9, this 
can be notated as 1 [(1 to 9)/10] where W = 1 can become a novel and descrip-
tive symbol or representation. Whereas at the tenth line element of the second 
cycle, we now have 1 [(10)/(10)] which is also equal in mathematics (given the 
described notation) and Rt description to 2 [(0)/(10)]. The approach is consis-
tent with Babylonian sexagesimal place-value notation, 0, 01, ∙∙∙, 58, and 59, 
where both the first and last digits are non-null, [31] [32] as we interpret these 
findings to be consistent with the rishtar approach as discussed. Also consistent 
with the Mesoamerican vigesimal base-20 counting system (0, 01, ∙∙∙, 18, 19). 
[33] [34] 

An axiom in Rt relationalism relevant to this article is that physical timelines 
can be divided and subdivided to intervals that reach quantum limits, where an 
interval in time cannot be reduced any further. Therefore, there is zero of time 
in physical dimensional reality as defined by signals with no dimensional dura-
tion between them. Zero-time is a natural point value as it falls upon a natural 
number line, it separates line elements. These points are where relational and 
dimensional time for our universe cannot be divided further, doing so would not 
only require the addition of a signal system that included non-normal matter 
signals, but also an ability to observe (directly or indirectly) or measure such 
signals. 

Physical, or dimensional, zero excludes both temporal measures in symmetry 
and/or dimensional quantities which addresses the definition for a proper sys-
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tem of measure. Temporal zero is a natural point value, applicable to zero from 
the start/stop of a whole period (sample or frame), the start/stop of a whole ob-
ject-oriented start/stop cycle, and from an object-oriented alpha to omega signal. 
In these cases, zero has no dimensional quantities and corresponds to a mat-
ter-based zero-dimensional signal alignment captured from a privileged point of 
reference. Zero is also a point element, shared between two unique line elements, 
for example: 

( ) ( ) ( 1) ( 1) ( 1) ( 2) ( 2), , , , ,t y t y t y t y t y t y t y+ + + + +        ∅ ∅ ∅ ∅ ∅ ∅ ∅         �  

Zero-point time is consistent to the point-values on the number line for the 
rishtar point elements (◦), or ordered parts (k) of the whole period set multiplic-
ity (N), and y is the first primary signal that marks a start point on a zero-D time 
point on a natural number line. It is postulated that there are a countable finite 
number of natural point values for object-oriented cyclic units (N) given dimen-
sional Planck limits and findings of superposition phenomena.  

2.3. Temporal Equivalences 

Temporal spaces contain a network of overlapping and independent ob-
ject-oriented cyclic durations defined using cyclic events, or signals, however only 
one is a primary (1˚) cycle. Additional object-oriented cycles are considered sec-
ondary (2˚) cycle(s) in relation to the primary cycle. A primary period is defined by 
one or more recurrent primary cycles, either a sample or frame period respectively. 

A primary cycle’s signal(s) mark the start/stop of either a sample or frame pe-
riod duration for temporal space, using a particular object-oriented signal of in-
terest. An example would be a signal from a New Moon conjunction, a technology 
would be to measure it using eyewitness observation on a privileged point on 
Earth or modern lasers, the methodology is the same only the technology differs. A 
temporal space duration, between signals, can be defined by either a sample period 
(e.g., one-lunation cycle) or a frame period (e.g., >1 recurrent sample period, or 
perhaps 13-lunation cycles) but both use a primary cycle signal (New Moon in this 
example) to mark the start/stop of the temporal space duration. In this example, 
the primary cycle (1˚) is a New Moon cycle (lunation), and a secondary cycle (2˚) 
could be Earth rotations equated to the temporal space.  

To include descriptions from above, a geometric object of a single cycle, either 
primary or secondary cycle, is a whole cycle period segment ( t t∅ ∅ ) which is 
lesser of the greater for each object-oriented alpha-omega relationship. Ob-
ject-oriented whole cycles can be grouped into symmetry classes using opera-
tions from ancient formulas, excluding D12 symmetry. The dihedral symmetry of 
D12 is uniquely used with temporal space defined as a standalone dependent du-
ration from the independent primary cycle(s), which can correspond with a 
measure of dimensional time (e.g., seconds). 

A whole temporal space by Euclidean definitions is different than a whole ob-
ject-oriented cycle. A temporal space duration can be measured by dimensional 
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units of time (seconds) creating a singleton with dimensional quantities. It is this 
temporal space segment, or singleton, that uses operations involving D12 sym-
metry, or 12(30x), to define dimensional time units that are unique to that single 
temporal period. 

Each temporal space is described using a primary cycle and one or more sec-
ondary cycles. The methodology allows for tremendous capability for layering 
and expanding temporal spaces from short or longer durations. It opens up for 
the division and subdivision of a whole cycle into units of a whole on one side, as 
well as addition of whole cycles on the other. For example, one temporal space 
may be defined by a frame period of 13 primary recurrent cycles (13-lunations). 
Also, any given primary cycle, or period, for one modelled temporal space may 
become of secondary cycle for a much larger temporal space within an expanded 
network of durations. 

There are two applications for equivalences described in this article, first is a 
fixed equivalence applicable for static geometric canonical data modelling, an 
example previously shows how Earth and Mars can be equated [1] which will be 
expanded upon in this article to include exoplanet equivalence modelling. The 
second is calendar equivalences capable of predicting cyclic alignments into the 
future through non-causal operations from archival datasets from a causal sys-
tem. Each fall within the principles of homogeneity of terms for dimensional 
analysis however, beyond dimensional time, we also have different classes of 
symmetry to accommodate and again, ancient applications of timekeeping of-
fered inspiration for a universal methodology. 

We propose heterogeneity of symmetry for cyclic mathematical objects that 
define durations. Today, equivalence maintain homogeneity of terms for dimen-
sional quantities, but not necessarily classes of symmetry. This can also be de-
scribed by saying the characteristics of the relation R of two terms, a and b, is 
dimensional, not necessarily sharing the geometric symmetry class (Sn).  

For equivalence, if two independent object-oriented durations and subsets, a 
[1˚ cycle] and b [2˚ cycle(s)], are taken from two (or more) independent ob-
ject-oriented cycles from a privileged point and equal to a dimensional base 
quantity, they are dimensionally congruent to each other. Reflexivity can be 
shown as (a~a), symmetry (as defined by binary relations) shown as (a~b), and 
transitivity with the addition of a dimensional quantity (c) using seconds shown 
as a~b and b~c then a~c. Where c is a dimensional quantity measure, a is the 
primary cycle reference element, b is the secondary cycle. Introduction  

( )lunation 18 rotation 24
0 458431 Moon Rt NM 29 Earth Rt

360 86400
≅           (4) 

( )lunation 18
01 Moon Rt NM measured in 2551443 seconds

360
≈         (5) 

[ ]rotation 24
4584329 Earth Rt solar 2551443 seconds
86400

≈             (6) 

of SI units to measure time adds dimensional base quantities to the temporal 
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space which adds a property to Euclidean properties for transitivity. However, 
the Rtn units, rishtars, for each side of the equivalence relationship are unique in 
dimensional time, and incommensurable. Using an example (Equations (4)-(6)), 
Let a be the Earth’s rotation, b the Moon’s orbit, and c is the measure in seconds 
of one lunation cycle from New Moon to New Moon.  

For temporal equivalence, we introduce notation applicable to this article. 
Using “approximately equal to” or ≅, to signify both terms in the equation (for 
lack of a better term) are not equal because they can use different symmetries 
(Equation (4)) but they are equated to the temporal space defined by dimension-
al time. As temporal space begins as an empty set, measurement in SI units 
create a dimensional element of time dependent upon the defined cycle period, 
assigned the symmetry of time D12 (Equation (7)). 

[ ]

[ ]

condition

12

0 1 Object Rt

01 Temporal space Rt , measured in x seconds
t t

nW
N

N

ρ

ρ
∅ ∅

=

˚
       (7) 

Single primary period with primary cyclic object equivalent to the dimension 
and symmetry of time 

2.3.1. Application of Euclid Division Algorithm 
Each temporal space has a unique duration and a methodology to equate the 
primary period with counts of secondary cycles. As such, we introduce a re-
mainder system consistent with set theory, object-oriented rishtar units, and 
Euclid’s division algorithm. In this application, the divisibility is not one of ab-
stract numbers, but actual dimensional values. In contrast to modern calendars, 
a cycle is not an average, but the record of a period in the lifespan of recurrent 
and cyclic object-oriented relationships, such as one unique Moon lunation 
(sample period) in the lifespan of Moon orbits, or even 13 unique recurrent lu-
nations (frame period) in a luniterranean year. 

Euclid division algorithm described in Book VII (propositions 1 - 2) and Book 
X (Propositions 2 - 3) [28] is useful for finding the greatest common divisor of 
two positive integers, but it is also applicable to the proposed calendar metho-
dology and remainder system. Euclidean division algorithm uses two integers a 
and b with a > b and with b ≠ 0. When the remainder equals zero, the algorithm 
stops and the final non-zero remainder is then the greatest common divisor of 
the original a and b. There exists unique integers q (quotient) and r (remainder) 
such that a = bq + r, where 0 < r < |b| and where q ≠ 0. In this article, we intro-
duce an application of the division algorithm for various uses, including equat-
ing two object-oriented cycles (Table 1).  

The primary cycle has no remainders because the signals from this cycle de-
fine the finite primary period segment, 1˚ ( t t∅ ∅ ). Possible remainders for sec-
ondary cycles are associated with the natural number of parts of a whole, or Rtn 
unit multiples represented by natural number k count ratio, k/N. Applying the 
Rt system methodology, discrete points in time can have smaller and smaller line  
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Table 1. Describing variables used in the application of Euclid’s division algorithm for 
equating an undefined duration with a period using object-oriented cycles. 

a 
(divided) 

b 
(divisor) 

Whole period 

q 
(quotient) 

Count of whole (W) 

r 
(remainder) 

Part of a whole 

Temporal space 
Measurable with 
dimensional time 

units 

Object-oriented  
cycle period 

t t∅ ∅  (period 
segment) 

Natural number 
count of  

object-oriented cycle 
whole period (divisor) 

Natural number 
k part of a whole W 

Ratio k:N 

 
element separations by increasing the total of unit multiples (N) for the cycle. [1] 
This approach can build a natural number line defining temporal space, sugges-
tive of a possibility where two independent cycle timelines can share a discrete 
point in time, a temporal node. This precision extends beyond modern technol-
ogy. Theoretically, a zero-time point element can be an intersection of two sets, a 
temporal node, whereby a point element from each respective independent cycle 
could be shared across each object-oriented natural number line.  

Equivalence relations and division algorithms in the necessary precision are 
possible using the methodology of ancient formulas from Vedic texts. Excep-
tionally precise discrete points in time can be equated to a common temporal 
measure. For example, an Earth orbit divided into 12(30x) where x = 6, 12(306), 
N = 8,748,000,000 Rt12 units for intervals that can create equivalence relations to 
within 3.6 milliseconds, or even further by increasing x which tests the limits of 
modern technology.  

Euclid’s division algorithm uses an integer quotient and a remainder required 
to be smaller than the absolute value of the divisor. So, since a natural number 
ratio is part of a whole (k < N) the remainder is smaller than the absolute value 
of the divisor value (whole). For example, if we are using Earth’s solar day (rota-
tion) count for the secondary cycle’s (quotient), the remainder cannot be equal 
to a day (as there would then be no remainder) or be larger than a day. 

2.3.2. Fixed (Finite) Temporal Space 
A previous example for a fixed temporal space compared the orbital periods for 
Earth and Mars using a static fixed geometric model. [1] In this article, we ex-
pand the application to present how Earth’s orbital period can be equated to ex-
oplanets using an example from the Tau Ceti star system expressed as an alge-
braic equation. Tau Ceti’s fourth orbiting mass (inclusive of either a planet or 
planet/satellites), termed Tau Ceti f, and we show Earth’s orbital period as the 
secondary cycle (Equation (8)). Our postulate states that at each privileged point, 
we can use dimensional time to measure the duration of a cycle. We can use ex-
isting technologies to make predictions as the orbital period of Tau Ceti f shown 
in Equation (8) is an equivalence relation within the error bars of modern-day 
measurements [35], we extended the precision to demonstrate the capabilities of 
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the methodology. 

[ ]

[ ]

oribit 12

orbit 12

01 Tau Ceti Rt alphelion
8748000000

54026635392 Earth Rt aphelion
8748000000

f

≈
              (8) 

Today’s technology is not able to create a precision of Tau Ceti f orbital period 
to millisecond precision. However, it does allow us to create a geometric dia-
gram of this precision if one day it is known. It also makes it possible to decipher 
the information from a geometric diagram constructed by someone with this 
knowledge if a known comparator [e.g., Earth’s 1D orbit(s) models] is included 
in the overarching model.  

To begin to contextualize key differences in methodologies for the calendar 
system, we look at the remainder in Equation (8) as a duration beyond Earth’s 
aphelion, approximately 225.57 days. The date on a modern Gregorian calendar 
will vary for an aphelion position, from July 2nd to 6th. From the Rt signal sys-
tem methodology for calendars, there is an interesting occurrence where the re-
mainder falls upon an ancient Pagan holiday, later known as Lupercalia from 
Roman times which occurred between February 13 and 15th. Today the celebra-
tion is referred to as St. Valentine’s Day, fixed to February 14th. In space and 
time, by fixing this remainder to end on February 14th, the remainder conse-
quentially fixes aphelion timing to July 4th in the previous Gregorian year. 

For conditions of the fixed temporal space, let X be a non-empty set, and let 
d:X = t t ∅ ∅   → seconds be a given dimensional quantity mapping of temporal 
space. Let d be the summation of a dimensional interval of time on X (condition 
9). Independent primary (condition 10) and secondary objectcondition cycles (con-
dition 11), each with their own independent set, can be equitable to the domain 
if the following conditions are satisfied. Let k/N represent a ratio of a whole 
cycle, being the remainder of the division algorithm for a secondary cycle. 
Where time symmetry is Rt12, let this be the symmetry of time for the dimen-
sional interval of time on X (see condition 12) with N derived from using the 
formula N = 12(30x) where ( )1,2,3,x∈ � , a countable limit to x has not yet 
been determined. 

( )segment of seconds or any dimensional unit for timet td  ∅ ∅ =        (9) 

[ ] { }condition1 Object Rt 1 , where 1,2,3, and 0t t n
kd W W k
N

ρ ∅ ∅ = ∈ =  ˚ �    (10) 

[ ] { } ( )condition2 Object Rt 2 , where 1,2,3,

and 0

t t n
kd W W null
N

k N

ρ ∅ ∅ = ∈ 

≤ ≤

˚ ∪ �   (11) 

[ ]condition 121 Object Rt 1 , where 1and 0t t
kd W W k
N

ρ ∅ ∅ = = =  ˚      (12) 

where W, k, N are all natural numbers, with only k being a natural number in-
cluding zero as a point, and n is a dihedral symmetry group, with n = 12 being 
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the dihedral symmetry group for time. 

2.3.3. Expanding Temporal Space (Calendars) 
Timekeeping involves both units as well as calendar systems that can maintain 
cyclic alignments over long intervals, an ever-expanding temporal space. We 
present a universal non-Greek-based calendric methodology thus far consistent 
with both the rishta system and mathematical descriptions of ancient calendar 
systems. Using this methodology, an observational calendar system of ancient 
times can accurately maintain astronomical-based cyclic time with harmony and 
temporal equilibrium to both observational signals and mathematically equated 
durations with a temporal space.  

Currently, three differing scenarios build flexibility in a calendar system; 
paired durations, N-body layering, and shift of primary cycles. The former and 
latter applications will be discussed in more detail. Layering will require further 
study and formalization. In short, a layering approach opens the possibly to 
create a multi-celestial, or N-body, cyclic calendar system that can begin with 
Earth’s rotation, layered to include the Moon’s orbit, Earth’s orbit, and inclusion 
of the planets and satellites in this star system. N-body calendars can even ex-
tend in theory to include exoplanet orbits, as well as stars orbiting a Galaxy’s 
centre, precision being limited to modern measurement technologies. 

Signals create natural number counts relative to the independent cycles that 
can be either observed (new Crescent Moon) or mathematically calculated (e.g., 
aphelion for Earth or exoplanets) which together are used to define the unique 
count of a dependent (paired) cycle. Using the rishta nomenclature, a primary 
cycle count (1˚ W) is paired with a secondary cycle count (2˚ W) → to form a 
dependent calendar cycle (cc) with a unique new cycle count cc W’. For ancient 
observation calendars, a pairing function, ℕ  [x] ℕ  → ℕ , captures the natural 
number counts for the two (or more) independent cycles. The creation of the 
unique natural can be applied to the principles of Gödel numbering where a 
pairing function’s unique single natural number can be a representative symbol, 
such as a glyph. 

However, as seen in the fixed temporal space, from the perspective of an equ-
ation, it may appear an observation-based calendar creates disequilibrium in 
temporal space. However, rules can be implemented whereby temporal equiva-
lence between independent cycles for the calendar in terms of an equation is 
maintained independent of observer inaccuracy. The approach leads us to in-
troduce a so-called pairing function equation that maintains natural number 
counts of observed signals, temporal space, and temporal equivalence (Equation 
(13)). 

( )[ ] ( ) ( ) ( ) ( )1 2 paired remainder paired remainderW W ccW ′× + ± → + ±˚ ˚    
(13) 

To maintain temporal equilibrium for a pairing function equation, we add or 
subtract temporal mathematical objects from both sides as needed. Building 
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from fixed temporal space with a remainder of the secondary cycle (k < N), 
counts (k) are added (or subtracted) to a term so k = N, creating only natural 
number whole cycle counts in pairing functions. To maintain temporal equili-
brium in the equation, the addition (or possible subtraction pending further 
study) occurs on both sides of the equation. This operation is considered outside 
of the temporal space quantity being extended and tracked over long periods, a 
mathematical object that is unique to the calendar system. As this operation 
creates a unique temporal value for the unique paired cycle, we term this as a 
paired remainder (pr). A resulting paired remainder can accumulate with each 
recurrent paired cycle count, so when k ≥ N used to equilibrate the pairing func-
tion equation, it would trigger an intercalary event to maintain calendric equili-
brium with the temporal space being extended by the primary cycle. When a 
rolling calendar cycle accumulates a paired remainder to where k ≥ N, it triggers 
an intercalary event for an independent cycle in the pairing function used to de-
rive N. In a causal system, inputs include past and present, so to be consistent, 
any secondary cycle(s) completes to a natural number W count for accurate 
measurements in the calendar cycles (Figure 3). However, these durations can 
also be predicted using previous non-causal operations from data archives. A 
situation can occur where the secondary cycle has W < 1 (Figure 3(b)), this 
raises questions if such a cycle can be used for pairing function equations related 
to calendric extensions of temporal cycles, proposed better suited for a 
non-rolling calendar where the remainder does not accumulate the same way as 
a rolling calendar. A question raised from later findings related to the study of a 
stellar year (e.g., rise of Sirius in Egypt) using 365 days as a primary cycle. 

In calendric expansions of temporal space, at intercalary events there are new 
counts, typically of a secondary cycle W, either an addition (leap) or removal 
(skip) event. These new recurring W counts offer an opportunity to create a new 
pairing function, another dependent calendar cycle of W’ counts. To describe 
this, we use the signal-based McKenna-Meyer luniterranean calendar that has a 
primary cycle count (1˚ W) of lunations and a secondary count (2˚ W) of Earth’s 
rotations. 

For the luniterranean calendar, after 13 lunations, a pairing function creates a 
unique number output, the luniterranean year (384 Earth days [×] 13 lunations → 1 
luniterranean year), or calendar cycle 1 (cc1, referred to in Equation (14)). The re-
sulting mathematical paired remainder (pr) accumulates each successive year. Ac-
cumulation requires an intercalary 385-day leap-year (385 Earth days [x]13 lu-
nations→ 1 luniterranean decade) every tenth luniterranean year, or decade (cc2) 
(Equation (15)). Again, the resulting unique negative paired remainder for this new 
paired cycle, in this case, accumulates towards a whole complete secondary 
cycle, balanced by another intercalary event (383-day skip-year) (cc3). Cc3 
again would associate with another unique nature number remainder (equa-
tion 16). The luniterranean calendar system uses a 13-lunation cycle as the 
primary period, where 13 = 13-lunations, 384 = 384 Earth rotations, 385 = 385  
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Figure 3. Rishtar calendar methodology for a causal system. Primary periods are equated 
to primary and secondary object-oriented cycles. (a) Fixed temporal remainder shown in 
ordered Object B (OB) Rtn unit multiples (black) with a paired remainder (grey). (b) 
Temporal remainder for Object D using Object C Rtn units (grey). 

 
Earth rotations, and 383 = 383 Earth rotations [36], full notation is removed for 
ease of display (Equations (15)-(16)). A temporal period from a rolling calendar 
expands with each primary cycle period, again becoming a growing temporal 
space that can be measured by dimensional time.  

Pairing function equations with intercalary durations 

[ ] cc1 cc11 13 2 384 2 pr 1cc1 2 pr× + → +˚ ˚ ˚ ˚                 (14) 

[ ][ ] [ ]cc1 cc1 cc2 cc29 1 2 pr 1 1 13 2 385 2 pr 1cc2 pr + × × + → + ˚ ˚ ˚ ˚       (15) 

[ ][ ] [ ]cc1 cc1 cc3 cc3399 1 2 pr 1 1 13 2 383 2 pr 1cc3 pr + × × + → + ˚ ˚ ˚ ˚      (16) 

Signal timings and counts for cc3 rely on approximations due to the unavaila-
bility of information on the temporal space duration as measured in the dimen-
sion of time for equivalence. The exact number of lunations or Earth rotations 
requiring a 383-skip year is dependent on precise measurements taken from re-
current periods of Earth’ rotation and the recurrent periods of lunation cycles. 
As shown in Table 2 using averages, the approximate timing of this 383-day skip 
year may vary, shown from 420 to approximately 400 (13-lunation) years, giving 
383-day intercalary event to maintain consistency with the temporal space and 
both the lunation cycle and Earth’s rotation cycle.  
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Table 2. Rolling luniterranean years with remainders after necessary intercalary events. 

Luniterranean 
(13-Lunations) 

years 

Total 
lunations 

(New Moon) 

Earth solar days  
per luniterranean 

Average solar  
rotations of Earth 
per luniterranean 

year 

remainder 
(over total days)  

in seconds 

1 13 384 (regular) 

383.897644 

−8843.558400 sec. 
(over 384 days) 

9 117 384 (regular year) 
−79592.025600 sec. 

(over 3456 days) 

10 130 385 (leap year) 
+2035.584000 sec. 
(over 3841 days) 

420* 5460 383 (skip year) 
−905.471307 sec. 

(over 161,320 days) 

400* 5200 383 (skip year) 
−0.010288 sec. 

(over 153,638 days) 

SI unit delta calculations used one solar day equal to 86,400 seconds (as of 1967) and 1 
lunation cycle equals the average of 29.530588 days. (https://www.gpo.gov/). *Due to li-
mitations in modern timekeeping methods, using a fixed mean for Earth rota-
tions/lunation and fixed rotational time, inaccuracies (or unknown measures) can accu-
mulate. **exploratory assignment of 1 lunation cycle variable to an average of 
29.5305769231 days/lunation. 

 
Shifting primary cycles also gives flexibility when needed for a desired out-

come of a model. Shifting is where the calendar’s independent cycles remain 
constant, but the primary cycle shifts to become the secondary cycle (Equations 
(17) and (18)). An example would be to shift a 13-lunation primary period to a 
384-day primary period in a luniterranean calendar as discussed. These features 
create added flexibility for layering calendars, or adding secondary cycles, where 
the system shares a primary cycle for the primary period, thus shared signals 
that define the temporal space. Beyond this, we can also use any one of the cycles 
(cc1, cc2, or cc3) as a primary cycle or secondary cycle for another layered ca-
lendar. Where W is a natural number (ℕ ). 

Shifting primary/secondary of Calendar cycle (1˚ W [X] 2˚ W) 

[ ][ ] [ ]condition n condition n
0 1 ObjectA Rt 2 ObjectB RtkW W
N N

ρ ρ×˚ ˚       (17) 

[ ][ ] [ ]condition n condition n
0 1 ObjectB Rt 2 ObjectA RtkW W
N N

ρ ρ×˚ ˚       (18) 

3. Results: Pre-Greek Egyptian Calendar Systems 

In this study, we apply the described methodologies and present findings from 
study of the observation-based ancient Egyptian calendars, including the lunar 
and civil systems as well as the solar calendar aligning to regional seasons. There 

https://doi.org/10.4236/jamp.2024.122044
https://www.gpo.gov/


S. D. P. Moore 
 

 

DOI: 10.4236/jamp.2024.122044 704 Journal of Applied Mathematics and Physics 
 

are compounding inaccuracies when these calendars are studied in comparison 
to the Julian-style methodology. The rise of Sirius reappears on average of 365.25 
days but this shifts from one cycle to the next. This difference, in combination 
with aperiodic signaling, leads to interpretations of inaccuracies for a 365-day 
civil calendar when using Julian-style comparisons using Earth’s orbital period 
as the primary period in the calendar. In contrast, when studied using the rishta 
system methodology, either the rise of Sirius (Equation (19)) or a frame of 365 
days (Equation (20)) can be tested as the primary period of the calendar.  

[ ] [ ]Egypt 12 rotation 24
0 216001 1 Sirius Rt helical rise 365 2 Earth Rt sunrise

86400N
≅˚ ˚   (19) 

[ ] [ ]rotation 24 Egypt 12
0 359365 1 Earth Rt sunrise 2 Sirius Rt helical rise

360N
≅˚ ˚    (20) 

The pre-Greek Egyptian civil calendar features a 365-day cycle associated with 
the helical rise of Sirius, or re-appearance on the horizon on the 365th day at va-
riable times in any given year. In about 600 B.C., Thale (Seler), “Thales of Mile-
tus introduced the Egyptian year of 365 days to the Greeks, without hint of any 
correction being required.” (p 451) [22] Parker continued to comment there is 
also no hint in the whole four centuries and a half covered by the classical lite-
rature that the Egyptians had any memory of ever having used a Greek-style 
fixed year or ever having recognized its as being a desirable system to use. The 
high priests of Egypt even put a statement in the oath of kings that the 365-day 
count would not be modified. (p. 463) [22] Aligning the primary period to 365 
Earth rotations (frame period) the secondary cycle with a remainder would be 
the helical rise of Sirius. The rise is still consistent to a signal beginning a New 
Year on day 365, without fail over hundreds if not thousands of years. The heli-
cal rise occurs after 70 days of absence at a latitude shared by Egypt, 30.1˚ to 
29.2˚. (pp. 63, 66) [27] As an observer’s latitude changes, the count of sunrises 
begins to shift from 365 days. These reports support a test scenario for using 
Earth’s rotation (Equation (20)) as the primary cycle which was previously sug-
gested [1], but this provides a unique scenario. 

When considering the rise of Sirius as a primary cycle, mathematically it 
creates a zero quotient, inconsistent with Euclid’s divisional algorithm whereby 
the quotient cannot be less than zero. Thus W = 365 counts is more appropriate. 
However, with <1 stellar signal in 365 Earth rotations, it creates a secondary 
cycle count where W < 1, and k < N. This suggests application of rolling calen-
dar as seen with the luniterranean example is not mathematically consistent to 
the proposed methodology, opening an alternative possibility of a non-rolling 
calendar, a recurrent cyclic addition of a single duration without an accumula-
tion of a remainder.  

Currently, lunar interpretations work around the Greek 12-lunation lunisolar 
year model with alternating between 29-day, and 30-day months to approximate 
the 12(30) = 360 formulae. This methodology creates an inconsistent 354 days in 
a regular lunar year but was adjusted with intercalations to synchronize the ca-
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lendars and stay true for long term synchronization. Parker contended the Egyp-
tian lunar calendar ran parallel with the civil calendar, yet in his approach was 
based on using 12 lunation signals to construct a 12 lunar month year with an 
occasional thirteenth lunar month intercalation in a given year. [27] Prior to 
Parker, Borchardt was the first to propose the Egyptians around 1850 BCE 
adopted a lunar calendar of altering 29- and 30-day months with a “now and 
again” month of 31 days completely unrelated to the civil calendar. (p 27) [27] 
Borchardt’s hypothesis is still debated even today. These 29-, 30-, and occasional 
31-day months are also consistent with the luniterranean calendar and McKen-
na-Meyer’s interpretation [36], yet a mathematical study of the 13-lunation ca-
lendar has yet to be tested against the Egyptian calendar system. 

Parker proposed the lunar and civil calendars could be aligned and used in 
parallel. [27] This proposal has consisted with descriptions from Australia and 
Americas, where other ancient calendars used a unique stellar signal relevant to 
their region to initiate a lunar calendar system. [27] [37] In this study of the 
Carlsberg 9 papyrus cycle, we align with conventional discussion that proposes 
the cycle is a description of two calendars synchronized, the Egyptian civil ca-
lendar, and a lunar based calendar system. From the papyrus, there are notes of a 
25-year civil year synchronization with 309 lunations. However current ap-
proaches to mathematically model synchronization of these ancient calendars 
use Eurocentric interpretations which have not been overly successful and gaps 
remain. [22] 

In contrast to other studies, we begin exploring applicability of the luniterra-
nean calendar system, an untested comparator for the lunar-based system in 
Egypt.  

Findings from this study support proposing a hypothesis that the Carlsberg 9 
cycle describes a novel triple calendar system (Equation (21) and (22)). The 
proposed primary period is a frame of 9125 Earth rotations and the two second-
ary cycles are the frame period of twenty-five sample period rises of Sirius in 
Egypt (non-rolling; no accumulating remainder) and a frame period of 309 lu-
nations with necessary object relative Rtn unit paired remainders (Equation (22); 
simplified notation). (Table 3) As previously reported, 309 lunations are ap-
proximately equal to 9124.95 days using current averages, a difference of 0.0480 
days or approximately 69 minutes. [38] [39] The precise difference cannot be 
reported because the International Celestial Reference System does not currently 
include an aperiodic measure of sequential lunation durations. In addition, the 
twenty-five Egyptian civil calendar “years” of a 365-day frame period, equals 
9125 days. To note, we propose a novel symmetry group that is needed to de-
scribe mathematical objects that characterize helical stellar rises on the horizon. 

[ ] 2a 2a pr 2a pr
1

2b 2b pr 2b pr
+ +

× →
+ +
˚ ˚ ˚

˚
˚ ˚ ˚


 


                  (21) 

[ ] [ ] [ ] [ ]25 Sirius rises 25 2a pr 25 2a pr
9125 days 1Carlsberg 9 cycle

309lunations 2b pr 2b pr
+ +

× →
+ +

˚ ˚
˚ ˚

 (22) 
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Table 3. Two dual calendar systems connected using a triple calendar system by shifting 
primary cycle references. 

Cycle Name 
1˚ cycle 

N = 12(30x) 
2˚ cycle Remainder Calendar type 

Egyptian civil 
“year” 

365 days 
1 Rise of Sirius  

in Egypt 
+0.25 days 

Dual calendar 
system 

Luniterranean  
year 

13 Moon  
orbit 

384 days (regular 
year) + pr 

−0.10236 days 
Dual calendar 

system 

Luniterraneane 
309-lunation cycle 

9125 days 

309 lunations  
+ pr 

−0.048 days Triple calendar 
system 

(Carlsberg 9 
cycle) 

Egyptian 365-day 
25-“year” cycle 

25 stellar rises  
+ 25 pr 

25 (+0.25 days) 

a. Calculations using: Tropical year average = 365.2421897. Lunation average = 
29.5305888531 Sample of a Table footnote (Table footnote is dispensable). 

 
The Carlsberg 9 cycle is therefore proposed to be equivalent to a finite tem-

poral space that occurred in the past, an anchored and unique primary frame 
period of 9125 recurrent Earth rotations, logically beginning upon a New Moon 
signal at a designated privileged point on Earth in the region of Egypt. The dura-
tion between a unique and defined sequence of 9125 recurrent Earth rotations 
can be measured in SI units (Equation (23)) which can be equated (shown using 
definitions, or 86,400 seconds/rotation, not actual recurrent summation from 
aperiodic cycle signals). One whole Carlsberg cycle can be assigned and divided 
into the symmetry of time, D12. In addition, the dependent Carlsberg cycle is a 
novel ordered natural number count of signals which is consistent with pairing 
functions and Gödel numbering applications. 

[ ]rotation 249125 1 Earth Rt sunrise 788400000 seconds≈˚           (23) 

We continue to test the luniterranean calendar for Egypt by shifting the pri-
mary cycle and studying alignments with descriptions in the ancient texts. The 
Papyrus includes a discussion of nine “Great” years. An additional consideration 
is around a note of 16 “small” years, each with 12 divisions. As discussed, any 
temporal space can be measured by SI units and divided into the symmetry of 
time using the formula N = 12(30x). When considering what these 16 “small” 
years represent, it opens different avenues to explore. For example, when using 
the luniterranean calendar as shown in the Carlsberg cycle where Earth rotation 
is the primary cycle, small years of 383-day skip year occur every 10th luniterra-
nean year. We open an option to explore whereby the sixteen recurrent “small” 
years representing 160 luniterranean years in total (1˚ Earth rotation). In con-
trast, when the lunation signal is the primary cycle for the 13-lunation year ca-
lendar, a 383-day skip year could be the small year every ~400th luniterranean 
year, making sixteen such small year cycles occur after ~6400 luniterranean 
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years, or approximately 6726.89 Earth orbits. Suggestion of alternatives for the 
16 “small” years, or cycles, is also not excluded at this point.  

In addition to the Carlsberg 9 cycle, a hypothesis commented on by Parker, is 
the Egyptian lunar calendar runs in parallel to the civil calendar system. Our 
findings support this hypothesis, showing consistency with timing of the Egyp-
tian feasts/festivals: Wagy (interpreted to be associated with lunar cycle), Thoth, 
and Tekh. [27] Parker believes Egyptians lunar feasts were marked by the civil 
calendar system and argues the basis of the names of the lunar months and 
transference to the civil calendar. (p. 249) [27] We find that the timing of Egyp-
tian festivals shows consistencies with the luniterranean regular cycle and related 
leap/skip days. The Wagy festival occurs on the first month of a civil new year 
on day +18 (365 + 18 = 383), Thoth festival on day +19 (365 + 19 = 384), and the 
Tekh festival on day + 20 (365 + 20 = 385). If we assume both the civil and luni-
terranean calendar systems started with a synchronization of events, then we 
would anticipate the calendar at a (privileged) point in Egypt started on a sunrise 
(Earth rotation) during a New Moon/new crescent (lunation stop/start) as Sirius 
rises on the horizon (2˚ cycle, stellar year). From this triple cycle calendar begin-
ning point, the civil calendar year would end on day 365 (signified by the rise of 
Sirius) but the luniterranean calendar system would continue to day 384 (regular 
year). This would align only on the first cyclic alignment, after which may only 
be symbolic of the alignment until the next cycle resynchronizes. 

The final calendar to discuss is the 360-day calendar with the addition of 5 ex-
tra days (epagomenal). [40] This system comprised of three seasons, each with 
four months with 30 days each, plus an additional 5 days. The Epagomenal (5 
days), or intercalary month, was used by Egyptian, Coptic, and Ethiopian calen-
dars where 360 counts of days in a solar orbital year was then added with five 
extra days to honor the gods. [23] The numerical count of (360 + 5) has consis-
tency with the product of the universal formula N = 12(301) = 360 as well as the 
civil calendar of 365 days. However, the 360 + 5-day calendar does not build 
upon signals unique to space and time, but rather variant seasonal changes like 
the flooding of the Nile that associates with a solar orbital period and eventually 
resets at the rise of Sirius. We deduce the seasonal calendar could have also been 
a purposeful simplification for the largely illiterate public. [41] 

4. Discussion 

In the historical exploration of mathematical spaces, numerous meticulous de-
scriptions have emerged, yet the characterization of temporal space has pre-
sented unique challenges. We introduced a methodology to mathematically map 
temporal space using discrete and independent object-oriented cyclic durations 
equitable to a finite period of physical time measured by modern dimensional 
time and applicable to set theory. These durations are recorded using cyclic sig-
nals from normal matter in our dimensional reality, marked from a privileged 
point of reference.  
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The concept of temporal space introduces a novel paradigm by employing 
geometric principles, a causal signal system, and dimensional analysis to define a 
discrete and finite framework for cyclic durations. This involves delineating 
multiple cyclic zero-D temporal points that bind object-oriented durations, or 
1D lines definable by SI unit time. Traditional spatial dimensions include points, 
line, and plane that represent the physical extent of objects. In contrast, temporal 
space provided geometric temporal elements of object-oriented durations taken 
from a privileged point of reference. The approach enables visualization of tem-
poral events in a manner similar to spatial positions. This offers a paradigm shift 
in expressing discrete time, opening applications for various fields. 

Temporal space, as elucidated in this article, served to unify both discrete and 
continuous temporal intervals, applicable to the scale of both quantum and clas-
sical physics given discrete event signals from each can be identified. This ap-
proach marks a departure from conventional applications that solely use a single 
continuous and linear progression of time. This network of multiple overlapping 
object-oriented durations is, however, linkable to a single uniform progression 
of a timeline within our dimensional reality relevant to a privileged point of ref-
erence. 

In comparison, the conventional use of a single continuous nature of time in 
physics is a fundamental approach for various theories, such as classical me-
chanics, quantum mechanics, and relativity. In classical mechanics, time is an 
absolute, independent parameter progressing uniformly and separate from 
space. Einstein’s theory of relativity, particularly in special relativity, recognizes 
time as part of a 4D spacetime continuum, where the rate of time passage can 
vary based on observer motion and gravitational fields, leading to phenomena 
like time dilation. At the quantum level, time is often a parameter in equations 
governing quantum state evolution, as seen in the Schrödinger equation. While 
time is generally treated as continuous in most theories. Quantum temporal 
space in essence uses quantum discrete signals to define a duration at or near 
Planck’s limits. 

Another key characteristic of temporal space is its departure from the use of 
infinitesimal time where t ≠ 0 and singularities are used. Instead, temporal space 
is based on physical durations where there is a limit, where time can be zero [t = 
0]. This temporal limit aligns with Planck’s limits and the Mohist definition of 
an “atomic,” representing a line indivisible into smaller parts. For instance, con-
sider the phenomenon of superposition, where two states can simultaneously 
occur. Here the simultaneous occurrence of these two states occurs precisely 
when t = Øt = 0, which is independent of space but measurable using separate Rt 
relational spatial metrics when observed. In contrast, infinitesimal intervals of 
continuous time, proposed to exist beyond our dimensional reality, can occur 
between these superposition discrete event signals. The definition of temporal 
space is confined to our observable and dimensional reality, measured on a scale 
relevant to our observed universe of normal matter. In contrast to relativistic 
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modeling, where time and space are intertwined, Rt relationalism allows for the 
separation of space from time. 

The recent advancements for Rt relationalism demonstrated how to separate 
space (an extension in a memoryless system) and time (a duration in a memory 
system). [1] One key advancement was to define cyclic durations that are ob-
ject-relational, separated by zero-D points [Øt], and measurable from a privi-
leged point of reference using dimensional time (seconds). Integration principles 
for signal systems enabled us to set zero-D time points, separated by a duration 
that can be measured by SI units of time. This theoretical advancement forms 
the basis for incorporating finite geometry into temporal space. Euclidean geo-
metry can now be used to model temporal space similar to how we model spatial 
space. The causal based system focuses on recording and presenting inputs that 
can be used for functions in casual system operations that can make predictions, 
creating new tools for consideration. Using alternative methodologies, we un-
derscored the complementary roles of relativity and relationalism, each frame-
work serving distinct purposes and generating unique model outputs. 

We employed inductive reasoning and assimilated mathematical approaches 
seen in such ancient timekeeping systems as Vedic, Egyptians, Sumerians, Baby-
lonians, and Chinese civilizations. Mathematical research also extended to in-
clude the study of Neolithic architecture, with a focus that included alignment to 
aperiodic astronomical signals and other features. [1] [26] [42] [43] [44] From a 
more modern standpoint, the study also addressed viewpoints from Newton and 
Einstein, which deviated from the cyclic and signal-centric descriptions preva-
lent in ancient models. Leibniz proposed a relational concept for time and space, 
but his theses still utilized both inertial frames and time derivatives of displace-
ment, both of which are not used in Rt relationalism. This article advanced Rt 
relationalism by unifying concepts of infinitesimal continuous and ob-
ject-oriented dimensional durations (physical) and provided a non-conflicting 
application for both within temporal space, inclusive to a network of multiple 
overlapping object-oriented durations. Gaps in relationalism are being filled by 
integrating modern technologies, mathematical theories, and ancient timekeep-
ing descriptions.  

The capability of generating overlapping cyclic durations, or temporal exten-
sions, is based upon privileged observers, located at privileged points of refer-
ence, or the origin of multiple light cones. Privileged observers measure the du-
ration between signals received at that point. A much different approach than 
that taken by the theory of relativity where time is one coordinate in 4D space-
time. Networks of durations were shown to be layered, each with a conserved 
cyclic symmetry groups and unique recurrent cyclic dimensional quantities (as-
suming aperiodic signals) and if cyclic whole duration is measured. Independent 
object-oriented time/durations can be layered and span the same defined tem-
poral space. These independent durations can be equated using dimensional 
time and principles related to a causal (signal) system. We gave a novel applica-
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tion of Euclid’s divisional algorithm with applications that include fixed tempor-
al space geometric models as well as calendared methodologies with the inclu-
sion of an introduced paired function equation. 

In this article we proposed dimensional relational time is fundamental, an in-
dependent measurable quantity without time dilation. Dimensional relative time 
[Tr] is argued to be fact, not subjective, given it is a finite duration bound by 
signals from normal matter. For a whole cycle, we consider there is a finite 
number of units, or parts of a whole cycle, on the temporal number line. Dimen-
sional relative time is not a mathematical construct as it is in relativity and is like 
ordinary time, measured by the invention of seconds which is based on funda-
mental constants of our dimensional reality using a relevant scale. Today we use 
Cs133 counts as a uniform measure of dimensional time, but a primary element 
like Hydrogen could be used to measure dimensional time before Cs133 was 
created in the universe. We entered these descriptions to contextualize the 
axioms that dimensional relative time is a real count, emergent from the first 
signal from normal matter and stopping with the last in this dimension. As it is 
not possible to have a privileged time reference for every measure, modern theo-
ries can provide workable estimates, again highlighting the complementary roles 
of Rt relationalism and the theory of relativity. 

Beyond time and durations of object-oriented cycles observed from privileged 
points, discrete symmetry becomes integrated into the various temporal units 
applying inherent features of ancient formulas. In an extensive mathematical in-
terrogation of various ancient timekeeping systems by the author, excluding 
Eurocentric interpretations, we conjectured a universal methodology where the 
temporal units (with both point and line elements) can be divided and subdi-
vided into units with symmetry, order, and cyclically unique dimensional time 
quantities (if measured). There are two different types of discrete symmetry, 
mathematical objects that share the same attributes, like rotational symmetry 
(D24) and the proposed symmetry of time, D12. Thus far each appears to be asso-
ciated with dihedral geometric symmetry in ancient formulas. Given all matter 
was theoretically connected at the big bang, it is reasonable to suggest all matter 
shares the same symmetry of time. This arguably requires a postulate that tem-
poral symmetry for a universe is conserved, but not critical to this methodology. 

We applied a familiar ancient formula for temporal spaces, N = 12(30x). This 
interpretation of the formula deviates from the various historical Eurocentric 
interpretations. Historical use of the formula is linked to timekeeping but has 
been used and interpreted for various best-fit inconsistencies, applied in various 
applications that create vague approximations of their own. For example, we do 
not see N = 360, or even 360 + 5, as a vague measure of ~365.2422 days in a 
tropical year, which is a typical interpretation in the literature. Instead, we argue 
the methodology of ancient timekeeping was unique from that of today, more 
universally applicable, and possibly more similar to the introduced methodology 
of this paper where accuracy can be maintained over long periods of time. 
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A pending step in a description of universality of ancient time is related to 
mathematically defining the framework for the symmetry of temporal cyclic 
forms with divisional units of a whole paired with accumulative whole cycles. 

Relational space and time are independent, but both are physically based and 
bound the by limits of our universe, supported in principle by Planck limits. 
However, we maintain openness that Rt12 may be infinitely divisible to a counta-
ble infinity as it can be seen as a unique symmetry, independent of ob-
ject-oriented mathematical objects such as rotation which is managed different-
ly. To support a finite count of units as part of a whole cycle, we can consider the 
quantum phenomena for superposition. We logically speculate quantum super-
position of states can span an interval of infinitesimal continuous time. Howev-
er, in quantum superposition, there is no measurable duration between signals, 
no duration of dimensional relative time, thus a dimensional temporal limit, [t = 
0]. A particle’s location of possibilities can include two positions at the same in-
stant of dimensional relative time. Since the quantum particle only appears in 
one possible position when observed, we hypothesize that when we observe it in 
this dimension, the particle is giving a spatial coordinate in addition to the tem-
poral coordinate.  

Consistent with the Rt system, Euclidean modeling can be considered for di-
mensional relative time, mappable on a straight natural number line using ze-
ro-D temporal points separated by object-oriented line elements that can be di-
vided and subdivided to a physical limit of the universe. We therefore consider a 
possibility zero-D points on independent lines may intersect across co-existing, 
yet independent, object-oriented 1D natural number temporal lines, or for sim-
plicity, “timelines”. A theoretically shared discrete point across timelines is 
termed a temporal node [Øtn]. A temporal node is not considered possible in 
continuous time because time cannot equal zero. If the network-independent 
timelines are parallel, we consider if temporal nodes can intersect in space and 
time.  

To consider if a temporal node located on two independent timelines can in-
tersect, we consider Euclid’s fifth postulate in Book I. Euclid comments that two 
straight lines with internal angles less than 90 degrees can meet, thus creating an 
intersects of lines. If we assume temporal 1D lines to be straight, curvature of 
some sort, may create a hypothetical intersect of timelines. A path yet to be ex-
plored is curvature in spherical geometry, inclusive of the interconnection of 
three points of a spherical triangle using straight lines on a curved surface. This 
exploratory thought is a natural progression taken from Euclidean principles 
and the methodology presented in this article.  

At this moment, future theoretical work needs to evaluate if Rt relationalism 
can be considered to have absolute zero time given there is no Δt1/Δt2 as used in 
continuous time. The system also allows for addition, a type of ordered subtrac-
tion as well as Euclidean 1D temporal space, and it is open to n-dimensional 
metric space, each of which is consistent with a strong measurement system. 
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[13] It would be prudent to embark on a comprehensive assessment of the sug-
gested temporal space measurement system to determine if it is a weak or strong 
form of measurement on a set of objects, taking into account the criteria out-
lined by Brazilai [45] or other relevant sources.  

To enable the combination of measures from modern dimensional quantities 
with cyclic symmetries of ancient systems, we presented a unique pairing func-
tion equation that is inclusive of new considerations for combining geometric 
dimensional quantities with Euclid’s division algorithm, Cantor pairing func-
tions, and Gödel numbering. The universal methodology described in this paper 
is consistent with ancient cyclic durations, conserved cyclic symmetry, sig-
nal-based observations, mathematics, and modern measurements and units of 
time. Simultaneously, the methodology is capable of absolute precision that 
challenges even modern technologies.  

The author is not aware of a recognized Greek-based calendar system that 
precisely uses the description of ancient formulas, including N = 12(301) = 360, 
and there are various unresolved issues, including intercalary events. [46] [47] 
Greek methodologies included the application of N = 12(30x) as twelve counts of 
a moon orbit with a vague fit of 30 days each lunation as well as in the design of 
Julian-style calendars with twelve months with +/− 30 days each. Greek calen-
dars were diverse, and different city-states often had their own systems. One 
notable Greek calendar was the Attic calendar, used in Athens. It was a lunar ca-
lendar based on the phases of the moon. The months alternated between 29 and 
30 days, however Greek interpretations of the ancient formula 12(30) = 360 led 
to creating a 354-day year with an additional month periodically added as an in-
tercalary event. A non-Greek calendar methodology is proposed to use the an-
cient formulas, including N = 12(30x) with precision, not vagueness, which are 
most closely aligned with ancient Hindu timekeeping descriptions. The intro-
duced non-Greek based calendar methodology that uses independent ob-
ject-relational durations defined by discrete cyclic events, and non-vague appli-
cations of ancient formulas, such as 12(30x), highlights gaps, limitations, and the 
non-universality of a Julian-style calendar methodology. The Julian calendar, in-
troduced by Julius Caesar, is a “solar” calendar with 12 varying-length months, 
totaling 365 days plus an extra day in leap years. In the context of this article’s 
methodology, the approach can be seen as taking two independent cycles, 
Earth’s orbit and Earth’s rotation, and merging them with a vague alignment of 
the universal formula, N = 12(30x). The Greek method of combining cycles in-
troduces inaccuracies in timekeeping that deviate from the consistency found in 
ancient timekeeping systems based on natural number counts of signal events 
and various distinct formulas. This proposition implies that employing Greek 
methodologies in present-day interpretations of ancient time-keeping systems 
may have led to inconsistencies and misinterpretations, overlooking a simpler 
application yet more advanced mathematical approach. 

With few alternative methodologies to study ancient astronomical timekeep-
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ing systems, Eurocentric research has exclusively used the well-preserved and 
mass published documents that characterize ancient Greece concepts of time 
and calendars, including the familiar Julian-style calendar systems. [33] 
[48]-[53] In general, conventional literature about ancient calendar systems of-
ten contains discussion that ancient civilizations adhered to relatively unsophis-
ticated observation-based calendar systems compared to the accuracy of more 
modern measures used by the Julian-style calendar, including Pope Gregory 
XIII’s Gregorian calendar. Modern reinterpretations of observational-based ca-
lendar systems highlight their inherent inaccuracies from Eurocentric perspec-
tives.  

Methodologies seen in Egypt for example are not unique. Using the rise of a 
star, like Sirius in Egypt, is not uncommon as a marker of a New Year. Different 
stars are used in different regions (differing privileged observers and privileged 
points) across the world by ancient civilizations. In many places which includes 
tribes in Mexico, as well as Australia, they used the morning rising of Pleiades 
with the best time to witness it is during a New Moon. [54] In the traditional 
Māori Maramataka, or lunar calendar, the new year begins with the first new 
moon following the appearance of Matariki (also known as Pleiades). In New 
Zealand the lunar calendar started with the rise of the winter star of Puangu (al-
so known as Rigel). [55] This suggests the proposed Rt methodology could be 
studied in a global context.  

It is noteworthy to also consider the historical backdrop of timekeeping when 
considering the plethora of existing literature given actions through history may 
have created potential for inadvertent selection and researcher biases in the his-
torical studies of ancient timekeeping. 

Our global transition to a shared Roman/Greek derived Julian (45 BCE) and 
later Gregorian calendar system (1582 by Pope Gregory XIII) has been rooted in 
aggressive, and in many cases, brutal replacement of indigenous timekeeping 
methodologies. Examples can be seen in Mesoamerica. [33] [56] It was in 1524 
that the first 12 Franciscan missionaries, also referred to as the “Twelve Apostles 
of Mexico” lead by Fray Martin de Valecia, arrived in Mesoamerica and began 
their “spiritual conquest” of New Spain. [57] During the Christian missionary 
visits, documents from the indigenous populations were largely burnt and de-
stroyed and then chronicles, now used as source documents, were written to 
largely replaced the destroyed native written records.  

Through history, attempts were made to convert the Egyptian system to the 
Greek system, including Ptolemy III’s Canopus Decree. These early attempts 
were repelled by the Egyptian priests until Augustus from Rome imposed upon 
Egypt the Julian-style system on August 1st, 30 BCE, under the name Alexan-
drian year. (p. 452) [22] [58] The introduction of Greek year of 365.24 days in a 
solar year was “…regarded by the Egyptian people as an abhorrent innovation 
with which they would have absolutely nothing to do with and interpreted as 
‘obnoxiously foreign’ and seen as undesirable in Egypt. (p. 452) [22] The calen-
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dar was referred to the Egyptians the ‘Greek Year’ to distinguish it from the year 
‘according to the ancients’ [22] [58] and was not used by the natives until they 
had given up their own religion and had adopted Christianity.” (p. 452) [22] Un-
til the broad adoption of Alexandrian year with the spread of Christianity, for 
three thousand years, the 365-day year was used as the civil calendar.  

Written explanation of methodologies for an Egyptian lunar calendar system 
have not well survived the ages or reaches of public publication, creating specu-
lation and various hypotheses that are still being debated. Lunar calendar pro-
posals from Borchardt and Parker have been disputed however using conven-
tional comparisons, no clear explanation related to differing findings can be 
made. To highlight the challenges, Meyer [58] is stated to concluded that the 
365-day civil year as being artificial “since neither month nor season nor even 
year corresponded to any natural period.” (p. 30) [27] We propose that this in-
terpretation of an “artificial” calendar as a good example of a published Euro-
centric interpretation of ancient calendars.  

To study the application of the Rt calendar methodology, we provided an ini-
tial mathematical study of pre-Greek Egyptian calendar systems. Tests included 
using a luniterranean calendar system originally derived and published from a 
study originating from ancient Neolithic China. [36] We demonstrated consis-
tency with an accurate primary 365-day calendar system that is not only accurate 
using more advanced mathematics and physics than Julian-style calendars, but 
one that contains several advantages over Greek based timekeeping alternatives. 
For example, Rt calendar methodology can take any primary period in a tem-
poral space and divide it into 12 equal elements of time requiring more context 
to appreciate what temporal space is being represented. 

Initial study and findings of the Carlsberg 9 cycle support a new hypothesis 
for a triple cycle calendar system whereby Earth’s primary cycle creates a 
primary period of 9125 days, equated with 25 stellar rises of Sirius and 309 
lunation cycles, where each secondary has a pairing remainder added to both 
sides of the pairing function equation to maintain temporal equality. There 
are limitations as references from the papyrus like 16-small years have not yet 
been fully modeled, requiring more in-depth assessment of numerous astro-
nomical cycles and calendar variables. However, the study continued to sup-
port Parker’s proposal that a parallel lunar calendar system ran along with the 
civil system. Supporting Parker’s hypothesis there was a synchronized start of 
both a civil and luniterranean calendars, it is noted in this article that the 
timing of Egyptian festivals falls upon the 383-day (365 + 18), 384-day (365 + 
19), and 385-days (365 + 20) which are also associated with actual (first year 
of cyclic synchronization) and later potentially symbolic luniterranean calen-
dar’s skip, regular, and leap years respectively. As with any new hypothesis, 
these will require continued mathematical study from existing artifacts, both 
written and geometric.  

Potential applications for this mathematical tool can be considered when ex-
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ploring challenges in quantum computing as well as use for discrete event simu-
lations. For example, temporal space has a time point equal to zero, where the 
start/stop cycle is synchronized with discrete events in our physical reality. The 
approach is an alternative to abstract and infinitesimal continuous time where 
time cannot equal zero. We propose this as an alternative perspective for ap-
proaching obstacles that have been described in relation to designing a quantum 
clock. [59] Practical applications can be extended for consideration in discrete 
event simulation modelling, opening opportunities for building discrete state 
models of relational data whereby the geometric model itself is constructed us-
ing object-relational geometric elements frozen in a point of zero-time. The ap-
proach opens considerations for developing an automaton application for Euc-
lidean translations for the Rt system. We also consider an opportunity to con-
struct a concentric polynomial clock with many millions of discrete states pre-
sented as a sequence of states inclusive of temporal space. Such a clock could be 
managed using a primary cyclic signal and with a single discrete input event, 
simultaneously providing two or more state outputs using a polar coordinate 
system. Such a clock is beyond the scope of this article. 

This novel methodology provides precision, universality, and timekeeping 
technology with potential applications in computational geometric modeling as 
well as modern physics. These capabilities underscore limitations in today’s ex-
isting technologies. For example, the need for additional data repositories essen-
tial for implementing an N-body causal calendar system made possible by this 
methodology.  

5. Conclusion 

Temporal space combines cyclic signals, discrete events, object-oriented relation-
ships, and the interconnectedness of multiple timelines within a finite and 
one-dimensional geometric framework. Unlike traditional uses of time and metric 
space, temporal space is finite and modelled using ordered discrete elements 
equated to dimensional time. Its applicability extends to a natural number line in-
stead of an infinitesimal real number line. Temporal elements possess diverse 
properties, including object-relational durational data and dimensional quantities 
of time. Notably, temporal space allows for the intriguing possibility of a network of 
multiple timelines that can be equated to a single shared linear timeline, introduc-
ing a novel and dynamic dimension to our understanding of time and space.  

The concept of temporal space emphasizes cyclic signals, discrete events, and 
divisional/subdivisional structures with consistent application of ancient formu-
las to create ordered temporal elements. The approach not only offers a new 
view on durations and time but also introduces innovative applications in stud-
ying ancient timekeeping and calendar systems.  
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